
Homework 9 Solution

Yikun Zhang1

Chapter 5. Ex.1 Corollary 2.3 in Chapter 2 leads to the following simplified version of
the Fourier inversion formula. Suppose f is a continuous function supported on an interval
[−M,M ], whose Fourier transform f̂ is of moderate decrease.

(a) Fix L with L/2 > M , and show that f(x) =
∑
an(L)e

2πnx
L where

an(L) =
1

L

∫ L
2

−L
2

f(x)e−
2πnx
L dx =

1

L
f̂(
n

L
).

Alternatively, we may write f(x) = δ
∞∑

n=−∞
f̂(nδ)e2πinδx with δ = 1

L
.

(b) Prove that if F is continuous and of moderate decrease, then∫ ∞
−∞

F (ξ)dξ = lim
δ→0
δ>0

δ
∞∑

n=−∞

F (δn).

(c) Conclude that f(x) =
∫∞
−∞ f̂(ξ)e2πixξdξ.

Proof. (a) Since f is a continuous function supported on an interval [−M,M ], i.e., f(x) = 0
for all x ∈ (−∞,−M) ∪ (M,+∞), we know that the Fourier coefficient of f is

an(L) = 1
L

∫ L
2

−L
2

f(x)e−
2πinx
L dx = 1

L
f̂(n

L
), where f̂(ξ) =

∫∞
−∞ f(x)e−2πixξdx and L

2
> M .

Next we claim that the Fourier series
∞∑

n=−∞
an(L)e

2πinx
L converges uniformly to f(x).

Since f̂ is of moderate decrease, we have |an(L)| ≤ |f̂(n
L

)| ≤ A
1+( n

L
)2
≤ L2A

n2 , where A is a

constant.
Thus the Fourier series of f is absolutely convergent and by Corollary 2.3 in Chapter 2, we

obtain that f(x) =
∞∑

n=−∞
an(L)e

2πinx
L .

(b) First we have |
∫∞
−∞ F (ξ)dξ−δ

∞∑
n=−∞

F (δn)| ≤
∫
|x|>N |F (x)|dx+|

∫ N
−N F (x)dx−δ

∑
|n|≤N

δ

F (δn)|+

|δ
∑
|n|>N

δ

F (δn)| = I1 + II2 + III3.

Since F is continuous and of moderate decrease, for any ε > 0 we can choose N > 0 such that
I1 =

∫
|x|>N |F (x)|dx < ε

3
. Meanwhile, there exists a δ1 > 0 such that II3 = δ1

∑
|δ1n|>N

F (nδ1) ≤

δ1
∑
|x|>N

A
1+x2

≤
∫
|x|>N

A
1+x2

dx < ε
3
, where A is a constant.

Moreover, F is continuous and thus integrable on [−N,N ]. We can choose 0 < δ2 < δ1 such
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that for all 0 < δ < δ2, II2 = |
∫ N
−N F (x)dx− δ

∑
|n|≤N

δ

F (δn)| < ε
3
, since δ

∑
|n|≤N

δ

F (δn) is almost a

Riemann sum of F and may just miss two end points N,−N but the difference is small.

Therefore, for all 0δ < δ2 we have |
∫∞
−∞ F (ξ)dξ − δ

∞∑
n=−∞

F (δn)| < ε and the result follows.

(c) By Proposition 1.1 (iv), we know that f̂ is continuous when f ∈M(R) and f is continuous.
Applying (a) and (b) on F (ξ) = f̂(ξ)e2πiξx, we obtain that∫ ∞

−∞
f̂(ξ)e2πiξxdξ = lim

δ→0+
δ

∞∑
n=−∞

f̂(nδ)e2πinδx = f(x). �

Chapter 5. Ex.5 Suppose f is continuous and of moderate decrease.
(a) Prove that f̂ is continuous and f̂(ξ)→ 0 as |ξ| → ∞.
(b) Show that if f̂(ξ) = 0 for all ξ, then f is identically 0.

Proof. (a) Since f is of moderate decrease, there exists an N > 0 such that
∫
|x|≥N |f(x)|dx < ε

4

for any ε > 0.
Meanwhile, for any x ∈ [−N,N ], due to lim

h→0
e−2πihx = 1, there exists a δ > 0 such that

|e−2πihx − 1| < ε
2A

when |h| < δ, where A =
∫ N
−N |f(x)|dx for a fixed N .

Thus when |h| < δ, we have

|f̂(ξ + h)− f̂(ξ)| ≤
∫
|x|≥N

2|f(x)|dx+

∫ N

−N
|f(x)e−2πiξx| · |e−2πihx − 1|dx+

< 2 · ε
4

+ (

∫ N

−N
|f(x)|dx) · ε

2A

= ε,

(1)

showing that f̂ is continuous.
In addition, by Riemann-Lebesgue Lemma, for any fixed N > 0 we know that∫ N
−N f(x)e−2πiξxdx < ε

2
when |ξ| is large.

Therefore, |f̂(ξ)| ≤
∫
|x|≥N |f(x)|dx + |

∫ N
−N f(x)e−2πiξxdx| < ε, yielding that f̂(ξ) → 0 as |ξ| →

∞.

(b) Since f is of moderate decrease and g ∈ S(R), by Theorem 3.1 in the Appendix, we know
that the multiplication formula still holds. Then we can choose ĝ(ξ) = Kδ(t − ξ). In reality,
g(x) =

∫∞
−∞ ĝ(ξ)e2πiξxdξ =

∫∞
−∞Kδ(t − ξ)e2πiξxdξ =

∫∞
−∞Kδ(u)e2πi(t−u)xdu = e2πixtK̂δ(x) =

e2πixt · e−πδx2 .
Therefore, 0 =

∫∞
−∞ f(x)Kδ(y − x)dx → f(y) uniformly in x as δ → 0, yielding that f is

identically 0. �

Remark: One may want to take ĝ(x) = f(x) to prove the results through the continuity of
f . However, the case becomes more subtle because f is just of moderate decrease. We need to
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refer to Fubini’s Theorem to write down a rigor proof.

Chapter 5. Ex.7 Prove that the convolution of two functions of moderate decrease is a
function of moderate decrease.

Proof. First we know that f ∗ g is also continuous as f and g are continuous.
Moreover, by the moderate decreasing property of f and g, we have

|(f ∗ g)(x)| ≤
∫
|y|≤ |x|

2

|f(x− y)g(y)|dy +

∫
|y|≥ |x|

2

|f(x− y)g(y)|dy

≤
∫
|y|≤ |x|

2

[
A

1 + (x− y)2
]|g(y)|dy +

∫
|y|≥ |x|

2

|f(x− y)|( B

1 + y2
)dy

≤ 4A

4 + x2

∫ ∞
∞
|g(y)|dy +

4B

4 + x2

∫ ∞
∞
|f(x− y)|dy

≤ C

1 + x2
,

(2)

where A,B,C are constants. �
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