Fourier Analysis and its Applications

2016 Yat-sen Class

Sun Yat-sen University

Department of Mathematics

September 21, 2017

< 17 ▶

Introduction to the Course

Class Time: Thursday 14:20–16:00

Location: Room 416

Instructor: Prof.Lixin Yan (颜立新老师)

Contact: 020-84110123

Office: Room 702

Email: mcsylx@mail.sysu.edu.cn

TA: Yikun Zhang (张奕堃)

Email: yikunzhang@foxmail.com

Course Website: https://zhangyk8.github. io/teaching/fourier

Office Hour: Tuesday 16:00-17:30

Location: 逸仙学院负一层

Support Materials:

- Trigonometric Series (三角级数) Third Edition (Written by Antoni Zygmund)
- Stanford Open Course

http://open.163.com/special/opencourse/
fouriertransforms.html

斯坦福大学公开课:傅里叶变换及其应用 #爾里科· · · · · · · · · · · · · · · · · · ·
课程介绍 本课程分组的在于让学生获得灵活使用商里叶资格,包括总体原则及特定技巧,并了前间时、在什 么信见下、如何应用傅里叶资格。本课鉴调联系题论原则,以解决各种实际的工料理料问题。
☆ ☆ 小磁 立即播放

Author of the Textbook

Elias M. Stein

Professor Emeritus of Mathematics, Princeton University

Main Awards: Wolf Prize (1999)

R.Shakarchi: PhD student of C.Feffermen

(Yat-sen	Honor	College)

Stein's Doctoral Students

Figure: Charles Fefferman (1978 Fields, 2017 Wolf)

Figure: Terence Tao (2006 Fields)

A (10) A (10) A (10)

Who is Fourier?

э

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Biography of J.Fourier

Joseph Fourier(1768–1830)

- Profession: Mathematician, Egyptologist and Administrator
- Other Achievement: Discover the Greenhouse Effect

A .

- The son of a tailor and a housewife
- Talent in Latin, French, and Literature
- Real interest: Mathematics

Yesterday was my 21st birthday, at that age Newton and Pascal had already acquired many claims to immortality.

Politics vs Mathematics

• French Revolution

• Egyptian Expedition

(Yat-sen Honor College)

September 21, 2017 10 / 52

< ロ > < 同 > < 回 > < 回 >

Mathematics Career

- Mathematics teacher at the École Polytechnique
- The chair of Analysis and Mechanics

Teacher's Name	His Advisor	The age when he first met Fourier
Pierre-Simon Laplace	Jean d'Alembert	45
Gaspard Monge	NA	49
Joseph-Louis Lagrange	Leonhard Eulern	59

Fourier gave charming descriptions of these famous mathematicians.

Laplace and Monge

To Laplace:

His voice is quiet but clear, and he speaks precisely, though not very fluently; his appearance is pleasant, and he dresses very simply. His teaching of mathematics is in no way remarkable and he covers the material **very rapidly**...

To Monge:

Monge has a loud voice and he is energetic, ingenious and very learned. The subject that he teaches is a fascinating one, and he describes it with the greatest possible clarity. He is even considered to be **too clear**, or, rather to deal with his material too slowly...

J.Lagrange

To Lagrange:

Lagrange, the foremost scholar of Europe, appears to be between 50 and 60 years old, though he is in fact younger; he dresses very quietly, in black or brown. He speaks only in discussion, and some of what he says excites ridicule. The other day he said "**There are a lot of important things to be said on this subject, but I shall not say them**".

What is Fourier Analysis?

H 5

Background

o ...

- Trigonometric functions and its convergence property
- Fourier Transform

Image: A mathematic states and a mathematic states

Is Fourier Analysis Useful?

🖬 邓东皋 🛛 尹小玲

数学分析简明教程

高等教育出版社(第二版),2006年12月

A B A A B A

History: Physical Model

Simple Harmonic Motion

$$-ky(t) = my''(t)$$

Solution

$$y(t) = acos(ct) + bsin(ct)$$

See Chapter 1 for details

(Yat-sen Honor College)

< A

d'Alembert, Euler, Taylor, Bernoulli,...

 \implies Solution for the oscillator equation

Problem 1

Given a function f on $[0, \pi]$ (with $f(0) = f(\pi) = 0$), can we find coefficients A_m so that $f(x) = \sum_{m=1}^{\infty} A_m sin(mx)$?

Problem 2

Given any reasonable function *F* on $[-\pi, \pi]$, is it true that $F(x) = \sum_{m=-\infty}^{\infty} a_m e^{imx}?$ $a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(x) e^{-inx} dx$

э.

The Analytical Theory of Heat (1822)

Idea: Any function of a variable, whether continuous or discontinuous, can be expanded in a series of sines of multiples of the variable.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

No rigorous proof

• Still unprecedented

< 4 →

3 > 4 3

Trigonometric Series: Dirichlet's Works

Dirichlet

- Poisson summation formula
- Modernization of the concept of function

Theorem A

For any given value of *x*, the sum of the Fourier series is f(x) if f(x) is continuous at that point *x*, and is $\frac{1}{2}[f(x-0) + f(x+0)]$ if f(x) is discontinuous at that point.

See Chapter 3 for details.

글 🕨 🖌 글

Riemann's Contribution

- Riemann integral
- Piemann localization principle

Riemann Localization Principle

Theorem B

For a bounded integrable function f(x), the convergence of its Fourier series at a point x in $[-\pi, \pi]$ depends only on the behaviour of f(x) in an arbitrarily small neighborhood of that point x.

September 21, 2017

24/52

Further Development: Before 20th Century

Figure: R.Lipschitz

Figure: Georg Cantor Figure: Karl Weierstrass

September 21, 2017 25 / 52

Weierstrass Approximation Theorem

Theorem C

Continuous functions on the circle can be uniformly approximated by trigonometric polynomials.

Theorem D (Weierstrass)

Let *f* be a continuous function on the closed and bounded interval $[a, b] \subset \mathbb{R}$. Then for any $\epsilon > 0$, there exists a polynomial *P* such that

$$\sup_{\alpha\in[a,b]}|f(x)-P(x)|<\epsilon.$$

Lecture 1

Chapter 2 Exercise 16 (Homework)

A D M A A A M M

A B F A B F

September 21, 2017

26/52

Continuous but nowhere differentiable function?

$$R(x) = \sum_{n=1}^{\infty} \frac{\sin(n^2 x)}{n^2}$$

In 1969 Gerver successfully proved that

The function *R* is actually differentiable at all the rational multiples of π of the form $\frac{\pi p}{q}$ with *p* and *q* odd integers.

Weierstrass's Example

Theorem E

If $ab > 1 + rac{3\pi}{2}$, 0 < b < 1, a > 1, $a \in 2\mathbb{Z} + 1$ then the function

$$W(x) = \sum_{n=1}^{\infty} b^n \cos(a^n x)$$

is nowhere differentiable.

See Chapter 4 for details. Remark: This kind of functions is uncountable.

(Yat-sen Honor College)

Real Analysis

Drawback of Riemann Integral:

- Newton-Leibniz Formula
- Convergence of Fourier series

Lebesgue's Theory

After 20th Century

Harmonic Analysis

Figure: Elias Stein

Figure: A.N.Kolmogorov

Figure: A.Zygmund

Connections and Influence

Luzin's Conjecture

If $f \in L^2[0, 2\pi]$, then its Fourier series converges almost everywhere.

Theorem E (L.Carleson and Hunt)

The Fourier series of any integrable function f(x) i.e., $f \in L^p[0, 2\pi], 1 , converges almost everywhere to <math>f(x)$.

Luzin's Conjecture in high dimensions: Still Unsolved

Kolmogorov's Counterexample (1926)

The preceding theorem fails when p = 1, that is, the Fourier series of L^1 functions diverges everywhere.

Example

Let $\lambda_1, ..., \lambda_n$ be increasing odd integers to be defined.

•
$$m_1 = n, 2m_k + 1 = \lambda_k(2n+1)$$

•
$$A_k = k \frac{4\pi}{2n+1}, 1 \le k \le n$$

• $\phi(x) = \frac{m_k^2}{n}$ for $x \in \Delta_k := [A_k - m_k^{-2}, A_k + m_k^{-2}]$ and 0 elsewhere. Consider the following candidate:

$$\phi(x) = \sum_{k=1}^{\infty} rac{\phi_{n_k}(x)}{\sqrt{M_{n_k}}}$$

Then the fourier series of ϕ diverges almost elsewhere on $[0, 2\pi]$.

Partial Differential Equation (II)

Wave equation: $\Delta u = u_{tt}$

Heat equation: $cu_t = \Delta u$

Laplace's equation: $\Delta u = 0$

Schrödinger's equation: $iu_t + \Delta u = 0$

Navier-Stokes equations

 $\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} - \Delta \mathbf{u} = -\nabla p$ $div\mathbf{u} = 0$ p : Pressure

.....

4 3 5 4 3

Example: Wave Equation

If this equation is subject to the initial conditions

$$u(x,0) = f(x)$$

$$\frac{\partial u}{\partial t}(x,0) = g(x),$$

this is called the Cauchy problem for the wave equation.

Theorem F

A solution of the Cauchy problem for the wave equation is

$$u(x,t) = \int_{\mathbb{R}^d} [\hat{f}(\xi) \cos(2\pi |\xi|t) + \hat{g}(\xi) \frac{\sin(2\pi |\xi|t)}{2\pi |\xi|}] e^{2\pi i x \cdot \xi} d\xi,$$

where \hat{f} is the inverse Fourier transform of f.

See Chapter 6 for details.

Interpretation in Physics – Huygens Principle

The solutions of the wave equation in one dimension is

$$u(x,t) = \frac{f(x+t) + f(x-t)}{2} + \frac{1}{2} \int_{x-t}^{x+t} g(y) dy,$$

known as d'Alembert's formula.

Quantum Mechanics (III)

The Heisenberg Uncertainty Principle, 1927 (Uncertainty of position) × (Uncertainty of momentum) $\leq \frac{h}{16\pi^2}$, where *h* is Planck's constant.

Theorem

Suppose ψ is a function in $S(\mathbb{R})$ which satisfies the normalizing condition $\int_{-\infty}^{\infty} |\psi(x)|^2 dx = 1$. Then

$$(\int_{-\infty}^{\infty} x^2 |\psi(x)|^2 dx) (\int_{-\infty}^{\infty} \xi^2 |\hat{\psi}(\xi)|^2 d\xi) \ge \frac{1}{16\pi^2},$$

and equality holds if and only if $\psi(x) = Ae^{-Bx^2}$ where B > 0 and $A^2 = \sqrt{\frac{2B}{\pi}}$.

See Chapter 5 for details.

- A B M A B M

Geometry (IV)

Among all simple closed curves of length *l* in the plane \mathbb{R}^2 , which one encloses the largest area?

Fourier analysis can give a rigorous proof.

	(Yat-sen	Honor	College)	
--	----------	-------	----------	--

Theorem G (Isoperimetric inequality)

Suppose that Γ is a simple closed curve in \mathbb{R}^2 of length *l* and let \mathcal{A} denote the area of the region enclosed by this curve. Then

$$\mathcal{A} \leq rac{l^2}{4\pi}$$

with equality if and only if Γ is a circle.

The proof depends mainly on Parseval's identity.

Theorem H (Weyl's equidistribution)

If γ is irrational, then the sequence of fractional parts $\langle \gamma \rangle, \langle 2\gamma \rangle, \langle 3\gamma \rangle, \dots$ is equidistributed in [0, 1).

See visualization and geometric interpretation on the course website.

See Chapter 4 for details.

- Cooley-Tukey algorithm (Most common)
- Factorizing the Discrete Fourier Transform matrix into a product of sparse factors

Discrete Fourier Transform

If we denote by $a_k^N(F)$ the k^{th} Fourier coefficient of F on $\mathbb{Z}(N)$, then it is defined by

kth Fourier coefficient

$$a_k^N(F) = rac{1}{N} \sum_{r=0}^{N-1} F(r) w_N^{kr}$$
 , where $w_N = e^{-rac{2\pi}{N}}$

Theorem I

If *F* is a function on $\mathbb{Z}(N)$, then

$$F(q) = \sum_{k=0}^{N-1} a_k^N(F) e^{2\pi i k q/N}$$

・ロト ・ 同ト ・ ヨト ・ ヨ

FFT can improve the bound $O(N^2)$.

Theorem J

Given $w_N = e^{-\frac{2\pi i}{N}}$ with $N = 2^n$, it is possible to calculate the Fourier coefficients of a function on $\mathbb{Z}(N)$ with at most

$$4 \cdot 2^n n = 4Nlog_2(N) = O(NlogN)$$

operations.

See Chapter 7 for details.

- Signal processing
- Cryptography
- Filtering algorithms (Time Series)
- Quantum mechanics

< <p>A < </p>

Signal Processing VII

Example 1: Representation of Complicated signals

• A complex periodic signal can be decomposed into the sum of several simple Fourier series.

Example 2: Approximation of Impulses and Complex Functions

An impulse signal can be approximated by trigonometric series.

Example 3:

Express the signal function f into trigonometric series

$$f(t) = a_0 + \sum_k (a_k \cos(kt) + b_k \sin(kt))$$

Noise Reduction

Example 4: Nyquist-Shannon Sampling Theorem

Theorem K

If a function x(t) contains frequencies no higher than *B* hertz, it is completely determined by giving its ordinates at a series of points space $\frac{1}{2B}$ seconds part.

- Oiscrete sequence
- Continuous function

Prestige of Fourier Analysis

Applications:

- Physics
- Signal Processing
- Statistics
- Biology
- Acoustics
- Oceanography
- ...

Wikipedia

Fourier Analysis

https://en.wikipedia.org/wiki/Fourier_analysis, Retrieved on September 6, 2017

э

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Discussion

크