Homework 14 Solution
Yikun Zhang*

Chapter 7. Ex.5 Show that all characters on S* are given by
en(r) = 2™ with n € Z,

and check that e, — n defines an isomorphism from St to Z.

Proof. Suppose that F is a character on S'. Then by definition at the bottom of Page 231, F’
is continuous on S, F(0) # 0, and F(z +y) = F(z)F(y).
With the continuity of F' and F(0) # 0, we can choose an appropriate § such that ¢ =

Jy Fy)dy # 0.
Then we have

CF(z) = /0 P ) F(y)dy /0 Pl 4 y)dy = / ™ P(u)du (1)

Differentiating (1) on both sides yields that c¢F’'(x) = F(x + 0) — F(z) = [F(0) — 1]F(x).

If F(6) =1, then F(z) = constant. Together with the fact that F'(0) = 1, we only obtain a
trivial character.

If F'(6) # 1, we conclude that F(x) = /% for some A, since F(0) = 1.

Since |F(x)| = 1, we know that |F(1)| = e®) = 1 and thus A is purely imaginary, which, on
the other hand, means that F(x) = e’ for some p € R.

Note that S! is isomorphic to R modulo 2w, we can derive that F(m)F(m) = F(2r) = F(0) = 1
and therefore e?™ = 1, showing that p € Z.

Hence all the characters on S* are given by e*™", with n € Z.

Define ¢ : S' — Z by taking the reciprocal of the minimal period of e,, i.e., €, — n. This
definition is well-defined because the minimal period of a character is unique.

Subjection: For any n € Z, by definition of the character on S, there exists a character of the
form e, (z) = ¥,

Injection: If m = n, it is by no means /t\hat e, and e,, have any difference.

Therefore, ¢ is an isomorphism from S to Z. U

N
Chapter 7. Ex.8 Suppose that P(z) = > a,e*™"*.

n=1
(a) Show by using the Parseval identities for the circle and Z(N), that

| 1P@par - %Z PP

1School of Mathematics, Sun Yat-sen University




(b) Prove the reconstruction formula
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Observe that P is completely determined by the values P(% ) for 1 < j < N. Note also that

K(0) =1, and K(&) = 0 whenever j is not congruent to 0 module N.

Proof. (a) On one hand, by the Parseval identity for the circle, we have

/0 P)Pdr =3 2)
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On the other hand, P(4) = 3" a,e™~ . As a function on Z(N), the norm of P is
n=1

IPIP = 3" P(d) - P(L)

J=1
1 N al 2ming N 2mikj
D a) (ae

N N N
DI M
— anare N
N

since

ZN 2mi(n—k)j N ifn=k,
e N fy
0 n#k.

1PIP= ) |P(e)’

e€Z(N)
N N N
1 7\ 2mil 1 k 2milk
S P (3 P @
=1 j=1 k=1
1 al J N2
= NZ\P(NN ,
j=1



Combining the equations (2), (3), and (4), the result follows.

N .
(b) Note that K(z) = Y ™ satisfies K(0) = 1 and K (%) = 0 whenever j is not congruent
k=1

to 0 modulo N.
Therefore, we have
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where we again use the fact that {e"~ }HY  k=1,..., N is an orthogonal family on Z(N). O

Chapter 7. Ex.9 To prove the following assertions, modify the argument given in the text.
(a) Show that one can compute the Fourier coefficients of a function on Z(N) when N = 3"
with at most 6N logs N operations.

(b) Generalize this to N = o™ where « is an integer > 1.

Proof. We only present the proof for (b) because (a) is just a special case of (b).
Given wy = e~ * with N = on , we aim to prove that it is possible to calculate the Fourier
coefficients of a function on Z(N) with at most

2aN log, N

operations.
Let #(M) denote the minimum number of operations needed to calculate all the Fourier coef-
ficients of any functions on Z(M). We first prove a lemma.

. _ 2mi
Lemma. If we are given w,y; = e =, then

#(aM) < a#(M) +2a* M.

Proof. The calculation of wgyy, ..., w™F requires no more than oM operations. Note that in

27i

particular we get wy = e~ = wd,,;. The main idea is that for any given function F' on
Z(aM), we consider « functions on Z(M) defined by

Fi(n)=F(an+j),0<j<a-—1.



We assume that it is possible to calculate the Fourier coefficients of F; in no more than # (M)
operations each. If we denote the Fourier coefficients corresponding to the groups Z(aM) and
Z(M) by af™ and !, respectively, then we have

1 o—
= o (Fo) + @ (F)wpas + -+ + 6! (Fac )y )

ai (F)
with some similar arguments in the text.
As a result, knowing a} (F;),j = 0,..,a — 1, and wk,,, we see that each af™(F) can be

computed via no more than (2« — 1) operations. So
#(aM) < aM + a# (M) + (2a — 1)aM < a#(M) + 2a°M,

and the proof of the lemma is complete.
An induction on n, where N = «", will conclude the proof of the theorem. The initial step
n = 1 is subtle, since we have to separate the case k = 0 from others in order to deduce a more
precise upper bound.
Ifn=1,ie, N=aqa, af(F) =~ Zf,vz_ol F(r)wkr. When k = 0 there are totally o operations
((v—1) additions and one multiplication). As for the rest, there are («—1) additions and («a+1)
multiplications for each k # 0. Together with (a — 1) operations for Wk, r = 0,..., N — 1, the
total operations for the Fourier coefficients when N = «a are a—1+a+2a(a—1) = 22?1 < 2a2.
Suppose the result is true up to N = o™ ! so that #(N) < 2a(n — 1)a™'. By the lemma we
must have

#(aN) < al2a(n —1)a™ 4202 - a" 1,

which concludes the inductive step. Il
Remark. This exercise generalizes Theorem 1.3 in the text and their proofs are also similar.
However, some attentions still have to be paid when we inherit the argument from the text.



