
Homework 4 Solution

Yikun Zhang1

Chapter 2. Ex.15 Prove that the Fejér kernel is given by

FN(x) =
1

N

sin2(Nx/2)

sin2(x/2)
.

Proof. First we note that DN(x) =
N∑
n=0

ωn +
N∑
n=1

ω−n = 1−ωN+1

1−ω + ω−N−1
1−ω = ω−N−ωN+1

1−ω , where

ω = eix.
Therefore,

NFN(x) =
N−1∑
n=0

ω−n−ωn+1

1−ω = 1
1−ω (1−ω

−N

1−ω−1 − ω−ωN+1

1−ω ) = ω1−N−2ω+ωN+1

(1−ω)2 = (ω−N
2 −ω

N
2 )2

(ω− 1
2−ω

1
2 )2

=
sin2(Nx

2
)

sin2(x
2
)
. �

Chapter 2. Problem 2 Let DN denote the Dirichlet kernel

DN(θ) =
N∑

k=−N

eikθ =
sin((N + 1/2)θ)

sin(θ/2)
,

and define

LN =
1

2π

∫ π

−π
|DN(θ)|dθ.

(a) Prove that
LN ≥ c log N

for some constant c > 0. A more careful estimate gives

LN =
4

π2
log N + O(1).

(b) Prove the following as a consequence: for each n ≥ 1, there exists a continuous function fn
such that |fn| ≤ 1 and |Sn(fn)(0) ≥ c′ log n.

Proof. (a) We directly prove the more precise estimate LN = 4
π2 log N + O(1) and the result

LN ≥ c log N follows.

First we know that |sin θ
2
| ≤ | θ

2
| for all θ ∈ R. Thus |DN(θ)| ≥ 2|sin(N+ 1

2
)θ|

|θ| .
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Therefore,

LN ≥
1

π

∫ π

−π

|sin(N + 1
2
)θ|

|θ|
dθ =

2

π

∫ π

0

|sin(N + 1
2
)θ|

|θ|
dθ

t = (N + 1
2
)θ

=
2

π

∫ (N+ 1
2
)π

0

|sin t|
|t|

dt

=
2

π

N∑
k=1

∫ kπ

(k−1)π

|sin t|
|t|

dt+
2

π

∫ (N+ 1
2
)π

Nπ

|sin t|
|t|

dt

≥ 2

π

N∑
k=1

∫ kπ

(k−1)π

|sin t|
kπ

dt+
2

π

∫ (N+ 1
2
)π

Nπ

|sin t|
(N + 1

2
)π
dt

=
4

π2

N∑
k=1

1

k
+

2

(N + 1
2
)π2

≥ 4

π2

N∑
k=1

log(1 +
1

k
) +O(1)

≥ 4

π2
log N +O(1),

(1)

where we use the fact that
∫ kπ
(k−1)π |sin t|dt = 2 and

∫ (N+ 1
2
)π

Nπ
|sin t|dt = 1. �

(b) First we construct the function gn as follows,

gn(x) =

{
1 when Dn(x) ≥ 0,

−1 when Dn(x) < 0.

Then by Lemma 3.2, we can approximate gn by continuous functions {hk}∞k=1 satisfying |hk| ≤ 1
and

∫ π
−π |gn(x)− hk(x)|dx < πε2 for any ε > 0 when k ≥ K and K is sufficiently large.

Let fn = hK and thus
∫ π
−π |gn(x)− fn(x)|dx < πε2. By (a) and Cauchy’s Inequality, we have

|SN(fn)(0)| = | 1

2π

∫ π

−π
fn(y)DN(y)dy|

= | 1

2π

∫ π

−π
gn(y)DN(y)dy +

1

2π

∫ π

−π
(fn(y)− gn(y))DN(y)dy|

≥ clog N − | 1

2π

∫ π

−π
(fn(y)− gn(y))DN(y)dy|

≥ clog N − (
1

2π

∫ π

−π
|fn(y)− gn(y)|2dy)

1
2 (

1

2π

∫ π

−π
|DN(y)|2dy)

1
2

≥ clog N − (
1

π

∫ π

−π
|fn(y)− gn(y)|dy)

1
2 (2n+ 1)

≥ clog N − ε(2n+ 1),

(2)
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where we use the fact that |Dn(x)| ≤ 2n+ 1 and |fn(y)− gn(y)| ≤ |fn(y)|+ |gn(y)| ≤ 2.
Therefore, for each fixed n ≤ 1, by letting ε → 0 and modifying c to c′, we obtain that fn
satisfying |fn| ≤ 1 and |Sn(fn)(0)| ≥ c′ log n. �

Chapter 1. Ex.10 Show that the expression of the Laplacian

4 =
∂2

∂x2
+

∂2

∂y2

is given in polar coordinates by the formula

4 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
.

Also, prove that

|∂u
∂x
|2 + |∂u

∂y
|2 = |∂u

∂r
|2 +

1

r2
|∂u
∂θ
|2.

Proof. In polar coordinates, u(x, y) = u(rcos θ, rsin θ). Thus,{
∂u
∂r

= ∂u
∂x
cos θ + ∂u

∂y
sin θ, (1)

∂u
∂θ

= ∂u
∂x

(−rsin θ) + ∂u
∂y
rcos θ. (2)

Furthermore,{
∂2u
∂r2

= ∂2u
∂x2
cos2 θ + ( ∂2u

∂x∂y
+ ∂2u

∂y∂x
)sin θcos θ + ∂2u

∂2y
sin2 θ, (3)

∂2u
∂θ2

= ∂2u
∂x2
r2sin2 θ − ( ∂2u

∂x∂y
+ ∂2u

∂y∂x
)r2sin θcos θ + ∂2u

∂2y
r2cos2 θ − r(∂u

∂x
cos θ + ∂u

∂y
sin θ). (4)

Letting 1
r2

(4) + (3), we obtain that ∂2u
∂r2

+ 1
r2
∂2u
∂θ2

= ∂2u
∂x2

+ ∂2u
∂y2
− r ∂u

∂r
.

Moreover, with (1)2 + 1
r2

(2), we also have |∂u
∂x
|2 + |∂u

∂y
|2 = |∂u

∂r
|2 + 1

r2
|∂u
∂θ
|2. �
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