
Homework 13 Solution

Yikun Zhang1

Chapter 7. Ex.1 Let f be a function on the circle. For each N ≤ 1 the discrete Fourier
coefficients of f are defined by

aN(n) =
1

N

N∑
k=1

f(e2πik/N)e−2πikn/N , for n ∈ Z.

We also let

a(n) =

∫ 1

0

f(e2πix)e−2πinxdx

denote the ordinary Fourier coefficients of f .
(a) Show that aN(n) = aN(n+N).
(b) Prove that if f is continuous, then aN(n)→ a(n) as N →∞.

Proof. (a) aN(n + N) = 1
N

N∑
k=1

f(e
2πik
N )e−

2πik(n+N)
N = 1

N

N∑
k=1

f(e
2πik
N )e−

2πikn
N = aN(n), since

e−2πi = 1.
(b) Note that aN(n) is the Riemann sum of the function f(e2πix)e−2πinx with the partition
k
N
, k = 0, 1, ..., N of [0, 1].

Since f is continuous, f(e2πix)e−2πinx is integrable in [0, 1], yielding that aN(n) → a(n) as
N →∞. �

Chapter 7. Ex.3 By a similar method, show that if f is a C2 function on the circle, then

|aN(n) ≤ c

|n|2
, whenever 0 < |n| ≤ N

2
.

As a result, prove the inversion formula for f ∈ C2,

f(e2πix) =
∞∑

n=−∞

a(n)e2πinx

from its finite version.
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Proof. First we note that

|aN(n)(e
2πiln
N + e−

2πiln
N − 2)| = | 1

N

N∑
k=1

f(e
2πik
N )e−

2πik
N (e

2πiln
N + e−

2πiln
N − 2)|

= | 1
N

N∑
k=1

[f(e
2πi(k+l)

N ) + f(e
2πi(k−l)

N )− 2f(e
2πik
N )]e−

2πikn
N |

≤ 1

N

N∑
k=1

|f ′(ξ1)(e
2πi(k+l)

N − e
2πik
N )− f ′(ξ2)(e

2πik
N − e

2πi(k−l)
N )|

≤M |1− e−
2πil
N | · |1− e−

4πil
N |,

(1)

where ξ1 ∈ (e
2πik
N , e

2πi(k+l)
N ), ξ2 ∈ (e

2πi(k−l)
N , e

2πik
N ), and M = max f ′′(x).

Then we choose l such that | ln
N
− 1

2
| ≤ 1

4
, i.e., 1

4
≤ ln

N
≤ 3

4
.

Hence |1− e− 2πil
N | ≤ |2πl

N
| = 2π

|n| |
nl
N
| ≤ 3π

2|n| , |1− e
− 4πil

N | ≤ |4πl
N
| ≤ 3π

|n| .

Meanwhile, since π
2
≤ 2πln

N
≤ 3π

2
, we know that |e 2πiln

N + e−
2πiln
N − 2| ≥ 2.

Therefore, aN(n) ≤ 9π2M
4n2 .

To obtain the inversion formula, we assume that N is odd. In fact, if N is even, the following

summation will be

N
2
−1∑

n=−N
2

. Consider

∑
|n|<N

2

aN(n)e
2πikn
N =

∑
|n|<N

2

(
1

N

N∑
j=1

f(e
2πij
N )e−

2πijn
N )e

2πikn
N

=
1

N

N∑
j=1

f(e
2πij
N )

∑
|n|<N

2

e
2πi(k−j)n

N

= f(e
2πik
N ),

(2)

since
∑
|n|<N

2

e
2πi(k−j)n

N = 0 if j 6= k and is equal to N if j = k.

Note that when N is large, we can choose k properly such that |x− k
N
| < ε for any ε > 0.

Since |aN(n)| ≤ c
n2 whenever 0 < |n| ≤ N

2
, the series

∞∑
n=−∞

aN(n)e
2πikn
N converges absolutely

and uniformly on the circle as N →∞.
Hence we can also change the order of summation with limit and obtain that

f(e2πix) = lim
N→∞

f(e
2πik
N ) = lim

N→∞

∑
|n|<N

2

aN(n)e
2πikn
N =

∞∑
n=−∞

lim
N→∞

aN(n)e
2πikn
N =

∞∑
n=−∞

a(n)e2πinx,

where we use the fact that aN(n)→ a(n) as N →∞ by Exercise 1. �
Remark: In reality, one can directly prove the inversion formula without referring to its finite
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version.
Since |aN(n)| ≤ c

n2 whenever 0 < |n| ≤ N
2

and aN(n) → a(n) as N → ∞, we also have
|a(n)| ≤ c

n2 for all n ∈ Z.
Meanwhile, a(n) is the Fourier coefficients of f(e2πinx). By Corollary 2.4 in Chapter 2, the
result follows.

Chapter 7. Ex.10 A group G is cyclic if there exists g ∈ G that generates all of G, that is,
if any element in G can be written as gn for some n ∈ Z. Prove that a finite abelian group is
cyclic if and only if it is isomorphic to Z(N) for some N .

Proof. (⇒) If G is a finite cyclic group, we denote its generator by g ∈ G and let N be the
smallest positive integer such that aN = e, where e is the identity of G.
If s ∈ Z and s = Nq + r for 0 ≤ r < N by Euclidean Division Theorem, then gs = gNq+r =
(gN)qgr = eqgr = gr.
If 0 < k < h < N and gk = gh, then gh−k = e and 0 < h − k < n, contradicting our choice of
N . Thus the elements

g0 = e, g, g2, ..., gN−1

are all distinct and comprise all elements of G.
This means that the order of G is N and we can construct a well-defined and bijective map
φ : G → Z(N) given by φ(gi) = i for i = 0, 1, 2, ..., n−1. Because gN = e, we see that gigj = gk

where k = (i+ j) (modN). Thus

φ(gigj) = (i+ j) (modN) = (φ(gi) + φ(gj)) (modN),

showing that φ is an isomorphism.
(⇐) If G is isomorphic to Z(N), then we denote the isomorphism by ϕ : Z(N) → G.
Then ϕ(0) is the identity of G and ϕ(1) is the generator of G, since the order of G is N and
the elements in G is of the form ϕ(n) = n · ϕ(1). �

Chapter 7. Ex.11 Write down the multiplicative tables for the groups Z∗(3),Z∗(4),Z∗(5),Z∗(6),Z∗(8),
and Z∗(9). Which of these groups are cyclic?

Proof. The multiplicative tables for the groups Z∗(3),Z∗(4),Z∗(5),Z∗(6),Z∗(8), and Z∗(9) are

Z∗(3) 1 2

1 1 2
2 2 1

Z∗(4) 1 3

1 1 3
3 3 1

Z∗(5) 1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

Z∗(6) 1 5

1 1 5
5 5 1
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Z∗(8) 1 3 5 7

1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

Z∗(9) 1 2 4 5 7 8

1 1 2 4 5 7 8
2 2 4 8 1 5 7
4 4 8 7 2 1 5
5 5 1 2 7 8 4
7 7 5 1 8 4 2
8 8 7 5 4 2 1

And the groups Z∗(3),Z∗(4),Z∗(5),Z∗(6), and Z∗(9) are cyclic, whose generators are 2, 3, 3, 5, 2,
respectively. �
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