Week | Lecturer | Textbook | Notes | |||||||||||
1 | Prof.Lixin Yan & Yikun Zhang | Introduction to Fourier Analysis | Lecture 1 Slide | |||||||||||
2 | Qiwen Zhou & Yue Hu | Sec 2.1 | ||||||||||||
3 | Sisi Gai & Dan He | Sec 2.2 | ||||||||||||
4 | Jian Yao & Minghan Dai | Sec 2.3 & Sec 2.4 | ||||||||||||
5 | National Day Holiday and Mid-autumn Festival (No class) | |||||||||||||
6 | Chongshan Xie & Kaixi Wu | Sec 2.5 & Sec 1.2 | ||||||||||||
7 | Qiwen Zhou & Yue Hu | Sec 3.1 | ||||||||||||
8 | Sisi Gai & Dan He | Sec 3.2 | ||||||||||||
9 | Jian Yao & Minghan Dai | Sec 4.1 & Sec 4.2 | A master thesis about Weyl's Equidistribution (Retrieved from the Internet by Yikun Zhang) | |||||||||||
10 | Mid-term Exam Week (No class) | |||||||||||||
11 | Chongshan Xie & Kaixi Wu | Sec 4.3 & Sec 4.4 | I found two related papers about examples and proofs of continuous but nowhere differentiable functions. Paper A is interesting and easy to understand, while Paper B is more difficult and requires some knowledge of the Lebesgue Theory and Fourier Transform. I hope that these two paper can boarden your knowledge in Classical Analysis. (Yikun Zhang) | |||||||||||
12 | Qiwen Zhou & Yue Hu | Sec 5.1 | ||||||||||||
13 | Sisi Gai & Dan He | Sec 5.1, Sec 5.2 | ||||||||||||
14 | Jian Yao & Minghan Dai | Sec 5.2 & Sec 5.3 | ||||||||||||
15 | Chongshan Xie & Kaixi Wu | Sec 5.3 & Sec 5.4 | ||||||||||||
16 | Qiwen Zhou & Yue Hu | Sec 7.1 | ||||||||||||
17 | Sisi Gai & Dan He | Sec 7.1.3 (FFT) | ||||||||||||
18 | Jian Yao & Minghan Dai | Sec 7.2.2, 7.2.3 | Results on the Convergence of Fourier Series (A summary of the main reults of the book) (Retrieved from the Internet by Yikun Zhang) | |||||||||||
19 | Chongshan Xie & Kaixi Wu | Sec 7.2.4, 7.2.5 | Supplementary materials for finite Fourier analysis (Retrieved from the Internet by Yikun Zhang) | |||||||||||
1 (Spring term) | Qiwen Zhou & Yue Hu | Sec 6.1, 6.2 | ||||||||||||
2 (Spring term) | Sisi Gai & Dan He | Sec 6.3 | ||||||||||||
3 (Spring term) | Jian Yao & Minghan Dai | Sec 6.4, 6.5 |
Week | Homework | Reading Assignments | Solutions | |||||||||||
1 | Chapter 2 Ex.16 | Sec 2.1, Sec 2.2, Appendix | Solution 1, Weierstrass's proof, Berstein's proof | |||||||||||
2 | Reinforce the understanding of Theorem 1.7 in the Appendix, Chapter 2 Ex.2 & Ex.9 | Appendix, Sec 2.2, Sec 2.3 | Solution 2 | |||||||||||
3 | Chapter 2 Problem 1 | Appendix Lemma 1.5, Sec 2.3, Sec 2.4 | Solution 3 | |||||||||||
4 | Chapter 2 Ex.15 & Problem 2, Chapter 1 Ex.10 | Sec 2.5, Chapter 1 | Solution 4 | |||||||||||
5 | National Day Holiday and Mid-autumn Festival (No class) | |||||||||||||
6 | Chapter 2 Ex.13, Chapter 2 Problem 3 (Challenging, No Due) | Sec 3.1, Chapter 1 | Solution 5 | |||||||||||
7 | Chapter 3 Ex.2, Ex.5, Ex.7, Problem 1 (Challenging, No Due) | Sec 3.2 | Solution 6 | |||||||||||
8 | Chapter 3 Ex.11 Ex.16 | Sec 4.1 | Solution 7 | |||||||||||
9 | No homework (Prepare for mid-term exams of other courses) | Review what we have learned | ||||||||||||
10 | Mid-term Exam Week (No class) | |||||||||||||
11 | Chapter 4 Ex.4, Ex.7, Ex.10 | Sec 5.1 | Solution 8 | |||||||||||
12 | Chapter 5 Ex.1, Ex.5, Ex.7 | Sec 5.1, 5.2 | Solution 9 | |||||||||||
13 | Chapter 5 Ex.9, Ex.10, Ex.12 | Sec 5.2, 5.3 | Solution 10 | |||||||||||
14 | Chapter 5 Ex.11, Ex.14, Ex.15 | Sec 5.3, 5.4 | Solution 11 | |||||||||||
15 | Chapter 5 Ex.21, Ex.22 | Preview the definition of (abelian) groups, homomorphism, and character | Solution 12 | |||||||||||
16 | Chapter 7 Ex.1, Ex.3, Ex.10, Ex.11 | Search the Internet for some applications of FFT (Fast Fourier Transform) | Solution 13 | |||||||||||
17 | Chapter 7 Ex.5, Ex.8, Ex.9 | Sec 7.2 | Solution 14 | |||||||||||
18 | Chapter 7 Ex.12, Ex.13 | Sec 7.2, Chapter 6 | Solution 15 | |||||||||||
19 | No homework (Good luck for your final exams of other courses) | Chapter 6 | ||||||||||||
1 (Spring term) | Chapter 6 Ex.2, Ex.4, Ex.5 | Sec 6.3 | Solution 16, Some detailed discussions on the volume and surface area of an n-dimemsional hypersphere (Supplementary materials for Exercise 4. I retrieved from the Internet. Yikun Zhang) |
Maintained by Yikun Zhang