Homework 8 Solution

Yikun Zhang ${ }^{1}$

Chapter 4. Ex. 4 Observe that with the definition of ℓ and \mathcal{A} given in the text, the isoperimetric inequality continues to hold (with the same proof) even when Γ is not simple.
Show that this stronger version of the isoperimetric inequality is equivalent to Wirtinger's inequality, which says that if f is 2π-periodic, of class C^{1}, and satisfies $\int_{0}^{2 \pi} f(t) d t=0$, then

$$
\int_{0}^{2 \pi}|f(t)|^{2} d t \leq \int_{0}^{2 \pi}\left|f^{\prime}(t)\right|^{2} d t
$$

with equality if and only if $f(t)=A \sin t+B \cos t$.
Proof. (\Rightarrow) If the isoperimetric inequality holds, then for any closed curve in \mathbb{R}^{2} whose length is 2π, we have $\mathcal{A} \leq \pi$, where \mathcal{A} is the area of the region enclosed by this curve.
Choose an appropriate curve γ whose arc-length parametrization satisfies $x^{\prime}(s)=-y(s), x^{\prime}(s)^{2}+$ $y^{\prime}(s)^{2}=1$. Then by the periodicity of $x(s)$, we obtain that $\int_{0}^{2 \pi} y(s) d s=-\int_{0}^{2 \pi} x^{\prime}(s) d s=0$. Thus,

$$
\begin{align*}
\int_{0}^{2 \pi}\left(y^{\prime}(s)^{2}-y(s)^{2}\right) d s & =\int_{0}^{2 \pi}\left(x^{\prime}(s)^{2}+y^{\prime}(s)^{2}\right) d s-\int_{0}^{2 \pi}\left(x^{\prime}(s)^{2}+y(s)^{2}\right) d s \\
& =2 \pi-\int_{0}^{2 \pi}\left(x^{\prime}(s)+y(s)\right)^{2} d s+2 \int_{0}^{2 \pi} x^{\prime}(s) y(s) d s \tag{1}\\
& =2 \pi-2 \mathcal{A} \\
& \geq 0
\end{align*}
$$

where we use the fact that $x^{\prime}(s)=-y(s)$ and $\mathcal{A}=-2 \int_{0}^{2 \pi} x^{\prime}(s) y(s) d s$. Therefore, $\int_{0}^{2 \pi}|y(s)|^{2} d s \leq$ $\int_{0}^{2 \pi}\left|y^{\prime}(s)\right|^{2} d s$, since $y(s)$ is a real-valued function.
(\Leftarrow) Conversely, if $\int_{0}^{2 \pi}|f(t)|^{2} d t \leq \int_{0}^{2 \pi}\left|f^{\prime}(t)\right|^{2} d t$ and f is real-valued, then we can construct g such that $g^{\prime}(t)=f(t)$ and $g^{\prime}(t)^{2}+f^{\prime}(t)^{2}=1$.
Then the curve defined by $\gamma(t)=(g(t), f(t))$ is a closed curve in \mathbb{R}^{2}. Thus,

$$
\begin{align*}
2 \pi-2 \mathcal{A} & =\int_{0}^{2 \pi}\left(f^{\prime}(t)^{2}+g^{\prime}(t)^{2}\right) d t+2 \int_{0}^{2 \pi} g^{\prime}(t) f(t) d t \\
& =\int_{0}^{2 \pi}\left(g^{\prime}(t)+f(t)\right)^{2} d t+\int_{0}^{2 \pi}\left(f^{\prime}(t)^{2}-f(t)^{2}\right) d t \tag{2}\\
& =\int_{0}^{2 \pi}\left(f^{\prime}(t)^{2}-f(t)^{2}\right) d t \\
& \geq 0
\end{align*}
$$

yielding the isoperimetric inequality.

[^0]Chapter 4. Ex. 7 Prove the second part of Weyl's criterion: if a sequence of numbers ξ_{1}, ξ_{2}, \ldots in $[0,1)$ is equidistributed, then for all $k \in \mathbb{Z}-\{0\}$

$$
\frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i k \xi_{n}} \rightarrow 0 \text { as } N \rightarrow \infty
$$

Proof. Since the sequence of numbers ξ_{1}, ξ_{2}, \ldots in $[0,1)$ is equidistributed, we have

$$
\frac{1}{N} \sum_{n=1}^{N} \chi_{[a, b]}\left(\xi_{n}\right) \rightarrow \int_{a}^{b} \chi_{[a, b]}(x) d x
$$

as $N \rightarrow \infty$ for any $[a, b] \subset[0,1)$, where $\chi_{[a, b]}(x)$ is the characteristic function of $[a, b]$.
For any continuous function f on [0,1], it should be uniformly continuous on [0, 1], i.e., $\forall \epsilon>$ $0, \exists \delta>0$, s.t. $\sup \left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\epsilon$ when $\left|x_{1}-x_{2}\right|<\delta$.
Consider a partition of $[0,1]$, say $0<\frac{1}{N}<\frac{2}{N}<\cdots<\frac{N}{N}=1$, where $\frac{1}{N}<\delta$.
Define $f_{U}(x)=\sup _{\frac{j-1}{N} \leq y<\frac{1}{N}} f(y), f_{L}(x)=\inf _{\frac{j-1}{N} \leq y<\frac{1}{N}} f(y)$ if $y \in\left[\frac{j-1}{N}, \frac{j}{N}\right]$.
Then $f_{L}(x) \leq f(x) \leq f_{U}(x)$ for all $x \in[0,1)$.
We can choose N large enough such that $\int_{0}^{1} f_{U}(x) d x-\int_{0}^{1} f_{L}(x) d x<\epsilon$.
Since f_{U} and f_{L} are linear combinations of characteristic functions, we obtain that $\frac{1}{N} \sum_{n=1}^{N} f_{U}\left(\xi_{n}\right) \rightarrow \int_{0}^{1} f_{U}(x) d x$ and $\frac{1}{N} \sum_{n=1}^{N} f_{L}\left(\xi_{n}\right) \rightarrow \int_{0}^{1} f_{L}(x) d x$ as $N \rightarrow \infty$.
Therefore, $\frac{1}{N} \sum_{n=1}^{N} f\left(\xi_{n}\right) \rightarrow \int_{0}^{1} f(x) d x$ as $N \rightarrow \infty$ for any continuous function f.
Particularly, $\frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i k \xi_{n}} \rightarrow 0=\int_{0}^{1} e^{2 \pi i k x} d x$, for all $k \in \mathbb{Z}-\{0\}$
Chapter 4. Ex. 10 Suppose that f is a periodic function on \mathbb{R} of periodic 1, and $\left\{\xi_{n}\right\}$ is a sequence which is equidistributed in $[0,1)$. Prove that:
(a) If f is continuous and satisfies $\int_{0}^{1} f(x) d x=0$, then

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(x+\xi_{n}\right)=0 \text { uniformly in } x
$$

(b) If f is merely integrable on $[0,1]$ and satisfies $\int_{0}^{1} f(x) d x=0$, then

$$
\lim _{N \rightarrow \infty} \int_{0}^{1}\left|\frac{1}{N} \sum_{n=1}^{N} f\left(x+\xi_{n}\right)\right|^{2} d x=0
$$

Proof. (a) Due to the equidistributed property of $\left\{\xi_{n}\right\}$, we know that $\frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i k \xi_{n}} \rightarrow 0$ for all $k \in \mathbb{Z}-\{0\}$ by the Exercise 7.

Since $\left|e^{2 \pi i k x}\right|=1$ and $\int_{0}^{1} e^{2 \pi i k x} d x=0$ for all $k \in \mathbb{Z}-\{0\}$, we have $\frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i k\left(\xi_{n}+x\right)} \rightarrow 0$
Thus, the result holds for any trigonometric polynomials, i.e., for any $\epsilon>0$, there exists an $N(\epsilon)>0$ such that $\left|\frac{1}{N} \sum_{n=1}^{N} P\left(x+\xi_{n}\right)\right|<\frac{\epsilon}{2}$, where $P(x)$ is any polynomial whose constant term is 0 .
By Corollary 5.4 in Chapter 2, we can choose a trigonometric polynomial $P(x)$, whose constant term is 0 , such that $\sup _{x \in \mathbb{R}}|P(x)-f(x)|<\frac{\epsilon}{2}$ for any $\epsilon>0$.
Thus, $\left|\frac{1}{N} \sum_{n=1}^{N} f\left(x+\xi_{n}\right)\right| \leq \frac{1}{N} \sum_{n=1}^{N}\left|f\left(x+\xi_{n}\right)-P\left(x+\xi_{n}\right)\right|+\left|\frac{1}{N} \sum_{n=1}^{N} P\left(x+\xi_{n}\right)\right|<\epsilon$ when $N(\epsilon)$ is large.
Therefore, $\lim _{N \rightarrow \infty}\left|\frac{1}{N} \sum_{n=1}^{N} f\left(x+\xi_{n}\right)\right|=0$ uniformly in x.
(b) By Lemma 1.5 in the Appendix, we know that there exists a sequence $\left\{g_{k}\right\}_{k=1}^{\infty}$ of continuous functions such that $\sup _{x \in[0,1]}\left|g_{k}(x)\right| \leq B$ and $\int_{0}^{1}\left|f(x)-g_{k}(x)\right| d x \rightarrow 0$ as $k \rightarrow \infty$, where $B=$ $\sup _{x \in[0,1]}|f(x)|$. Thus,

$$
\begin{align*}
\int_{0}^{1}\left|\frac{1}{N} \sum_{n=1}^{N} f\left(x+\xi_{n}\right)\right|^{2} d x & \leq \int_{0}^{1}\left|\frac{1}{N} \sum_{n=1}^{N}\left(f\left(x+\xi_{n}\right)-g_{k}\left(x+\xi_{n}\right)\right)\right|^{2} d x+\int_{0}^{1}\left|\frac{1}{N} \sum_{n=1}^{N} g_{k}\left(x+\xi_{n}\right)\right|^{2} d x \\
& \leq \frac{1}{N} \sum_{n=1}^{N} \int_{0}^{1}\left|\left(f\left(x+\xi_{n}\right)-g_{k}\left(x+\xi_{n}\right)\right)\right|^{2} d x+\int_{0}^{1}\left|\frac{1}{N} \sum_{n=1}^{N} g_{k}\left(x+\xi_{n}\right)\right|^{2} d x \\
& \rightarrow 0, \text { as } k \rightarrow \infty, N \rightarrow \infty \tag{3}
\end{align*}
$$

where $\left|\frac{1}{N} \sum_{n=1}^{N} g_{k}\left(x+\xi_{n}\right)\right|^{2}=0, k=1,2, \ldots$ by (a).

[^0]: ${ }^{1}$ School of Mathematics, Sun Yat-sen University

