Homework 6 Solution

Yikun Zhang ${ }^{1}$

Chapter 3. Ex. 2 Prove that the vector space $\ell^{2}(\mathbb{Z})$ is complete.
Proof. Suppose that $A_{k}=\left\{a_{k, n}\right\}_{n \in \mathbb{Z}}$ with $k=1,2, \ldots$ is a Cauchy sequence. Then for any $\epsilon>0$, there exists an $N>0$ such that

$$
\left|a_{k, n}-a_{k^{\prime}, n}\right| \leq\left\|A_{k}-A_{k^{\prime}}\right\|<\epsilon / 2, \text { whenever } k, k^{\prime}>N .
$$

Thus, for each $n \in \mathbb{Z},\left\{a_{k, n}\right\}_{k=1}^{\infty}$ is a Cauchy sequence of complex numbers, therefore it converges to a limit, say b_{n}. Let $B=\left(\ldots, b_{-1}, b_{0}, b_{1}, \ldots\right)$ and $A_{k, N}, B_{N}$ denote the truncated element
$A_{k, N}=\left(\ldots, 0, a_{k,-N}, \ldots, a_{k,-1}, a_{k, 0}, a_{k, 1}, \ldots, a_{k, N}, 0, \ldots\right), B_{N}=\left(\ldots, 0, b_{-N}, \ldots, b_{-1}, b_{0}, b_{1}, \ldots, b_{N}, 0, \ldots\right)$, respectively.
By taking partial sums of $\left\|A_{k}-A_{k^{\prime}}\right\|$, we have

$$
\left\|A_{k, N}-A_{k^{\prime}, N}\right\| \leq\left\|A_{k}-A_{k^{\prime}}\right\|<\epsilon / 2
$$

Letting $k^{\prime} \rightarrow \infty,\left\|A_{k, N}-B_{N}\right\| \leq \epsilon / 2$. Letting $N \rightarrow \infty$, we obtain that $\left\|A_{k}-B\right\| \leq \epsilon / 2<\epsilon$, yielding that $\left\|A_{k}-B\right\| \rightarrow 0$ as $k \rightarrow \infty$.
Finally, we are left to prove that $B \in \ell^{2}(\mathbb{Z})$.
Since $\left\|A_{k}-B\right\| \rightarrow 0$ as $k \rightarrow \infty$ and $A_{k} \in \ell^{2}(\mathbb{Z})$ for each $k,\left\|A_{k}\right\|<\infty$ and thus

$$
\|B\| \leq\left\|B-A_{k}\right\|+\left\|A_{k}\right\|<\epsilon+\left\|A_{k}\right\|<\infty, \text { when } k \text { is large. }
$$

Chapter 3. Ex. 5 Let

$$
f(\theta)= \begin{cases}0 & \text { for } \theta=0 \\ \log (1 / \theta) & \text { for } 0<\theta \leq 2 \pi\end{cases}
$$

and define a sequence of functions in \mathcal{R} by

$$
f_{n}(\theta)= \begin{cases}0 & \text { for } \theta=0 \\ f(\theta) & \text { for } 1 / n<\theta \leq 2 \pi\end{cases}
$$

Prove that $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathcal{R}. However, f does not belong to \mathcal{R}.
Proof. By L'Hospital's Rule, it is easy to prove that $\lim _{\theta \rightarrow 0} \theta(\log \theta)^{2}=0$ and $\lim _{\theta \rightarrow 0} \theta(\log \theta)=0$. Therefore, we have $\int_{a}^{b}(\log \theta)^{2} d \theta \rightarrow 0$ if $0<a<b$ and $b \rightarrow 0$, where we use the fact that $\int(\log \theta)^{2} d \theta=\theta(\log \theta)^{2}-2 \theta(\log \theta)+2 \theta+C$ and C is a constant.

[^0]Thus, $\forall \epsilon>0, \exists N>0$, for $n>m>N$,

$$
\left\|f_{n}(\theta)-f_{m}(\theta)\right\|=\left(\frac{1}{2 \pi} \int_{\frac{1}{n}}^{\frac{1}{m}}[\log (1 / \theta)]^{2} d \theta\right)^{\frac{1}{2}}=\left(\frac{1}{2 \pi} \int_{\frac{1}{n}}^{\frac{1}{m}}(\log \theta)^{2} d \theta\right)^{\frac{1}{2}}<\epsilon,
$$

showing that $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathcal{R} and $\lim _{n \rightarrow \infty} f_{n}=f$. However, $f \notin \mathbb{R}$, since it is not bounded.
Chapter 3. Ex. 7 Show that the trigonometric series

$$
\sum_{n \geq 2} \frac{1}{\log n} \sin n x
$$

converges for every x, yet it is not the Fourier series of a Riemann integrable function.
Proof. First we have $\left|\sum_{n=2}^{N} \sin (n x)\right| \leq \frac{1}{\sin (\delta / 2)}$ when $|x| \geq \delta>0$ and $\lim _{x \rightarrow 0} \sum_{n=2}^{N} \sin (n x)=0$.
Thus, $\sum_{n=2}^{N} \sin (n x)=0$ is bounded while $\frac{1}{\log n}$ is monotonic and tends to 0 as $n \rightarrow \infty$. By Dirichlet's test, $\sum_{n \geq 2} \frac{1}{\log n} \sin n x$ converges for every x.
If $\frac{1}{\log n}$ is the Fourier coefficient of a Riemann integrable functions, by Parseval's identity, one must have $\sum_{n \geq 2} \frac{1}{2}\left|\frac{1}{\log n}\right|^{2}=\|f\|^{2}<\infty$. However, $\sum_{n \geq 2} \frac{1}{\log n}$ diverges, which leads to a contradiction.
Remark: Likewise, $\sum_{n=1}^{\infty} \frac{1}{n^{2 \alpha}}$ is also a divergent series when $0<\alpha \leq \frac{1}{2}$. Hence the same is true for $\sum \frac{\operatorname{sinnx}}{n^{\alpha}}$ when $0<\alpha \leq \frac{1}{2}$.

[^0]: ${ }^{1}$ School of Mathematics, Sun Yat-sen University

