
Homework 8 Solution

Yikun Zhang1

Chapter 4. Ex.4 Observe that with the definition of ` and A given in the text, the isoperi-
metric inequality continues to hold (with the same proof) even when Γ is not simple.
Show that this stronger version of the isoperimetric inequality is equivalent to Wirtinger’s in-
equality, which says that if f is 2π-periodic, of class C1, and satisfies

∫ 2π

0
f(t)dt = 0, then∫ 2π

0

|f(t)|2dt ≤
∫ 2π

0

|f ′(t)|2dt

with equality if and only if f(t) = Asin t + Bcos t.

Proof. (⇒) If the isoperimetric inequality holds, then for any closed curve in R2 whose length
is 2π, we have A ≤ π, where A is the area of the region enclosed by this curve.
Choose an appropriate curve γ whose arc-length parametrization satisfies x′(s) = −y(s), x′(s)2+

y′(s)2 = 1. Then by the periodicity of x(s), we obtain that
∫ 2π

0
y(s)ds = −

∫ 2π

0
x′(s)ds = 0.

Thus, ∫ 2π

0

(y′(s)2 − y(s)2)ds =

∫ 2π

0

(x′(s)2 + y′(s)2)ds−
∫ 2π

0

(x′(s)2 + y(s)2)ds

= 2π −
∫ 2π

0

(x′(s) + y(s))2ds+ 2

∫ 2π

0

x′(s)y(s)ds

= 2π − 2A
≥ 0,

(1)

where we use the fact that x′(s) = −y(s) andA = −2
∫ 2π

0
x′(s)y(s)ds. Therefore,

∫ 2π

0
|y(s)|2ds ≤∫ 2π

0
|y′(s)|2ds, since y(s) is a real-valued function.

(⇐) Conversely, if
∫ 2π

0
|f(t)|2dt ≤

∫ 2π

0
|f ′(t)|2dt and f is real-valued, then we can construct g

such that g′(t) = f(t) and g′(t)2 + f ′(t)2 = 1.
Then the curve defined by γ(t) = (g(t), f(t)) is a closed curve in R2. Thus,

2π − 2A =

∫ 2π

0

(f ′(t)2 + g′(t)2)dt+ 2

∫ 2π

0

g′(t)f(t)dt

=

∫ 2π

0

(g′(t) + f(t))2dt+

∫ 2π

0

(f ′(t)2 − f(t)2)dt

=

∫ 2π

0

(f ′(t)2 − f(t)2)dt

≥ 0,

(2)

yielding the isoperimetric inequality. �
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Chapter 4. Ex.7 Prove the second part of Weyl’s criterion: if a sequence of numbers ξ1, ξ2, ...
in [0, 1) is equidistributed, then for all k ∈ Z− {0}

1

N

N∑
n=1

e2πikξn → 0 as N →∞.

Proof. Since the sequence of numbers ξ1, ξ2, ... in [0, 1) is equidistributed, we have

1

N

N∑
n=1

χ[a,b](ξn)→
∫ b

a

χ[a,b](x)dx

as N →∞ for any [a, b] ⊂ [0, 1), where χ[a,b](x) is the characteristic function of [a, b].
For any continuous function f on [0, 1], it should be uniformly continuous on [0, 1], i.e., ∀ε >
0,∃δ > 0, s.t. sup |f(x1)− f(x2)| < ε when |x1 − x2| < δ.
Consider a partition of [0, 1], say 0 < 1

N
< 2

N
< · · · < N

N
= 1, where 1

N
< δ.

Define fU(x) = sup
j−1
N
≤y< 1

N

f(y), fL(x) = inf
j−1
N
≤y< 1

N

f(y) if y ∈ [ j−1
N
, j
N

].

Then fL(x) ≤ f(x) ≤ fU(x) for all x ∈ [0, 1).

We can choose N large enough such that
∫ 1

0
fU(x)dx−

∫ 1

0
fL(x)dx < ε.

Since fU and fL are linear combinations of characteristic functions, we obtain that

1
N

N∑
n=1

fU(ξn)→
∫ 1

0
fU(x)dx and 1

N

N∑
n=1

fL(ξn)→
∫ 1

0
fL(x)dx as N →∞.

Therefore, 1
N

N∑
n=1

f(ξn)→
∫ 1

0
f(x)dx as N →∞ for any continuous function f .

Particularly, 1
N

N∑
n=1

e2πikξn → 0 =
∫ 1

0
e2πikxdx, for all k ∈ Z− {0} �

Chapter 4. Ex.10 Suppose that f is a periodic function on R of periodic 1, and {ξn} is a
sequence which is equidistributed in [0, 1). Prove that:

(a) If f is continuous and satisfies
∫ 1

0
f(x)dx = 0, then

lim
N→∞

1

N

N∑
n=1

f(x+ ξn) = 0 uniformly in x.

(b) If f is merely integrable on [0, 1] and satisfies
∫ 1

0
f(x)dx = 0, then

lim
N→∞

∫ 1

0

| 1
N

N∑
n=1

f(x+ ξn)|2dx = 0

Proof. (a) Due to the equidistributed property of {ξn}, we know that 1
N

N∑
n=1

e2πikξn → 0 for all

k ∈ Z− {0} by the Exercise 7.
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Since |e2πikx| = 1 and
∫ 1

0
e2πikxdx = 0 for all k ∈ Z− {0}, we have 1

N

N∑
n=1

e2πik(ξn+x) → 0

Thus, the result holds for any trigonometric polynomials, i.e., for any ε > 0, there exists an

N(ε) > 0 such that | 1
N

N∑
n=1

P (x+ ξn)| < ε
2
, where P (x) is any polynomial whose constant term

is 0.
By Corollary 5.4 in Chapter 2, we can choose a trigonometric polynomial P (x), whose constant
term is 0, such that sup

x∈R
|P (x)− f(x)| < ε

2
for any ε > 0.

Thus, | 1
N

N∑
n=1

f(x + ξn)| ≤ 1
N

N∑
n=1

|f(x + ξn) − P (x + ξn)| + | 1
N

N∑
n=1

P (x + ξn)| < ε when N(ε) is

large.

Therefore, lim
N→∞

| 1
N

N∑
n=1

f(x+ ξn)| = 0 uniformly in x.

(b) By Lemma 1.5 in the Appendix, we know that there exists a sequence {gk}∞k=1 of continuous

functions such that sup
x∈[0,1]

|gk(x)| ≤ B and
∫ 1

0
|f(x) − gk(x)|dx → 0 as k → ∞, where B =

sup
x∈[0,1]

|f(x)|. Thus,

∫ 1

0

| 1
N

N∑
n=1

f(x+ ξn)|2dx ≤
∫ 1

0

| 1
N

N∑
n=1

(f(x+ ξn)− gk(x+ ξn))|2dx+

∫ 1

0

| 1
N

N∑
n=1

gk(x+ ξn)|2dx

≤ 1

N

N∑
n=1

∫ 1

0

|(f(x+ ξn)− gk(x+ ξn))|2dx+

∫ 1

0

| 1
N

N∑
n=1

gk(x+ ξn)|2dx

→ 0, as k →∞, N →∞,
(3)

where | 1
N

N∑
n=1

gk(x+ ξn)|2 = 0, k = 1, 2, ... by (a). �
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