Homework 13 Solution

Yikun Zhang¹

Chapter 7. Ex.1 Let f be a function on the circle. For each $N \leq 1$ the discrete Fourier coefficients of f are defined by

$$a_N(n) = \frac{1}{N} \sum_{k=1}^N f(e^{2\pi i k/N}) e^{-2\pi i k n/N}, \text{ for } n \in \mathbb{Z}.$$

We also let

$$a(n) = \int_0^1 f(e^{2\pi ix})e^{-2\pi inx}dx$$

denote the ordinary Fourier coefficients of f. (a) Show that $a_N(n) = a_N(n+N)$.

(b) Prove that if f is continuous, then $a_N(n) \to a(n)$ as $N \to \infty$.

Proof. (a)
$$a_N(n+N) = \frac{1}{N} \sum_{k=1}^N f(e^{\frac{2\pi ik}{N}}) e^{-\frac{2\pi ik(n+N)}{N}} = \frac{1}{N} \sum_{k=1}^N f(e^{\frac{2\pi ik}{N}}) e^{-\frac{2\pi ikn}{N}} = a_N(n)$$
, since $e^{-2\pi i} = 1$.

(b) Note that $a_N(n)$ is the Riemann sum of the function $f(e^{2\pi ix})e^{-2\pi inx}$ with the partition $\frac{k}{N}, k = 0, 1, ..., N$ of [0, 1]. Since f is continuous, $f(e^{2\pi i x})e^{-2\pi i n x}$ is integrable in [0, 1], yielding that $a_N(n) \to a(n)$ as

 $N \to \infty$.

Chapter 7. Ex.3 By a similar method, show that if f is a C^2 function on the circle, then

$$|a_N(n) \le \frac{c}{|n|^2}$$
, whenever $0 < |n| \le \frac{N}{2}$.

As a result, prove the inversion formula for $f \in C^2$,

$$f(e^{2\pi ix}) = \sum_{n=-\infty}^{\infty} a(n)e^{2\pi inx}$$

from its finite version.

¹School of Mathematics, Sun Yat-sen University

Proof. First we note that

$$\begin{aligned} |a_N(n)(e^{\frac{2\pi i ln}{N}} + e^{-\frac{2\pi i ln}{N}} - 2)| &= \left|\frac{1}{N}\sum_{k=1}^N f(e^{\frac{2\pi i k}{N}})e^{-\frac{2\pi i k}{N}}(e^{\frac{2\pi i ln}{N}} + e^{-\frac{2\pi i ln}{N}} - 2)\right| \\ &= \left|\frac{1}{N}\sum_{k=1}^N [f(e^{\frac{2\pi i (k+l)}{N}}) + f(e^{\frac{2\pi i (k-l)}{N}}) - 2f(e^{\frac{2\pi i k}{N}})]e^{-\frac{2\pi i kn}{N}}\right| \\ &\leq \frac{1}{N}\sum_{k=1}^N |f'(\xi_1)(e^{\frac{2\pi i (k+l)}{N}} - e^{\frac{2\pi i k}{N}}) - f'(\xi_2)(e^{\frac{2\pi i k}{N}} - e^{\frac{2\pi i (k-l)}{N}})| \\ &\leq M|1 - e^{-\frac{2\pi i l}{N}}| \cdot |1 - e^{-\frac{4\pi i l}{N}}|, \end{aligned}$$
(1)

where $\xi_1 \in \left(e^{\frac{2\pi ik}{N}}, e^{\frac{2\pi i(k+l)}{N}}\right), \xi_2 \in \left(e^{\frac{2\pi i(k-l)}{N}}, e^{\frac{2\pi ik}{N}}\right)$, and $M = \max f''(x)$. Then we choose l such that $\left|\frac{ln}{N} - \frac{1}{2}\right| \leq \frac{1}{4}$, i.e., $\frac{1}{4} \leq \frac{ln}{N} \leq \frac{3}{4}$. Hence $|1 - e^{-\frac{2\pi il}{N}}| \leq |\frac{2\pi l}{N}| = \frac{2\pi}{|n|} |\frac{nl}{N}| \leq \frac{3\pi}{2|n|}, |1 - e^{-\frac{4\pi il}{N}}| \leq |\frac{4\pi l}{N}| \leq \frac{3\pi}{|n|}$. Meanwhile, since $\frac{\pi}{2} \leq \frac{2\pi ln}{N} \leq \frac{3\pi}{2}$, we know that $|e^{\frac{2\pi iln}{N}} + e^{-\frac{2\pi iln}{N}} - 2| \geq 2$. Therefore, $a_N(n) \leq \frac{9\pi^2 M}{4n^2}$. To obtain the inversion formula, we assume that N is odd. In fact, if N

To obtain the inversion formula, we assume that N is odd. In fact, if N is even, the following summation will be $\sum_{n=1}^{\frac{N}{2}-1}$. Consider

summation will be
$$\sum_{n=-\frac{N}{2}}$$
. Consider

$$\sum_{|n|<\frac{N}{2}} a_N(n) e^{\frac{2\pi i k n}{N}} = \sum_{|n|<\frac{N}{2}} \left(\frac{1}{N} \sum_{j=1}^N f(e^{\frac{2\pi i j}{N}}) e^{-\frac{2\pi i j n}{N}}\right) e^{\frac{2\pi i k n}{N}}$$
$$= \frac{1}{N} \sum_{j=1}^N f(e^{\frac{2\pi i j}{N}}) \sum_{|n|<\frac{N}{2}} e^{\frac{2\pi i (k-j) n}{N}}$$
$$= f(e^{\frac{2\pi i k}{N}}),$$
(2)

since $\sum_{|n|<\frac{N}{2}}e^{\frac{2\pi i(k-j)n}{N}}=0$ if $j\neq k$ and is equal to N if j=k.

Note that when N is large, we can choose k properly such that $|x - \frac{k}{N}| < \epsilon$ for any $\epsilon > 0$. Since $|a_N(n)| \leq \frac{c}{n^2}$ whenever $0 < |n| \leq \frac{N}{2}$, the series $\sum_{n=-\infty}^{\infty} a_N(n)e^{\frac{2\pi i k n}{N}}$ converges absolutely and uniformly on the circle as $N \to \infty$.

Hence we can also change the order of summation with limit and obtain that

$$f(e^{2\pi ix}) = \lim_{N \to \infty} f(e^{\frac{2\pi ik}{N}}) = \lim_{N \to \infty} \sum_{|n| < \frac{N}{2}} a_N(n) e^{\frac{2\pi ikn}{N}} = \sum_{n = -\infty}^{\infty} \lim_{N \to \infty} a_N(n) e^{\frac{2\pi ikn}{N}} = \sum_{n = -\infty}^{\infty} a(n) e^{2\pi inx},$$

where we use the fact that $a_N(n) \to a(n)$ as $N \to \infty$ by Exercise 1. \Box **Remark:** In reality, one can directly prove the inversion formula without referring to its finite version.

Since $|a_N(n)| \leq \frac{c}{n^2}$ whenever $0 < |n| \leq \frac{N}{2}$ and $a_N(n) \to a(n)$ as $N \to \infty$, we also have $|a(n)| \leq \frac{c}{n^2}$ for all $n \in \mathbb{Z}$.

Meanwhile, a(n) is the Fourier coefficients of $f(e^{2\pi i nx})$. By Corollary 2.4 in Chapter 2, the result follows.

Chapter 7. Ex.10 A group G is cyclic if there exists $g \in G$ that generates all of G, that is, if any element in G can be written as g^n for some $n \in \mathbb{Z}$. Prove that a finite abelian group is cyclic if and only if it is isomorphic to $\mathbb{Z}(N)$ for some N.

Proof. (\Rightarrow) If G is a finite cyclic group, we denote its generator by $g \in G$ and let N be the smallest positive integer such that $a^N = e$, where e is the identity of G.

If $s \in \mathbb{Z}$ and s = Nq + r for $0 \le r < N$ by Euclidean Division Theorem, then $g^s = g^{Nq+r} = (g^N)^q g^r = e^q g^r = g^r$.

If 0 < k < h < N and $g^k = g^h$, then $g^{h-k} = e$ and 0 < h - k < n, contradicting our choice of N. Thus the elements

$$g^0 = e, g, g^2, ..., g^{N-2}$$

are all distinct and comprise all elements of G.

This means that the order of G is N and we can construct a well-defined and bijective map $\phi: G \to \mathbb{Z}(N)$ given by $\phi(g^i) = i$ for i = 0, 1, 2, ..., n-1. Because $g^N = e$, we see that $g^i g^j = g^k$ where $k = (i + j) \pmod{N}$. Thus

$$\phi(g^{i}g^{j}) = (i+j) \, (mod \, N) = (\phi(g^{i}) + \phi(g^{j})) \, (mod \, N),$$

showing that ϕ is an isomorphism.

(\Leftarrow) If G is isomorphic to $\mathbb{Z}(N)$, then we denote the isomorphism by $\varphi : \mathbb{Z}(N) \to G$. Then $\varphi(0)$ is the identity of G and $\varphi(1)$ is the generator of G, since the order of G is N and the elements in G is of the form $\varphi(n) = n \cdot \varphi(1)$.

Chapter 7. Ex.11 Write down the multiplicative tables for the groups $\mathbb{Z}^*(3)$, $\mathbb{Z}^*(4)$, $\mathbb{Z}^*(5)$, $\mathbb{Z}^*(6)$, $\mathbb{Z}^*(8)$, and $\mathbb{Z}^*(9)$. Which of these groups are cyclic?

Proof. The multiplicative tables for the groups $\mathbb{Z}^*(3)$, $\mathbb{Z}^*(4)$, $\mathbb{Z}^*(5)$, $\mathbb{Z}^*(6)$, $\mathbb{Z}^*(8)$, and $\mathbb{Z}^*(9)$ are

							$\mathbb{Z}^*(5)$	1	2	3	4			
$\mathbb{Z}^*(3)$	1	2	$\mathbb{Z}^*(4)$	1	3	_	1	1	2	3	4	$\mathbb{Z}^*(6)$	1	5
1	1	2	1	1	3		2	2	4	1	3	1		
$\frac{1}{2}$	2	1	3	3	1		3	3	1	4	2	5	5	1
							4	4	3	2	1			

						$\mathbb{Z}^*(9)$	1	2	4	5	7	8
$\mathbb{Z}^*(8)$	1	3	5	7	_	1	1	2	4	5	7	8
1	1	3	5	7		2	2	4	8	1	5	$\overline{7}$
3	3	1	7	5		4	4	8	7	2	1	5
5	5	7	1	3		5	5	1	2	7	8	4
7	7	5	3	1		7	7	5	1	8	4	2
						8	8	7	5	4	2	1

And the groups $\mathbb{Z}^*(3)$, $\mathbb{Z}^*(4)$, $\mathbb{Z}^*(5)$, $\mathbb{Z}^*(6)$, and $\mathbb{Z}^*(9)$ are cyclic, whose generators are 2, 3, 3, 5, 2, respectively.