Homework 4 Solution
Yikun Zhang*

Chapter 2. Ex.15 Prove that the Fejér kernel is given by
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Chapter 2. Problem 2 Let Dy denote the Dirichlet kernel
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and define
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Ly =— Dy(0)|d6.
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(a) Prove that
Ly > clog N

for some constant ¢ > 0. A more careful estimate gives
4

(b) Prove the following as a consequence: for each n > 1, there exists a continuous function f,
such that | f,| <1 and |S,(f.)(0) > ' logn.

Proof. (a) We directly prove the more precise estimate Ly = Z5log N + O(1) and the result
Ly > clog N follows.
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Therefore,
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where we use the fact that f(lliil)w |sint|dt = 2 and f]£717\:+§)7r |sint|dt = 1. O

(b) First we construct the function g, as follows,

1 when D,(z) >0,
gn(z) =
—1 when D,(z) <0.

Then by Lemma 3.2, we can approximate g, by continuous functions {hy }32, satisfying |hx| < 1
and [7_|gn(z) — hy(z)|dz < me* for any e > 0 when k£ > K and K is sufficiently large.
Let f, = hk and thus ["_|gn(x) — fu(2)|de < me®. By (a) and Cauchy’s Inequality, we have
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where we use the fact that |D,(x)] <2n+ 1 and |f.(y) — 9. (¥)] < [fa(¥)] + lga(y)| < 2.
Therefore, for each fixed n < 1, by letting ¢ — 0 and modifying ¢ to ¢, we obtain that f,
satisfying | f,| < 1 and |S,(f.)(0)| > ¢ logn. O

Chapter 1. Ex.10 Show that the expression of the Laplacian
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s given in polar coordinates by the formula
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Also, prove that
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Proof. In polar coordinates, u(x,y) = u(rcos,rsinf). Thus,

% = cos@ + sm@ (1)
% — gu( rsin 9) o Wrcosh.  (2)
Furthermore,
%zg";c 0s 9+(8xay+888“)3m90059+ sm 9 (3)
2273 = 2"2‘7“ sin?6 — (3$8y + 888“ )r? Sm96039~|— r?cos® 6 — ( Leos 6+ 2 sme). (4)

Letting % (4) + (3), we obtain that % + %% = % + 3273 —rde,
Moreover, with (1)? + %(2), we also have |9%|? + g—;ﬁz = |22 4 L|dup2, O



