Homework 9 Solution

Yikun Zhang ${ }^{1}$

Chapter 5. Ex. 1 Corollary 2.3 in Chapter 2 leads to the following simplified version of the Fourier inversion formula. Suppose f is a continuous function supported on an interval $[-M, M]$, whose Fourier transform \hat{f} is of moderate decrease.
(a) Fix L with $L / 2>M$, and show that $f(x)=\sum a_{n}(L) e^{\frac{2 \pi n x}{L}}$ where

$$
a_{n}(L)=\frac{1}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} f(x) e^{-\frac{2 \pi n x}{L}} d x=\frac{1}{L} \hat{f}\left(\frac{n}{L}\right)
$$

Alternatively, we may write $f(x)=\delta \sum_{n=-\infty}^{\infty} \hat{f}(n \delta) e^{2 \pi i n \delta x}$ with $\delta=\frac{1}{L}$.
(b) Prove that if F is continuous and of moderate decrease, then

$$
\int_{-\infty}^{\infty} F(\xi) d \xi=\lim _{\substack{\delta \rightarrow 0 \\ \delta>0}} \delta \sum_{n=-\infty}^{\infty} F(\delta n)
$$

(c) Conclude that $f(x)=\int_{-\infty}^{\infty} \hat{f}(\xi) e^{2 \pi i x \xi} d \xi$.

Proof. (a) Since f is a continuous function supported on an interval $[-M, M]$, i.e., $f(x)=0$ for all $x \in(-\infty,-M) \cup(M,+\infty)$, we know that the Fourier coefficient of f is
$a_{n}(L)=\frac{1}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} f(x) e^{-\frac{2 \pi i n x}{L}} d x=\frac{1}{L} \hat{f}\left(\frac{n}{L}\right)$, where $\hat{f}(\xi)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i x \xi} d x$ and $\frac{L}{2}>M$.
Next we claim that the Fourier series $\sum_{n=-\infty}^{\infty} a_{n}(L) e^{\frac{2 \pi i n x}{L}}$ converges uniformly to $f(x)$.
Since \hat{f} is of moderate decrease, we have $\left|a_{n}(L)\right| \leq\left|\hat{f}\left(\frac{n}{L}\right)\right| \leq \frac{A}{1+\left(\frac{n}{L}\right)^{2}} \leq \frac{L^{2} A}{n^{2}}$, where A is a constant.
Thus the Fourier series of f is absolutely convergent and by Corollary 2.3 in Chapter 2 , we obtain that $f(x)=\sum_{n=-\infty}^{\infty} a_{n}(L) e^{\frac{2 \pi i n x}{L}}$.
(b) First we have $\left|\int_{-\infty}^{\infty} F(\xi) d \xi-\delta \sum_{n=-\infty}^{\infty} F(\delta n)\right| \leq \int_{|x|>N}|F(x)| d x+\left|\int_{-N}^{N} F(x) d x-\delta \sum_{|n| \leq \frac{N}{\delta}} F(\delta n)\right|+$ $\left|\delta \sum_{|n|>\frac{N}{\delta}} F(\delta n)\right|=I_{1}+I I_{2}+I I I_{3}$.
Since F is continuous and of moderate decrease, for any $\epsilon>0$ we can choose $N>0$ such that $I_{1}=\int_{|x|>N}|F(x)| d x<\frac{\epsilon}{3}$. Meanwhile, there exists a $\delta_{1}>0$ such that $I I_{3}=\delta_{1} \sum_{\left|\delta_{1} n\right|>N} F\left(n \delta_{1}\right) \leq$ $\delta_{1} \sum_{|x|>N} \frac{A}{1+x^{2}} \leq \int_{|x|>N} \frac{A}{1+x^{2}} d x<\frac{\epsilon}{3}$, where A is a constant.
Moreover, F is continuous and thus integrable on $[-N, N]$. We can choose $0<\delta_{2}<\delta_{1}$ such

[^0]that for all $0<\delta<\delta_{2}, I I_{2}=\left|\int_{-N}^{N} F(x) d x-\delta \sum_{|n| \leq \frac{N}{\delta}} F(\delta n)\right|<\frac{\epsilon}{3}$, since $\delta \sum_{|n| \leq \frac{N}{\delta}} F(\delta n)$ is almost a Riemann sum of F and may just miss two end points $N,-N$ but the difference is small.
Therefore, for all $0 \delta<\delta_{2}$ we have $\left|\int_{-\infty}^{\infty} F(\xi) d \xi-\delta \sum_{n=-\infty}^{\infty} F(\delta n)\right|<\epsilon$ and the result follows.
(c) By Proposition 1.1 (iv), we know that \hat{f} is continuous when $f \in \mathcal{M}(\mathbb{R})$ and f is continuous. Applying (a) and (b) on $F(\xi)=\hat{f}(\xi) e^{2 \pi i \xi x}$, we obtain that
$$
\int_{-\infty}^{\infty} \hat{f}(\xi) e^{2 \pi i \xi x} d \xi=\lim _{\delta \rightarrow 0^{+}} \delta \sum_{n=-\infty}^{\infty} \hat{f}(n \delta) e^{2 \pi i n \delta x}=f(x)
$$

Chapter 5. Ex. 5 Suppose f is continuous and of moderate decrease.
(a) Prove that \hat{f} is continuous and $\hat{f}(\xi) \rightarrow 0$ as $|\xi| \rightarrow \infty$.
(b) Show that if $\hat{f}(\xi)=0$ for all ξ, then f is identically 0 .

Proof. (a) Since f is of moderate decrease, there exists an $N>0$ such that $\int_{|x| \geq N}|f(x)| d x<\frac{\epsilon}{4}$ for any $\epsilon>0$.
Meanwhile, for any $x \in[-N, N]$, due to $\lim _{h \rightarrow 0} e^{-2 \pi i h x}=1$, there exists a $\delta>0$ such that $\left|e^{-2 \pi i h x}-1\right|<\frac{\epsilon}{2 A}$ when $|h|<\delta$, where $A=\int_{-N}^{N}|f(x)| d x$ for a fixed N.
Thus when $|h|<\delta$, we have

$$
\begin{align*}
|\hat{f}(\xi+h)-\hat{f}(\xi)| & \leq \int_{|x| \geq N} 2|f(x)| d x+\int_{-N}^{N}\left|f(x) e^{-2 \pi i \xi x}\right| \cdot\left|e^{-2 \pi i h x}-1\right| d x+ \\
& <2 \cdot \frac{\epsilon}{4}+\left(\int_{-N}^{N}|f(x)| d x\right) \cdot \frac{\epsilon}{2 A} \tag{1}\\
& =\epsilon
\end{align*}
$$

showing that \hat{f} is continuous.
In addition, by Riemann-Lebesgue Lemma, for any fixed $N>0$ we know that $\int_{-N}^{N} f(x) e^{-2 \pi i \xi x} d x<\frac{\epsilon}{2}$ when $|\xi|$ is large.
Therefore, $|\hat{f}(\xi)| \leq \int_{|x| \geq N}|f(x)| d x+\left|\int_{-N}^{N} f(x) e^{-2 \pi i \xi x} d x\right|<\epsilon$, yielding that $\hat{f}(\xi) \rightarrow 0$ as $|\xi| \rightarrow$ ∞.
(b) Since f is of moderate decrease and $g \in \mathcal{S}(\mathbb{R})$, by Theorem 3.1 in the Appendix, we know that the multiplication formula still holds. Then we can choose $\hat{g}(\xi)=K_{\delta}(t-\xi)$. In reality, $g(x)=\int_{-\infty}^{\infty} \hat{g}(\xi) e^{2 \pi i \xi x} d \xi=\int_{-\infty}^{\infty} K_{\delta}(t-\xi) e^{2 \pi i \xi x} d \xi=\int_{-\infty}^{\infty} K_{\delta}(u) e^{2 \pi i(t-u) x} d u=e^{2 \pi i x t} \hat{K}_{\delta}(x)=$ $e^{2 \pi i x t} \cdot e^{-\pi \delta x^{2}}$.
Therefore, $0=\int_{-\infty}^{\infty} f(x) K_{\delta}(y-x) d x \rightarrow f(y)$ uniformly in x as $\delta \rightarrow 0$, yielding that f is identically 0 .
Remark: One may want to take $\hat{g}(x)=f(x)$ to prove the results through the continuity of f. However, the case becomes more subtle because f is just of moderate decrease. We need to
refer to Fubini's Theorem to write down a rigor proof.

Chapter 5. Ex. 7 Prove that the convolution of two functions of moderate decrease is a function of moderate decrease.
Proof. First we know that $f * g$ is also continuous as f and g are continuous. Moreover, by the moderate decreasing property of f and g, we have

$$
\begin{align*}
|(f * g)(x)| & \leq \int_{|y| \leq \frac{|x|}{2}}|f(x-y) g(y)| d y+\int_{|y| \geq \frac{|x|}{2}}|f(x-y) g(y)| d y \\
& \leq \int_{|y| \leq \frac{|x|}{2}}\left[\frac{A}{1+(x-y)^{2}}\right]|g(y)| d y+\int_{|y| \geq \frac{|x|}{2}}|f(x-y)|\left(\frac{B}{1+y^{2}}\right) d y \tag{2}\\
& \leq \frac{4 A}{4+x^{2}} \int_{\infty}^{\infty}|g(y)| d y+\frac{4 B}{4+x^{2}} \int_{\infty}^{\infty}|f(x-y)| d y \\
& \leq \frac{C}{1+x^{2}},
\end{align*}
$$

where A, B, C are constants.

[^0]: ${ }^{1}$ School of Mathematics, Sun Yat-sen University

