Homework 8 Solution

Yikun Zhang¹

Chapter 4. Ex.4 Observe that with the definition of ℓ and \mathcal{A} given in the text, the isoperimetric inequality continues to hold (with the same proof) even when Γ is not simple. Show that this stronger version of the isoperimetric inequality is equivalent to Wirtinger's inequality, which says that if f is 2π -periodic, of class C^1 , and satisfies $\int_0^{2\pi} f(t)dt = 0$, then

$$\int_0^{2\pi} |f(t)|^2 dt \le \int_0^{2\pi} |f'(t)|^2 dt$$

with equality if and only if f(t) = Asint + Bcost.

Proof. (\Rightarrow) If the isoperimetric inequality holds, then for any closed curve in \mathbb{R}^2 whose length is 2π , we have $\mathcal{A} \leq \pi$, where \mathcal{A} is the area of the region enclosed by this curve. Choose an appropriate curve γ whose arc-length parametrization satisfies $x'(s) = -y(s), x'(s)^2 +$

 $y'(s)^2 = 1$. Then by the periodicity of x(s), we obtain that $\int_0^{2\pi} y(s) ds = -\int_0^{2\pi} x'(s) ds = 0$. Thus.

$$\int_{0}^{2\pi} (y'(s)^{2} - y(s)^{2}) ds = \int_{0}^{2\pi} (x'(s)^{2} + y'(s)^{2}) ds - \int_{0}^{2\pi} (x'(s)^{2} + y(s)^{2}) ds$$
$$= 2\pi - \int_{0}^{2\pi} (x'(s) + y(s))^{2} ds + 2 \int_{0}^{2\pi} x'(s) y(s) ds \qquad (1)$$
$$= 2\pi - 2\mathcal{A}$$
$$\ge 0,$$

where we use the fact that x'(s) = -y(s) and $\mathcal{A} = -2\int_0^{2\pi} x'(s)y(s)ds$. Therefore, $\int_0^{2\pi} |y(s)|^2 ds \leq -2\int_0^{2\pi} |y(s)|^2 ds$. $\int_0^{2\pi} |y'(s)|^2 ds$, since y(s) is a real-valued function.

(\Leftarrow) Conversely, if $\int_0^{2\pi} |f(t)|^2 dt \leq \int_0^{2\pi} |f'(t)|^2 dt$ and f is real-valued, then we can construct g such that g'(t) = f(t) and $g'(t)^2 + f'(t)^2 = 1$.

Then the curve defined by $\gamma(t) = (g(t), f(t))$ is a closed curve in \mathbb{R}^2 . Thus,

$$2\pi - 2\mathcal{A} = \int_{0}^{2\pi} (f'(t)^{2} + g'(t)^{2})dt + 2\int_{0}^{2\pi} g'(t)f(t)dt$$

$$= \int_{0}^{2\pi} (g'(t) + f(t))^{2}dt + \int_{0}^{2\pi} (f'(t)^{2} - f(t)^{2})dt$$

$$= \int_{0}^{2\pi} (f'(t)^{2} - f(t)^{2})dt$$

$$\ge 0.$$
 (2)

yielding the isoperimetric inequality.

¹School of Mathematics, Sun Yat-sen University

Chapter 4. Ex.7 Prove the second part of Weyl's criterion: if a sequence of numbers $\xi_1, \xi_2, ...$ in [0,1) is equidistributed, then for all $k \in \mathbb{Z} - \{0\}$

$$\frac{1}{N}\sum_{n=1}^{N}e^{2\pi i k\xi_n} \to 0 \quad as \ N \to \infty.$$

Proof. Since the sequence of numbers ξ_1, ξ_2, \dots in [0, 1) is equidistributed, we have

$$\frac{1}{N}\sum_{n=1}^{N}\chi_{[a,b]}(\xi_n) \to \int_a^b \chi_{[a,b]}(x)dx$$

Chapter 4. Ex.10 Suppose that f is a periodic function on \mathbb{R} of periodic 1, and $\{\xi_n\}$ is a sequence which is equidistributed in [0, 1). Prove that: (a) If f is continuous and satisfies $\int_0^1 f(x) dx = 0$, then

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(x + \xi_n) = 0 \quad uniformly \ in \ x.$$

(b) If f is merely integrable on [0,1] and satisfies $\int_0^1 f(x) dx = 0$, then

$$\lim_{N \to \infty} \int_0^1 |\frac{1}{N} \sum_{n=1}^N f(x+\xi_n)|^2 dx = 0$$

Proof. (a) Due to the equidistributed property of $\{\xi_n\}$, we know that $\frac{1}{N} \sum_{n=1}^{N} e^{2\pi i k \xi_n} \to 0$ for all $k \in \mathbb{Z} - \{0\}$ by the Exercise 7.

Since $|e^{2\pi i kx}| = 1$ and $\int_0^1 e^{2\pi i kx} dx = 0$ for all $k \in \mathbb{Z} - \{0\}$, we have $\frac{1}{N} \sum_{n=1}^N e^{2\pi i k(\xi_n + x)} \to 0$ Thus, the result holds for any trigonometric polynomials, i.e., for any $\epsilon > 0$, there exists an $N(\epsilon) > 0$ such that $|\frac{1}{N} \sum_{n=1}^N P(x + \xi_n)| < \frac{\epsilon}{2}$, where P(x) is any polynomial whose constant term is 0.

By Corollary 5.4 in Chapter 2, we can choose a trigonometric polynomial P(x), whose constant term is 0, such that $\sup_{x \in \mathbb{R}} |P(x) - f(x)| < \frac{\epsilon}{2}$ for any $\epsilon > 0$.

Thus,
$$\left|\frac{1}{N}\sum_{n=1}^{N}f(x+\xi_n)\right| \leq \frac{1}{N}\sum_{n=1}^{N}|f(x+\xi_n) - P(x+\xi_n)| + \left|\frac{1}{N}\sum_{n=1}^{N}P(x+\xi_n)\right| < \epsilon$$
 when $N(\epsilon)$ is large.

Therefore, $\lim_{N \to \infty} \left| \frac{1}{N} \sum_{n=1}^{N} f(x + \xi_n) \right| = 0$ uniformly in x.

(b) By Lemma 1.5 in the Appendix, we know that there exists a sequence $\{g_k\}_{k=1}^{\infty}$ of continuous functions such that $\sup_{x \in [0,1]} |g_k(x)| \leq B$ and $\int_0^1 |f(x) - g_k(x)| dx \to 0$ as $k \to \infty$, where $B = \sup_{x \in [0,1]} |f(x)|$. Thus,

 $\sup_{x \in [0,1]} |f(x)|.$ Thus

$$\int_{0}^{1} |\frac{1}{N} \sum_{n=1}^{N} f(x+\xi_{n})|^{2} dx \leq \int_{0}^{1} |\frac{1}{N} \sum_{n=1}^{N} (f(x+\xi_{n}) - g_{k}(x+\xi_{n}))|^{2} dx + \int_{0}^{1} |\frac{1}{N} \sum_{n=1}^{N} g_{k}(x+\xi_{n})|^{2} dx$$
$$\leq \frac{1}{N} \sum_{n=1}^{N} \int_{0}^{1} |(f(x+\xi_{n}) - g_{k}(x+\xi_{n}))|^{2} dx + \int_{0}^{1} |\frac{1}{N} \sum_{n=1}^{N} g_{k}(x+\xi_{n})|^{2} dx$$
$$\to 0, \text{ as } k \to \infty, N \to \infty,$$
(3)

where
$$\left|\frac{1}{N}\sum_{n=1}^{N}g_k(x+\xi_n)\right|^2 = 0, \ k = 1, 2, \dots$$
 by (a).