Homework 13 Solution
Yikun Zhang*

Chapter 7. Ex.1 Let f be a function on the circle. For each N < 1 the discrete Fourier
coefficients of f are defined by
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denote the ordinary Fourier coefficients of f.
(a) Show that ay(n) = ay(n+ N).

We also let

(b) Prove that if f is continuous, then ay(n) — a(n) as N — oo

271 2771k(n N) N 27 2mikn .
Proof. (a) an(n + N) = Zf( ¥ )e -y %Z_: F(e*)e ™ " = ay(n), since
e 2 =1, B

(b) Note that ax(n) is the Riemann sum of the function f(e*™*®)e~2™"% with the partition
£ k=0,1,..,N of [0,1].

Since f is continuous, f(e*™®)e~?""® ig integrable in [0,1], yielding that ay(n) — a(n) as
N — oo. U

Chapter 7. Ex.3 By a similar method, show that if f is a C? function on the circle, then
N
lan(n) < #, whenever 0 < |n| < 5

As a result, prove the inversion formula for f € C?,
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from its finite version.
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Proof. First we note that
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where & € (ez?vlk 2m(kﬂ)) & e (e M,e%f\;k) and M = max f"(x).
Then we choose [ such that ]l” — 2[ < -, le., }1 <% n < i
2mil 471'7,l
Hence |1 —e™~ | < |22 = \n\|N|§2?Z\’|1 <|4nz|§|37r|
Meanwhile, since < 2%” < 3 =, we know that |e N e TN 2| > 2.

Therefore, ay(n) < 92’2@4 .

To obtain the inversion formula, we assume that N is odd. In fact, if N is even, the following
Ny

summation will be Z Consider
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since Y e =0if j # k and is equal to N if j = k.

nl<%
Note that when N is large, we can choose k properly such that |z — £] < € for any € > 0.

o0 .
Since |ayn(n)| < -5 whenever 0 < |n| < &, the series > an(n)e™ " converges absolutely
n=-—o0o

and uniformly on the circle as N — oc.
Hence we can also change the order of summation with limit and obtain that

o0 oo
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f@™) = lim f(e'¥) = lim » ay(n)e ™ = ) lim ay(n)e ¥ = )  a(n)e’™™,
\n|<% n=-—oo n=—oo
where we use the fact that ay(n) — a(n) as N — oo by Exercise 1. O

Remark: In reality, one can directly prove the inversion formula without referring to its finite
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version.

Since |ay(n)] < % whenever 0 < |n| < & and ay(n) — a(n) as N — oo, we also have
la(n)| < 5 for all n € Z.

Meanwhile, a(n) is the Fourier coefficients of f(e*™"*). By Corollary 2.4 in Chapter 2, the
result follows.

Chapter 7. Ex.10 A group G is cyclic if there exists g € G that generates all of G, that is,
if any element in G can be written as g" for some n € Z. Prove that a finite abelian group is
cyclic if and only if it is isomorphic to Z(N) for some N.

Proof. (=) If G is a finite cyclic group, we denote its generator by g € G' and let N be the
smallest positive integer such that a” = e, where e is the identity of G.
If s€Zand s = Ng+r for 0 < r < N by Euclidean Division Theorem, then ¢° = ¢Vt =
(g")ig" =elg" =g
If0 <k <h< N and ¢ = g", then ¢" % = e and 0 < h — k < n, contradicting our choice of
N. Thus the elements

g0 = e,g,g2, ...,gN_1
are all distinct and comprise all elements of G.
This means that the order of G is NV and we can construct a well-defined and bijective map
¢ : G — Z(N) given by ¢(g°) =i fori = 0,1,2,...,n—1. Because g~ = e, we see that g'¢’ = g~
where k = (i + j) (mod N'). Thus

$(g'g’) = (i+j) (mod N) = (¢(g") + é(g’)) (mod N),

showing that ¢ is an isomorphism.

(<) If G is isomorphic to Z(N), then we denote the isomorphism by ¢ : Z(N) — G.

Then ¢(0) is the identity of G and ¢(1) is the generator of G, since the order of G is N and
the elements in G is of the form p(n) =n - ¢(1). d

Chapter 7. Ex.11 Write down the multiplicative tables for the groups Z*(3), Z*(4), Z*(5), Z*(6), Z*(8),
and Z(9). Which of these groups are cyclic?

Proof. The multiplicative tables for the groups Z*(3), Z*(4),Z*(5), Z*(6), Z*(8), and Z*(9) are

Z*(5) |1 2 3
Z*(3) |1 2 Z*(4) |1 3 1 1 2 3 4 Z*6) |1 5
1 1 2 1 1 3 2 2 41 3 1 15
2 2 1 3 1 3 31 4 2 5 5 1
4 4 3 2 1
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Z59) |1 2 4 5 7 8
1 1 2 45 7 8
2 2 4 8 1 57
4 487215
5 51 2 7 8 4
7 75 18 4 2
8 8 75 4 2 1

And the groups Z*(3),7Z*(4), Z*(5), Z*(6), and Z*(9) are cyclic, whose generators are 2, 3, 3, 5, 2,

respectively.
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