Homework 15 Solution

Yikun Zhang ${ }^{1}$

Chapter 7. Ex. 12 Suppose that G is a finite abelian group and $e: G \rightarrow \mathbb{C}$ is a function that satisfies $e(x \cdot y)=e(x) e(y)$ for all $x, y \in G$. Prove that either e is a identically 0 , or e never vanishes. In the second case, show that for each $x, e(x)=e^{2 \pi i r}$ for some $r \in \mathbb{Q}$ of the form $r=\frac{p}{q}$, where $q=|G|$.
Proof. Let 0_{G} be the identity of the finite abelian group G. By the definition of e, we know that $e\left(0_{G}+0_{G}\right)=e\left(0_{G}\right) \cdot e\left(0_{G}\right)=e\left(0_{G}\right)$, yielding that $e\left(0_{G}\right)=1$ or $e\left(0_{G}\right)=0$.
If $e\left(0_{G}\right)=0$, then for every $a \in G, e(a)=e\left(a+0_{G}\right)=e(a) \cdot e\left(0_{G}\right)=0$, showing that e is identically 0 .
If $e\left(0_{G}\right)=1$, letting $q=|G|$, for each $x \in G,[e(x)]^{q}=e(q \cdot x)=e\left(0_{G}\right)=1$.
Hence $e(x)=e^{\frac{2 \pi i p}{q}}$ for some $p=0,1, \ldots, q-1$.

Chapter 7. Ex. 13 In analogy with ordinary Fourier series, one may interpret finite Fourier expansions using convolutions as follows. Suppose G is a finite abelian group, 1_{G} its unit, and V the vector space of complex-valued functions on G.
(a) The convolution of two functions f and g in V is defined for each $a \in G$ by

$$
(f * g)(a)=\frac{1}{|G|} \sum_{b \in G} f(b) g\left(a \cdot b^{-1}\right)
$$

Show that for all $e \in \hat{G}$ one has $\widehat{(f * g)}(e)=\hat{f}(e) \hat{g}(e)$.
(b) Use Theorem 2.5 to show that if e is a character on G, then

$$
\sum_{e \in \hat{G}} e(c)=0 \text { whenever } c \in G \text { and } c \neq 1_{G} \text {. }
$$

(c) As a result of (b), show that the Fourier series $S f(a)=\sum_{e \in \hat{G}} \hat{f}(e) e(a)$ of a function $f \in V$ takes the form

$$
S f=f * D,
$$

where D is defined by

$$
D(c)=\sum_{e \in \hat{G}} e(c)= \begin{cases}|G| & \text { if } c=1_{G} \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

Since $f * D=f$, we recover the fact that $S f=f$. Loosely speaking, D corresponds to a "Dirac delta function"; it has unit mass

$$
\frac{1}{|G|} \sum_{c \in G} D(c)=1
$$

[^0]and (1) says that this mass is concentrated as the unit element in G. Thus D has the same interpretation as the "limit" of a family of good kernels.
Proof. (a) For all $e \in \hat{G}$, we prove the result by some algebra,
\[

$$
\begin{align*}
\widehat{(f * g)}(e) & =(f * g, e) \\
& =\frac{1}{|G|} \sum_{a \in G} \frac{1}{|G|} \sum_{b \in G} f(b) g\left(a \cdot b^{-1}\right) \overline{e(a)} \\
& =\frac{1}{|G|} \sum_{b \in G} \frac{1}{|G|} f(b) \sum_{a \in G} g\left(a \cdot b^{-1}\right) \overline{e(a)} \\
& =\frac{1}{|G|} \sum_{b \in G} \frac{1}{|G|} f(b) \sum_{y \in G} g(y) \overline{e(b \cdot y)} \tag{2}\\
& =\left(\frac{1}{|G|} \sum_{b \in G} f(b) \overline{e(b)}\right) \cdot\left(\frac{1}{|G|} \sum_{y \in G} g(y) \overline{e(y)}\right) \\
& =\hat{f}(e) \hat{g}(e) .
\end{align*}
$$
\]

(b) If $c \neq 1_{G}$, then there exists an $e^{\prime} \in \hat{G}$ such that $e^{\prime}(c) \neq 1$.

In fact, suppose that $e(c)=1$ for all $e \in \hat{G}$. Let H be the cyclic group generated by c. Since $c \neq 1_{G}$, we have $|H|>1$ and thus the factor group G / H, which is formed by the cosets of H, has the order $|G / H|<|G|$. Each $e \in \hat{G}$ induces a character in G / H, and different e 's induce different characters. But it is impossible because there are exactly $|G / H|$ characters on G / H.

Therefore, $e^{\prime}(c) \sum_{e \in \hat{G}} e(c)=\sum_{e \in \hat{G}}\left(e^{\prime} \cdot e\right)(c)=\sum_{e \in \hat{G}} e(c)$, and since $e^{\prime}(c) \neq 1$, we obtain that $\sum_{e \in \hat{G}} e(c)=$ 0.
(c) By some direct computations, we have

$$
\begin{align*}
S f(a) & =\sum_{e \in \hat{G}} \hat{f}(e) e(a) \\
& =\sum_{e \in \hat{G}} \frac{1}{|G|} \sum_{x \in G} f(x) \overline{e(x)} e(a) \tag{3}\\
& =\frac{1}{|G|} \sum_{x \in G} f(x) \sum_{e \in \hat{G}} e\left(a \cdot x^{-1}\right) \\
& =(f * D)(a),
\end{align*}
$$

where

$$
D(c)=\sum_{e \in \hat{G}} e(c)= \begin{cases}|G| & \text { if } c=1_{G} \tag{4}\\ 0 & \text { otherwise }\end{cases}
$$

as the result of (b). Hence $S f=f * D=f$.

[^0]: ${ }^{1}$ School of Mathematics, Sun Yat-sen University

