## Homework 4 Solution

Yikun Zhang ${ }^{1}$

Chapter 2. Ex. 15 Prove that the Fejér kernel is given by

$$
F_{N}(x)=\frac{1}{N} \frac{\sin ^{2}(N x / 2)}{\sin ^{2}(x / 2)}
$$

Proof. First we note that $D_{N}(x)=\sum_{n=0}^{N} \omega^{n}+\sum_{n=1}^{N} \omega^{-n}=\frac{1-\omega^{N+1}}{1-\omega}+\frac{\omega^{-N}-1}{1-\omega}=\frac{\omega^{-N}-\omega^{N+1}}{1-\omega}$, where $\omega=e^{i x}$.
Therefore,
$N F_{N}(x)=\sum_{n=0}^{N-1} \frac{\omega^{-n}-\omega^{n+1}}{1-\omega}=\frac{1}{1-\omega}\left(\frac{1-\omega^{-N}}{1-\omega^{-1}}-\frac{\omega-\omega^{N+1}}{1-\omega}\right)=\frac{\omega^{1-N}-2 \omega+\omega^{N+1}}{(1-\omega)^{2}}=\frac{\left(\omega^{-\frac{N}{2}}-\omega^{\frac{N}{2}}\right)^{2}}{\left(\omega^{-\frac{1}{2}}-\omega^{\frac{1}{2}}\right)^{2}}=\frac{\sin ^{2}\left(\frac{N x}{2}\right)}{\sin ^{2}\left(\frac{x}{2}\right)}$.
Chapter 2. Problem 2 Let $D_{N}$ denote the Dirichlet kernel

$$
D_{N}(\theta)=\sum_{k=-N}^{N} e^{i k \theta}=\frac{\sin ((N+1 / 2) \theta)}{\sin (\theta / 2)}
$$

and define

$$
L_{N}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|D_{N}(\theta)\right| d \theta
$$

(a) Prove that

$$
L_{N} \geq c \log N
$$

for some constant $c>0$. A more careful estimate gives

$$
L_{N}=\frac{4}{\pi^{2}} \log N+O(1)
$$

(b) Prove the following as a consequence: for each $n \geq 1$, there exists a continuous function $f_{n}$ such that $\left|f_{n}\right| \leq 1$ and $\mid S_{n}\left(f_{n}\right)(0) \geq c^{\prime} \log n$.
Proof. (a) We directly prove the more precise estimate $L_{N}=\frac{4}{\pi^{2}} \log N+O(1)$ and the result $L_{N} \geq c \log N$ follows.
First we know that $\left|\sin \frac{\theta}{2}\right| \leq\left|\frac{\theta}{2}\right|$ for all $\theta \in \mathbb{R}$. Thus $\left|D_{N}(\theta)\right| \geq \frac{2\left|\sin \left(N+\frac{1}{2}\right) \theta\right|}{|\theta|}$.

[^0]Therefore,

$$
\begin{align*}
L_{N} \geq \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\left|\sin \left(N+\frac{1}{2}\right) \theta\right|}{|\theta|} d \theta & =\frac{2}{\pi} \int_{0}^{\pi} \frac{\left|\sin \left(N+\frac{1}{2}\right) \theta\right|}{|\theta|} d \theta \\
& t=\left(N+\frac{1}{2}\right) \theta \\
= & \frac{2}{\pi} \int_{0}^{\left(N+\frac{1}{2}\right) \pi} \frac{|\sin t|}{|t|} d t \\
& =\frac{2}{\pi} \sum_{k=1}^{N} \int_{(k-1) \pi}^{k \pi} \frac{|\sin t|}{|t|} d t+\frac{2}{\pi} \int_{N \pi}^{\left(N+\frac{1}{2}\right) \pi} \frac{|\sin t|}{|t|} d t  \tag{1}\\
& \geq \frac{2}{\pi} \sum_{k=1}^{N} \int_{(k-1) \pi}^{k \pi} \frac{|\sin t|}{k \pi} d t+\frac{2}{\pi} \int_{N \pi}^{\left(N+\frac{1}{2}\right) \pi} \frac{|\sin t|}{\left(N+\frac{1}{2}\right) \pi} d t \\
& =\frac{4}{\pi^{2}} \sum_{k=1}^{N} \frac{1}{k}+\frac{2}{\left(N+\frac{1}{2}\right) \pi^{2}} \\
& \geq \frac{4}{\pi^{2}} \sum_{k=1}^{N} \log \left(1+\frac{1}{k}\right)+O(1) \\
& \geq \frac{4}{\pi^{2}} \log N+O(1)
\end{align*}
$$

where we use the fact that $\int_{(k-1) \pi}^{k \pi}|\sin t| d t=2$ and $\int_{N \pi}^{\left(N+\frac{1}{2}\right) \pi}|\sin t| d t=1$.
(b) First we construct the function $g_{n}$ as follows,

$$
g_{n}(x)= \begin{cases}1 & \text { when } D_{n}(x) \geq 0 \\ -1 & \text { when } D_{n}(x)<0\end{cases}
$$

Then by Lemma 3.2, we can approximate $g_{n}$ by continuous functions $\left\{h_{k}\right\}_{k=1}^{\infty}$ satisfying $\left|h_{k}\right| \leq 1$ and $\int_{-\pi}^{\pi}\left|g_{n}(x)-h_{k}(x)\right| d x<\pi \epsilon^{2}$ for any $\epsilon>0$ when $k \geq K$ and $K$ is sufficiently large.
Let $f_{n}=h_{K}$ and thus $\int_{-\pi}^{\pi}\left|g_{n}(x)-f_{n}(x)\right| d x<\pi \epsilon^{2}$. By (a) and Cauchy's Inequality, we have

$$
\begin{align*}
\left|S_{N}\left(f_{n}\right)(0)\right| & =\left|\frac{1}{2 \pi} \int_{-\pi}^{\pi} f_{n}(y) D_{N}(y) d y\right| \\
& =\left|\frac{1}{2 \pi} \int_{-\pi}^{\pi} g_{n}(y) D_{N}(y) d y+\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(f_{n}(y)-g_{n}(y)\right) D_{N}(y) d y\right| \\
& \geq \operatorname{clog} N-\left|\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(f_{n}(y)-g_{n}(y)\right) D_{N}(y) d y\right|  \tag{2}\\
& \geq \operatorname{clog} N-\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f_{n}(y)-g_{n}(y)\right|^{2} d y\right)^{\frac{1}{2}}\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|D_{N}(y)\right|^{2} d y\right)^{\frac{1}{2}} \\
& \geq \operatorname{clog} N-\left(\frac{1}{\pi} \int_{-\pi}^{\pi}\left|f_{n}(y)-g_{n}(y)\right| d y\right)^{\frac{1}{2}}(2 n+1) \\
& \geq \operatorname{clog} N-\epsilon(2 n+1),
\end{align*}
$$

where we use the fact that $\left|D_{n}(x)\right| \leq 2 n+1$ and $\left|f_{n}(y)-g_{n}(y)\right| \leq\left|f_{n}(y)\right|+\left|g_{n}(y)\right| \leq 2$.
Therefore, for each fixed $n \leq 1$, by letting $\epsilon \rightarrow 0$ and modifying $c$ to $c^{\prime}$, we obtain that $f_{n}$ satisfying $\left|f_{n}\right| \leq 1$ and $\left|S_{n}\left(f_{n}\right)(0)\right| \geq c^{\prime} \log n$.
Chapter 1. Ex. 10 Show that the expression of the Laplacian

$$
\triangle=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}
$$

is given in polar coordinates by the formula

$$
\triangle=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} .
$$

Also, prove that

$$
\left|\frac{\partial u}{\partial x}\right|^{2}+\left|\frac{\partial u}{\partial y}\right|^{2}=\left|\frac{\partial u}{\partial r}\right|^{2}+\frac{1}{r^{2}}\left|\frac{\partial u}{\partial \theta}\right|^{2} .
$$

Proof. In polar coordinates, $u(x, y)=u(r \cos \theta, r \sin \theta)$. Thus,

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial r}=\frac{\partial u}{\partial x} \cos \theta+\frac{\partial u}{\partial y} \sin \theta  \tag{1}\\
\frac{\partial u}{\partial \theta}=\frac{\partial u}{\partial x}(-r \sin \theta)+\frac{\partial u}{\partial y} r \cos \theta
\end{array}\right.
$$

Furthermore,

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial r^{2}}=\frac{\partial^{2} u}{\partial x^{2}} \cos ^{2} \theta+\left(\frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y \partial x}\right) \sin \theta \cos \theta+\frac{\partial^{2} u}{\partial^{2} y} \sin ^{2} \theta,  \tag{3}\\
\frac{\partial^{2} u}{\partial \theta^{2}}=\frac{\partial^{2} u}{\partial x^{2}} r^{2} \sin ^{2} \theta-\left(\frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y \partial x}\right) r^{2} \sin \theta \cos \theta+\frac{\partial^{2} u}{\partial^{2} y} r^{2} \cos ^{2} \theta-r\left(\frac{\partial u}{\partial x} \cos \theta+\frac{\partial u}{\partial y} \sin \theta\right) .
\end{array}\right.
$$

Letting $\frac{1}{r^{2}}(4)+(3)$, we obtain that $\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}-r \frac{\partial u}{\partial r}$.
Moreover, with $(1)^{2}+\frac{1}{r^{2}}(2)$, we also have $\left|\frac{\partial u}{\partial x}\right|^{2}+\left|\frac{\partial u}{\partial y}\right|^{2}=\left|\frac{\partial u}{\partial r}\right|^{2}+\frac{1}{r^{2}}\left|\frac{\partial u}{\partial \theta}\right|^{2}$.


[^0]:    ${ }^{1}$ School of Mathematics, Sun Yat-sen University

