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I n t r o d u c t i o n  

Consider the unit circle T in the Euclidean plane. If it 
is rotated like a stationary wheel, in an anti-clockwise 
direction by 45 degrees, then the 'spoke of the wheel' 
joining the centre (0, 0) to the point (1, 0) (call it v) 
gets mapped to the spoke joining the centre to the point 
(Cos 45, Sin 45). We shall think of points on the plane 
as complex numbers when convenient. 

Clearly after seven more rotations v returns to its orig- 
inal position at (1, 0). Notice that  45 degrees is 7r/4 
radians, which is a rational multiple of Tr. A moment's 
thought tells us that,  if instead of 7r/4 radians, we rotate 
by any angle 0 which is a rational multiple of 7r radians, 
say, 7ra/b, then again v returns to its original position 
after a finite number (at most 2b) of repetitions of this 
rotation. On the other hand, a rotation by an angle c~ 
which is an irrational multiple of ~r radians never returns 
v to its original position. In fact, it gets arbitrarily close 
to any radial position and, what is more, the positions 
of v after a large number of repetitions of this rotation, 
seem to be 'uniformly scattered'. This is a theorem of 
Hermann Weyl and will be proved in this article. Note 
that  for 7, an irrational real number, a simple applica- 
tion of the pigeon-hole principle shows that  the sequence 
of fractional parts of integral multiples of u is dense in 
(0, 1). This fact seems to have been known from early 
14th century itself. N Oresme (1320-1382) considers two 
bodies moving on a circle with uniform but incommen- 
surable velocities and writes, "No sector of a circle is so 
small that two such mobiles could not conjunct in it at 
some future time and could not have conjuncted in the 
past." 
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Weyl, a doyen of early twentieth century mathematics, 
presented in 1909 a result, which later came to be known 
as Weyl's equidistribution theorem. Weyl worked in di- 
verse spheres of mathematics, among them, continuous 
groups and matrix representations. It was during his re- 
search into representation theory that Weyl discovered 

his theorem on equidistribution. Subsequently a vast 
amount of literature was devoted to the review of his 
proof. However, there remain to this day, several unan- 
swered questions which arose in the aftermath of Weyl's 

discovery. 

E q u i d i s t r i b u t i o n  

What  is Equidistribution? 

U o~ Let ( ~)n>0 be a sequence of elements from the interval 
[0,1]. Let a,b such that  [a,b] C [0,1]. For each n e 
N, we define s,(a,  b) to be number of integers k, 1 _< 
k _< n for which uk C [a,b]. Then (u,) is said to be 
equidistributed in [0,1] if V a,b'[a,b] C [0, 1] 

lim s~(a, b) _ b - a. 
n--,~ n 

Denote the fractional part  of any x C I~ by (x}; notice 
that  (x) e [0, 1] and x - (x) e Z. 

If we begin with any sequence (u,) of real numbers, then 
we say that  (u,) is equidistributed modulo 1 if the se- 
quence ((u,)) of its fractional parts is equidistributed in 
[0,1]. Equidistribution is also known as uniform distrib- 
ution. 

A natural  question is: 

Is ( x / ~  equidistributed?. 

The answer is 'yes' as we shall shortly show. 

For a sequence (un) in (0, 1), define its discrepancy as 

s (a, ( b - a ) l ;  0 < a < < 1}. DN = Sup {[ N 
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The sequence 

of square roots of 

natural numbers is 

equidistributed 

modulo 1. 

The property of equidistribution of (un) can also be ex- 
pressed in terms of the discrepancy as follows. First, let 
us define another  variant of DN as 

, (0, a) 
D N = Sup {I SN N a[;0 < a < 1}. 

Let us compare DN and D~v. It  is evident D* N < DN. 

On the other hand,  let e > 0 and (a, b) C (0, 1). Then,  

sN(a,b) <_ SN(O,b)- SN(O,a--e). 

Therefore, as c --+ 0, we get DN ~ 2D* g. In other words, 

D* N <_ DN ~_ 2D* N. 

Therefore, DN ---+ 0 ~ D* N ~ 0 as N -+ oo. If DN ~ O, 
then (un) is equidistr ibuted in (0, 1) by definition. The  
converse is also true but  we do not  need it. Thus we 
may use s~(0, a)  instead of s,~(a, b) as we have proved 
the equivalence of the two definitions. 

Let us get back to the problem of equidistr ibution of 

If a C (0, 1), let us now evaluate the number of integers 
n such tha t  

e [0, 

For any n, let d = [v/n-I, the greatest  integer less t han  
or equal to v ~ .  Now, 0 _< (V/~/ _< a implies tha t  d _< 
x/~<_ d+a.  So, d 2 <_ n _< ( d + a )  2 = d 2 + 2 d a + a  2. For 
a given d, there are 1 + [2da + a 2] such n. Moreover, for 
any other d, these are disjoint since (d + a )  2 < (d + 1) 2. 

In other words, for any d, the cardinal i ty Sd2(O, a) of 
{ k ' O < k < _ d 2 , ( v / k }  _< a} equals Ei=04-1( 1 + [ 2 i a +  a2]). 
Therefore, for any n and for d = [x/~,  we have 
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d - 1  

_< n - d 2 + t ~-~'(1 + [2iG + a2]) - nal < 2d + 1+ 
i=0  

d - 1  

I ~--~(2ic~ + 21) - nc~l, 
i=0 

which gives easily tha t  

Jsn(0, c~) - n~  I < 7d + 2 < 7v/-n + 2. 

In other  words, j,.(0,,) _ c~J --+ 0 as n --+ c~. We have 
n 

shown that  D~v --+ 0 as N --+ c~. Therefore, (v/ '~ is 
equidistributed in (0, 1) by the remark below. 

A similar argument with (log (n + 1))~Ez+ tells us that 
s,~(O, 1) for n of the form [ek+�89 k E Z fails to converge 2 
to 1/2. So (log ( n +  1))~ is not equidistributed modulo 1. 

The sequence log 
n; n > 2  is 

equidistributed 

modulo 1. 

W e y l ' s  C r i t e r i o n  

A sequence (un) of real numbers is equidistributed mod- 
1 N e2i?rkun uto 1 if, and only if, for all k E N, -~ ~,~=o --+ 0 

as N--+ oo. 

A special case of this is already very interesting: 

Let "7 be an irrational, real number. Then 

1 
lim nJ{k"  1 < k ~ n :  (k~) E [a,b]}{ = b - a  

n - + o o  

for each pair a,b such that [a,b] C [0, 1]. 

In other words, the sequence (n~/) is equidistributed mod- 
ulo 1. 

The proof is constructive and one can check how the 
techniques work, using a particular 7, say, v/2. 

P r o o f  of  W e y l ' s  C r i t e r i o n  

The crux of the proof lies in finding a suitable upper 
bound for the discrepancy. Set at(N) = ,~<N e2i~'~". 
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We claim tha t  VR > 1, and (a, b) C (0, 1), 

I s g ( a , b ) - N ( b - a ) l  < 2 r<R ~ I~r(N)l - t -4N ~ ~>~RTr la~(N)lr2N 

Let us first show tha t  the  claim proves the criterion. 

Now, clearly I@1 < 1. Also, Z , -> .  ~ < f~ '  a:~ _ 1 _ _ ~ - ~ .  

- ~-"~7~" By the hypothesis,  for 
all r, the first te rm tends to zero as N ~ co. Therefore, 
limit superior l imSupDg < 4 Since R is arbitrary,  _ _  -- '~- 

DN -+ 0 i.e., (un) is equidistr ibuted modulo 1. 

Let us now prove the claim made. 

Let (a,b) C (0,1) and e > 0. I f b - a + 2 e  < 1, we 
define a funct ion F as a periodic function with period 
1, which is linear on each of the  intervals [a - e, a] and 
[b, b + e] and is the  constant  1 on [a, b] and vanishes on 
[b + e, a + 1 - el. Such a periodic function has a Fourier 
series expansion F(x)  = ~ k e Z  cke2"~x" 

Recall tha t  we have defined F above in case b -a+2e  < 1. 
When  b - a + 2e > 1, we define a function G just  like F 
but  with a, b replaced by a + e and b - c, respectively. 

Let us consider the case b - a + 2e < 1 first. 

Note tha t  sg(a ,b)  ---- ~n<g F(un)  = ~ ,  Ckak(N) <_ 
(b - a + e )N + 2 ~ > 1  Ic~ll~(N)l since Co - b - a + e. 

Thus, sN(a,b) - ( b - a ) g  <_ e g  + 2 ~ > 1  Ic~lla~(N)l. 

Now, i f b - a + 2 e  > 1, then N < ( b - a + 2 e ) N ;  so 
Sg(a, b) < N < (b - a + 2e)N. 

Hence, in ei ther case, 

s g ( a , b ) -  ( b - a ) N  < 2eN + 2 Y~ Ic~lla~(N)l. 
r_>l 

On the other hand,  similarly, 8N(a, b) >_ (b - a + 2e)N - 
2 ~ r > l  Icr l lar(g) l  �9 
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Therefore, for any e > 0 and any N > 1, we get by our 
assumption, that DN < 2e + 2 ~,.>11C,'II~NN I �9 

It is easy to see from the expression 

ck fa+~-E e ( - kx )F(x )dx  ck for k r 0 that  Ickt < 1 

Using this, and taking e = ~ / ~ r  < Rf"(N)/gl, the 
claim follows. This completes the proof of Weyl's cri- 
terion. 

Application to Prime Number Theory 

Most of the deep, exciting applications of Weyl's theo- 
rem require a knowledge of abstract measure theory (see 
[1]) or of number theory. We discuss one application to 
number theory. 

Let p ,  denote the n th  prime number. We investigate 
the behaviour of the sequence (log Pn)neN. 

The formula lim (._2z_~ = 1 is equivalent to the so- n--too \nlog n/  
called prime number theorem (see [2]). 

Suppose now that the sequence (log pn) has equidistri- 
bution modulo 1. 

Define Nk and Mk as follows: 

Nk = in f {n 'pn  > e k} 

Mk = inf(n :pn > ek-1/2}. 

Let X be the periodic function with period one, defined 
by 

1 V x E [ 0 , � 8 9  
X(X) = 0 V x  e [�89 

Z x(log p.) = Z: x(log p.). 
n<Mk n<N~ 

By our hypothesis, 

1 
Mk ~ x ( l o g p n ) a n d  1 

n<Mk "~k 
x(log p , )  

n<Nk 
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For almost all a > l  

(in the sense of the 
Lebesgue 

measure), the 
sequence (a n ) is 

equidistributed 
modulo 1. 

have the same limit, say l, as k -+ c~. If this limit is 
not zero, then 

Nk 
Mk 
m -+ 1 as k --+ oo. 

Let zr(x) be the member of prime numbers less than or 
equal to x. The famous prime number theorem asserts 
(see [2]) that  

X 
- -  a s X - - + C ~ ) .  r ( x )  ~ log x 

Therefore, as k -+ oo, 

Nk = zr(e k) ,,~ ek ek 
2 

Thus gives a contradiction to the assumption of equidis- 
tributivity of (log p~) modulo 1 if we can show that  the 

1 limit of ~ - ~ < M k  x(log p~) as k --+ c~, if it exists, is 
non-zero. 

Now ~-<MkX(1ogp~) _> I{P : k -  1 < logp  < k -  
1 / 2 } 1 - -  k-1/2)  - 

�9 c ~  1 So, lunk_~--jk ~<M~ )/(log p~) > 1 -- e -1/2 > 0. 

A n  U n s o l v e d  Q u e s t i o n  

Here, we present one of the simpler problems from [1]. 
The problem of characterising those 3, with (nv/equidis- 
tributed was solved completely by the condition that  7 
is irrational. However, we have still not succeeded in 
characterising those a for which (a s) is equidistributed. 

A result due to Koksma asserts: 

For almost all a > 1 (in the sense of the Lebesgue mea- 
sure), the sequence (a "~) is equidistributed modulo 1. 

l+v'g By solving the difference For example let a -- 2 
equation ur+l ---- ur + u~-i with initial conditions u0 = 
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2 Ul = 1 or, s imply  b y  induct ion ,  we see t h a t  

is a so lu t ion  and  t h a t  ur  is a lways an integer.  B u t  

0for od  

> 0 for r even. 

(~)~ Moreover ,  --+ 0 as r --+ oe. 

The re fo re  

H e n c e  

l < r < n "  -- C , --+ 0 as n --+ c~, 

wh ich  shows t ha t  t he  sequence  ( ( ~ ) " )  is no t  equidis-  

t r i b u t e d  m o d u l o  1. 
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