Homework 13 Solution

Yikun Zhang ${ }^{1}$

Chapter 7. Ex. 1 Let f be a function on the circle. For each $N \leq 1$ the discrete Fourier coefficients of f are defined by

$$
a_{N}(n)=\frac{1}{N} \sum_{k=1}^{N} f\left(e^{2 \pi i k / N}\right) e^{-2 \pi i k n / N}, \text { for } n \in \mathbb{Z}
$$

We also let

$$
a(n)=\int_{0}^{1} f\left(e^{2 \pi i x}\right) e^{-2 \pi i n x} d x
$$

denote the ordinary Fourier coefficients of f.
(a)Show that $a_{N}(n)=a_{N}(n+N)$.
(b) Prove that if f is continuous, then $a_{N}(n) \rightarrow a(n)$ as $N \rightarrow \infty$.

Proof. (a) $a_{N}(n+N)=\frac{1}{N} \sum_{k=1}^{N} f\left(e^{\frac{2 \pi i k}{N}}\right) e^{-\frac{2 \pi i k(n+N)}{N}}=\frac{1}{N} \sum_{k=1}^{N} f\left(e^{\frac{2 \pi i k}{N}}\right) e^{-\frac{2 \pi i k n}{N}}=a_{N}(n)$, since $e^{-2 \pi i}=1$.
(b) Note that $a_{N}(n)$ is the Riemann sum of the function $f\left(e^{2 \pi i x}\right) e^{-2 \pi i n x}$ with the partition $\frac{k}{N}, k=0,1, \ldots, N$ of $[0,1]$.
Since f is continuous, $f\left(e^{2 \pi i x}\right) e^{-2 \pi i n x}$ is integrable in [0,1], yielding that $a_{N}(n) \rightarrow a(n)$ as $N \rightarrow \infty$.

Chapter 7. Ex. 3 By a similar method, show that if f is a C^{2} function on the circle, then

$$
\left\lvert\, a_{N}(n) \leq \frac{c}{|n|^{2}}\right., \text { whenever } 0<|n| \leq \frac{N}{2}
$$

As a result, prove the inversion formula for $f \in C^{2}$,

$$
f\left(e^{2 \pi i x}\right)=\sum_{n=-\infty}^{\infty} a(n) e^{2 \pi i n x}
$$

from its finite version.

[^0]Proof. First we note that

$$
\begin{align*}
\left|a_{N}(n)\left(e^{\frac{2 \pi i l n}{N}}+e^{-\frac{2 \pi i l n}{N}}-2\right)\right| & =\left|\frac{1}{N} \sum_{k=1}^{N} f\left(e^{\frac{2 \pi i k}{N}}\right) e^{-\frac{2 \pi i k}{N}}\left(e^{\frac{2 \pi i l n}{N}}+e^{-\frac{2 \pi i l n}{N}}-2\right)\right| \\
& =\left|\frac{1}{N} \sum_{k=1}^{N}\left[f\left(e^{\frac{2 \pi i(k+l)}{N}}\right)+f\left(e^{\frac{2 \pi i(k-l)}{N}}\right)-2 f\left(e^{\frac{2 \pi i k}{N}}\right)\right] e^{-\frac{2 \pi i k n}{N}}\right| \tag{1}\\
& \leq \frac{1}{N} \sum_{k=1}^{N}\left|f^{\prime}\left(\xi_{1}\right)\left(e^{\frac{2 \pi i(k+l)}{N}}-e^{\frac{2 \pi i k}{N}}\right)-f^{\prime}\left(\xi_{2}\right)\left(e^{\frac{2 \pi i k}{N}}-e^{\frac{2 \pi i(k-l)}{N}}\right)\right| \\
& \leq M \left\lvert\, 1-e^{\left.-\frac{2 \pi i l}{N}|\cdot| 1-e^{-\frac{4 \pi i l}{N}} \right\rvert\,}\right. \text {, }
\end{align*}
$$

where $\xi_{1} \in\left(e^{\frac{2 \pi i k}{N}}, e^{\frac{2 \pi i(k+l)}{N}}\right), \xi_{2} \in\left(e^{\frac{2 \pi i(k-l)}{N}}, e^{\frac{2 \pi i k}{N}}\right)$, and $M=\max f^{\prime \prime}(x)$.
Then we choose l such that $\left|\frac{l n}{N}-\frac{1}{2}\right| \leq \frac{1}{4}$, i.e., $\frac{1}{4} \leq \frac{l n}{N} \leq \frac{3}{4}$.
Hence $\left|1-e^{-\frac{2 \pi i l}{N}}\right| \leq\left|\frac{2 \pi l}{N}\right|=\frac{2 \pi}{|n|}\left|\frac{n l}{N}\right| \leq \frac{3 \pi}{2|n|},\left|1-e^{-\frac{4 \pi i l}{N}}\right| \leq\left|\frac{4 \pi l}{N}\right| \leq \frac{3 \pi}{|n|}$.
Meanwhile, since $\frac{\pi}{2} \leq \frac{2 \pi l n}{N} \leq \frac{3 \pi}{2}$, we know that $\left|e^{\frac{2 \pi i l n}{N}}+e^{-\frac{2 \pi i l n}{N}}-2\right| \geq 2$.
Therefore, $a_{N}(n) \leq \frac{9 \pi^{2} M}{4 n^{2}}$.
To obtain the inversion formula, we assume that N is odd. In fact, if N is even, the following summation will be $\sum_{n=-\frac{N}{2}}^{\frac{N}{2}-1}$. Consider

$$
\begin{align*}
\sum_{|n|<\frac{N}{2}} a_{N}(n) e^{\frac{2 \pi i k n}{N}} & =\sum_{|n|<\frac{N}{2}}\left(\frac{1}{N} \sum_{j=1}^{N} f\left(e^{\frac{2 \pi i j}{N}}\right) e^{-\frac{2 \pi i j n}{N}}\right) e^{\frac{2 \pi i k n}{N}} \\
& =\frac{1}{N} \sum_{j=1}^{N} f\left(e^{\frac{2 \pi i j}{N}}\right) \sum_{|n|<\frac{N}{2}} e^{\frac{2 \pi i(k-j) n}{N}} \tag{2}\\
& =f\left(e^{\frac{2 \pi i k}{N}}\right),
\end{align*}
$$

since $\sum_{|n|<\frac{N}{2}} e^{\frac{2 \pi i(k-j) n}{N}}=0$ if $j \neq k$ and is equal to N if $j=k$.
Note that when N is large, we can choose k properly such that $\left|x-\frac{k}{N}\right|<\epsilon$ for any $\epsilon>0$.
Since $\left|a_{N}(n)\right| \leq \frac{c}{n^{2}}$ whenever $0<|n| \leq \frac{N}{2}$, the series $\sum_{n=-\infty}^{\infty} a_{N}(n) e^{\frac{2 \pi i k n}{N}}$ converges absolutely and uniformly on the circle as $N \rightarrow \infty$.
Hence we can also change the order of summation with limit and obtain that

$$
f\left(e^{2 \pi i x}\right)=\lim _{N \rightarrow \infty} f\left(e^{\frac{2 \pi i k}{N}}\right)=\lim _{N \rightarrow \infty} \sum_{|n|<\frac{N}{2}} a_{N}(n) e^{\frac{2 \pi i k n}{N}}=\sum_{n=-\infty}^{\infty} \lim _{N \rightarrow \infty} a_{N}(n) e^{\frac{2 \pi i k n}{N}}=\sum_{n=-\infty}^{\infty} a(n) e^{2 \pi i n x},
$$

where we use the fact that $a_{N}(n) \rightarrow a(n)$ as $N \rightarrow \infty$ by Exercise 1 .
Remark: In reality, one can directly prove the inversion formula without referring to its finite
version.
Since $\left|a_{N}(n)\right| \leq \frac{c}{n^{2}}$ whenever $0<|n| \leq \frac{N}{2}$ and $a_{N}(n) \rightarrow a(n)$ as $N \rightarrow \infty$, we also have $|a(n)| \leq \frac{c}{n^{2}}$ for all $n \in \mathbb{Z}$.
Meanwhile, $a(n)$ is the Fourier coefficients of $f\left(e^{2 \pi i n x}\right)$. By Corollary 2.4 in Chapter 2, the result follows.

Chapter 7. Ex. 10 A group G is cyclic if there exists $g \in G$ that generates all of G, that is, if any element in G can be written as g^{n} for some $n \in \mathbb{Z}$. Prove that a finite abelian group is cyclic if and only if it is isomorphic to $\mathbb{Z}(N)$ for some N.
Proof. (\Rightarrow) If G is a finite cyclic group, we denote its generator by $g \in G$ and let N be the smallest positive integer such that $a^{N}=e$, where e is the identity of G.
If $s \in \mathbb{Z}$ and $s=N q+r$ for $0 \leq r<N$ by Euclidean Division Theorem, then $g^{s}=g^{N q+r}=$ $\left(g^{N}\right)^{q} g^{r}=e^{q} g^{r}=g^{r}$.
If $0<k<h<N$ and $g^{k}=g^{h}$, then $g^{h-k}=e$ and $0<h-k<n$, contradicting our choice of N. Thus the elements

$$
g^{0}=e, g, g^{2}, \ldots, g^{N-1}
$$

are all distinct and comprise all elements of G.
This means that the order of G is N and we can construct a well-defined and bijective map $\phi: G \rightarrow \mathbb{Z}(N)$ given by $\phi\left(g^{i}\right)=i$ for $i=0,1,2, \ldots, n-1$. Because $g^{N}=e$, we see that $g^{i} g^{j}=g^{k}$ where $k=(i+j)(\bmod N)$. Thus

$$
\phi\left(g^{i} g^{j}\right)=(i+j)(\bmod N)=\left(\phi\left(g^{i}\right)+\phi\left(g^{j}\right)\right)(\bmod N),
$$

showing that ϕ is an isomorphism.
(\Leftarrow) If G is isomorphic to $\mathbb{Z}(N)$, then we denote the isomorphism by $\varphi: \mathbb{Z}(N) \rightarrow G$.
Then $\varphi(0)$ is the identity of G and $\varphi(1)$ is the generator of G, since the order of G is N and the elements in G is of the form $\varphi(n)=n \cdot \varphi(1)$.
Chapter 7. Ex. 11 Write down the multiplicative tables for the groups $\mathbb{Z}^{*}(3), \mathbb{Z}^{*}(4), \mathbb{Z}^{*}(5), \mathbb{Z}^{*}(6), \mathbb{Z}^{*}(8)$, and $\mathbb{Z}^{*}(9)$. Which of these groups are cyclic?
Proof. The multiplicative tables for the groups $\mathbb{Z}^{*}(3), \mathbb{Z}^{*}(4), \mathbb{Z}^{*}(5), \mathbb{Z}^{*}(6), \mathbb{Z}^{*}(8)$, and $\mathbb{Z}^{*}(9)$ are

$\mathbb{Z}^{*}(3)$	1	2							
1	1	2							
2	2	1	\quad	$\mathbb{Z}^{*}(4)$	1	3			
:---	:---	:---	:---						
1	1	3							
3	3	1	\quad	$\mathbb{Z}^{*}(5)$	1	2	3	4	
:---	:---	:---	:---	:---	:---	:---	:---		
1	1	2	3	4					
2	2	4	1	3					
3	3	1	4	2					
4	4	3	2	1	\quad	$\mathbb{Z}^{*}(6)$	1	5	
:---	:---	:---	:---						
1	5	5	5						

And the groups $\mathbb{Z}^{*}(3), \mathbb{Z}^{*}(4), \mathbb{Z}^{*}(5), \mathbb{Z}^{*}(6)$, and $\mathbb{Z}^{*}(9)$ are cyclic, whose generators are $2,3,3,5,2$, respectively.

[^0]: ${ }^{1}$ School of Mathematics, Sun Yat-sen University

