Fourier Analysis and its Applications

2016 Yat-sen Class

Sun Yat-sen University
Department of Mathematics

September 21, 2017

Introduction to the Course

Class Time: Thursday
 14:20-16:00

Location: Room 416

PRANLETGN LECTURESIN ANALYEIE 1

FDURIER ANALYSIS AN:INTRODUGTION

ELIAE M. STEIN \& RAMI SHAKARCHI

Email: mcsylx@mail.sysu.edu.cn

TA：Yikun Zhang（张奕堃）

Email：yikunzhang＠foxmail．com
Course Website：
https：／／zhangyk8．github．
io／teaching／fourier

Office Hour：Tuesday 16：00－17：30
Location：逸仙学院负一层

Support Materials：

－Trigonometric Series（三角级数）Third Edition（Written by Antoni Zygmund）
－Stanford Open Course
http：／／open．163．com／special／opencourse／ fouriertransforms．html

```
斯坦福大学公开课:傅里叶变换及其应用
本课程共30集翻译完欢迎学习
课程介绍
本果程的目的在于让学生获得灵活使用苗里叶变换,包括总体原则及特定技巧,并了解们时, 在什
么情兄下, 如何应用傅里叶变换。本课强调烪系理论愿则,以解央各种实际的工科埋科问题。
分言 - 命收藏
```


Author of the Textbook

Elias M. Stein

Professor Emeritus of Mathematics, Princeton University

Main Awards: Wolf Prize (1999)

R.Shakarchi: PhD student of C.Feffermen

Stein's Doctoral Students

Figure: Charles Fefferman (1978
Fields, 2017 Wolf)

Figure: Terence Tao (2006 Fields)

Who is Fourier?

Biography of J.Fourier

Joseph Fourier(1768-1830)

- Profession: Mathematician, Egyptologist and Administrator
- Other Achievement: Discover the Greenhouse Effect

Early Life

- The son of a tailor and a housewife
- Talent in Latin, French, and Literature
- Real interest: Mathematics

Yesterday was my 21st birthday, at that age Newton and Pascal had already acquired many claims to immortality.

Politics vs Mathematics

- French Revolution
- Egyptian Expedition

Mathematics Career

(1) Mathematics teacher at the École Polytechnique
(2) The chair of Analysis and Mechanics

Academic Advisors of Fourier

Teacher's Name	His Advisor	The age when he first met Fourier
Pierre-Simon Laplace	Jean d'Alembert	45
Gaspard Monge	NA	49
Joseph-Louis Lagrange	Leonhard Eulern	59

Fourier gave charming descriptions of these famous mathematicians.

Laplace and Monge

To Laplace:

His voice is quiet but clear, and he speaks precisely, though not very fluently; his appearance is pleasant, and he dresses very simply. His teaching of mathematics is in no way remarkable and he covers the material very rapidly...
To Monge:
Monge has a loud voice and he is energetic, ingenious and very learned. The subject that he teaches is a fascinating one, and he describes it with the greatest possible clarity. He is even considered to be too clear, or, rather to deal with his material too slowly...

J.Lagrange

To Lagrange:

Lagrange, the foremost scholar of Europe, appears to be between 50 and 60 years old, though he is in fact younger; he dresses very quietly, in black or brown. He speaks only in discussion, and some of what he says excites ridicule. The other day he said "There are a lot of important things to be said on this subject, but I shall not say them".

What is Fourier Analysis?

Background

- Trigonometric functions and its convergence property
- Fourier Transform
- ...

Is Fourier Analysis Useful？

$$
\begin{gathered}
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots \\
\frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots \\
\frac{\pi^{2}}{12}=1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots+\frac{(-1)^{n-1}}{n^{2}}+\cdots
\end{gathered}
$$

圊 邓东皋 尹小玲
数学分析简明教程
高等教育出版社（第二版），2006年12月

History: Physical Model

Simple Harmonic Motion

$$
-k y(t)=m y^{\prime \prime}(t)
$$

Solution

$$
y(t)=a \cos (c t)+b \sin (c t)
$$

See Chapter 1 for details

Two Problems

d'Alembert, Euler, Taylor, Bernoulli,...

\Longrightarrow Solution for the oscillator equation

Problem 1

Given a function f on $[0, \pi]$ (with $f(0)=f(\pi)=0)$, can we find coefficients A_{m} so that $f(x)=\sum_{m=1}^{\infty} A_{m} \sin (m x)$?

Problem 2

Given any reasonable function F on $[-\pi, \pi]$, is it true that

$$
F(x)=\sum_{m=-\infty}^{\infty} a_{m} e^{i m x} ? \quad a_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} F(x) e^{-i n x} d x
$$

The Analytical Theory of Heat (1822)

Idea: Any function of a variable, whether continuous or discontinuous, can be expanded in a series of sines of multiples of the variable.

- No rigorous proof
- Still unprecedented

SOSEPH FOURIER

Trigonometric Series: Dirichlet’s Works

Dirichlet

- Poisson summation formula
- Modernization of the concept of function

Theorem A

For any given value of x, the sum of the Fourier series is $f(x)$ if $f(x)$ is continuous at that point x, and is $\frac{1}{2}[f(x-0)+f(x+0)]$ if $f(x)$ is discontinuous at that point.

See Chapter 3 for details.

Riemann's Contribution

(c) Riemann integral
(2) Riemann localization principle

Riemann Localization Principle

Theorem B

For a bounded integrable function $f(x)$, the convergence of its Fourier series at a point x in $[-\pi, \pi]$ depends only on the behaviour of $f(x)$ in an arbitrarily small neighborhood of that point x.

Further Development: Before 20 ${ }^{\text {th }}$ Century

Figure: R.Lipschitz

Figure: Georg Cantor Figure: Karl Weierstrass

Weierstrass Approximation Theorem

Theorem C

Continuous functions on the circle can be uniformly approximated by trigonometric polynomials.

Theorem D (Weierstrass)

Let f be a continuous function on the closed and bounded interval $[a, b] \subset \mathbb{R}$. Then for any $\epsilon>0$, there exists a polynomial P such that

$$
\sup _{x \in[a, b]}|f(x)-P(x)|<\epsilon .
$$

Chapter 2 Exercise 16 (Homework)

Riemann's Guess

Continuous but nowhere differentiable function?

$$
R(x)=\sum_{n=1}^{\infty} \frac{\sin \left(n^{2} x\right)}{n^{2}}
$$

In 1969 Gerver successfully proved that
The function R is actually differentiable at all the rational multiples of π of the form $\frac{\pi p}{q}$ with p and q odd integers.

Weierstrass's Example

Theorem E

If $a b>1+\frac{3 \pi}{2}, 0<b<1, a>1, a \in 2 \mathbb{Z}+1$ then the function

$$
W(x)=\sum_{n=1}^{\infty} b^{n} \cos \left(a^{n} x\right)
$$

is nowhere differentiable.

See Chapter 4 for details.
Remark: This kind of functions is uncountable.

Real Analysis

Drawback of Riemann Integral:

- Newton-Leibniz Formula
- Convergence of Fourier series

Lebesgue's Theory

After $20^{\text {th }}$ Century

Harmonic Analysis

Figure:
A.N.Kolmogorov

Figure: Elias Stein

Figure: A.Zygmund

Connections and Influence

Modern Fourier Analysis (I)

Luzin's Conjecture
If $f \in L^{2}[0,2 \pi]$, then its Fourier series converges almost everywhere.

Theorem E (L.Carleson and Hunt)

The Fourier series of any integrable function $f(x)$ i.e., $f \in L^{p}[0,2 \pi], 1<p<\infty$, converges almost everywhere to $f(x)$.

Luzin's Conjecture in high dimensions: Still Unsolved

Kolmogorov's Counterexample (1926)

The preceding theorem fails when $p=1$, that is, the Fourier series of L^{1} functions diverges everywhere.

Example

Let $\lambda_{1}, \ldots, \lambda_{n}$ be increasing odd integers to be defined.

- $m_{1}=n, 2 m_{k}+1=\lambda_{k}(2 n+1)$
- $A_{k}=k \frac{4 \pi}{2 n+1}, 1 \leq k \leq n$
- $\phi(x)=\frac{m_{k}^{2}}{n}$ for $x \in \Delta_{k}:=\left[A_{k}-m_{k}^{-2}, A_{k}+m_{k}^{-2}\right]$ and 0 elsewhere.

Consider the following candidate:

$$
\phi(x)=\sum_{k=1}^{\infty} \frac{\phi_{n_{k}}(x)}{\sqrt{M_{n_{k}}}}
$$

Then the fourier series of ϕ diverges almost elsewhere on $[0,2 \pi]$.

Partial Differential Equation (II)

Wave equation: $\Delta u=u_{t t}$
Heat equation: $c u_{t}=\Delta u$
Laplace's equation: $\Delta u=0$
Schrödinger's equation: $i u_{t}+\Delta u=0$
Navier-Stokes equations

$$
\begin{gathered}
\mathbf{u}_{t}+\mathbf{u} \cdot \nabla \mathbf{u}-\Delta \mathbf{u}=-\nabla p \\
\text { divu }=0 \\
p: \text { Pressure }
\end{gathered}
$$

Example: Wave Equation

If this equation is subject to the initial conditions

$$
\begin{aligned}
u(x, 0) & =f(x) \\
\frac{\partial u}{\partial t}(x, 0) & =g(x),
\end{aligned}
$$

this is called the Cauchy problem for the wave equation.

Theorem F

A solution of the Cauchy problem for the wave equation is

$$
u(x, t)=\int_{\mathbb{R}^{d}}\left[\hat{f}(\xi) \cos (2 \pi|\xi| t)+\hat{g}(\xi) \frac{\sin (2 \pi|\xi| t)}{2 \pi|\xi|}\right] e^{2 \pi i x \cdot \xi} d \xi,
$$

where \hat{f} is the inverse Fourier transform of f.
See Chapter 6 for details.

Interpretation in Physics - Huygens Principle

The solutions of the wave equation in one dimension is

$$
u(x, t)=\frac{f(x+t)+f(x-t)}{2}+\frac{1}{2} \int_{x-t}^{x+t} g(y) d y,
$$

known as d'Alembert's formula.

Quantum Mechanics (III)

The Heisenberg Uncertainty Principle, 1927
(Uncertainty of position) $\times($ Uncertainty of momentum $) \leq \frac{h}{16 \pi^{2}}$, where h is Planck's constant.

The Heisenberg Uncertainty Principle (1927)

Theorem

Suppose ψ is a function in $\mathbf{S}(\mathbb{R})$ which satisfies the normalizing condition $\int_{-\infty}^{\infty}|\psi(x)|^{2} d x=1$. Then

$$
\left(\int_{-\infty}^{\infty} x^{2}|\psi(x)|^{2} d x\right)\left(\int_{-\infty}^{\infty} \xi^{2}|\hat{\psi}(\xi)|^{2} d \xi\right) \geq \frac{1}{16 \pi^{2}},
$$

and equality holds if and only if $\psi(x)=A e^{-B x^{2}}$ where $B>0$ and $A^{2}=\sqrt{\frac{2 B}{\pi}}$.

See Chapter 5 for details.

Geometry (IV)

Among all simple closed curves of length l in the plane \mathbb{R}^{2}, which one encloses the largest area?

Fourier analysis can give a rigorous proof.

Statement of the Theorem

Theorem G (Isoperimetric inequality)

Suppose that Γ is a simple closed curve in \mathbb{R}^{2} of length l and let \mathcal{A} denote the area of the region enclosed by this curve. Then

$$
\mathcal{A} \leq \frac{l^{2}}{4 \pi}
$$

with equality if and only if Γ is a circle.
The proof depends mainly on Parseval's identity.

Ergodicity (V)

Theorem H (Weyl's equidistribution)

If γ is irrational, then the sequence of fractional parts $\langle\gamma\rangle,\langle 2 \gamma\rangle,\langle 3 \gamma\rangle, \ldots$ is equidistributed in $[0,1)$.

See visualization and geometric interpretation on the course website.

See Chapter 4 for details.

Fast Fourier Transform (VI)

- Cooley-Tukey algorithm (Most common)
- Factorizing the Discrete Fourier Transform matrix into a product of sparse factors

Discrete Fourier Transform

If we denote by $a_{k}^{N}(F)$ the $k^{t h}$ Fourier coefficient of F on $\mathbb{Z}(N)$, then it is defined by

$k^{\text {th }}$ Fourier coefficient

$a_{k}^{N}(F)=\frac{1}{N} \sum_{r=0}^{N-1} F(r) w_{N}^{k r}$, where $w_{N}=e^{-\frac{2 \pi i}{N}}$

Theorem I

If F is a function on $\mathbb{Z}(N)$, then

$$
F(q)=\sum_{k=0}^{N-1} a_{k}^{N}(F) e^{2 \pi i k q / N}
$$

Fast Fourier Transform

FFT can improve the bound $O\left(N^{2}\right)$.

Theorem J

Given $w_{N}=e^{-\frac{2 \pi i}{N}}$ with $N=2^{n}$, it is possible to calculate the Fourier coefficients of a function on $\mathbb{Z}(N)$ with at most

$$
4 \cdot 2^{n} n=4 N \operatorname{Nog}_{2}(N)=O(N \log N)
$$

operations.
See Chapter 7 for details.

Applications of FFT

- Signal processing
- Cryptography
- Filtering algorithms (Time Series)
- Quantum mechanics

Signal Processing VII

Example 1: Representation of Complicated signals

- A complex periodic signal can be decomposed into the sum of several simple Fourier series.
Fourier Analysis

Example 2: Approximation of Impulses and Complex Functions

- An impulse signal can be approximated by trigonometric series.

Example 3:

Express the signal function f into trigonometric series

$$
f(t)=a_{0}+\sum_{k}\left(a_{k} \cos (k t)+b_{k} \sin (k t)\right)
$$

- Signal(Data) Compression
- Noise Reduction

Example 4: Nyquist-Shannon Sampling Theorem

Theorem K

If a function $x(t)$ contains frequencies no higher than B hertz, it is completely determined by giving its ordinates at a series of points space $\frac{1}{2 B}$ seconds part.

(1) Continuous function
(2) Discrete sequence
(3) Continuous function

Prestige of Fourier Analysis

Applications:

- Physics
- Signal Processing
- Statistics
- Biology
- Acoustics
- Oceanography
- ...

目 Wikipedia
Fourier Analysis
https://en.wikipedia.org/wiki/Fourier_analysis, Retrieved on
September 6, 2017

Discussion

