Homework 14 Solution

Yikun Zhang¹

Chapter 7. Ex.5 Show that all characters on S^1 are given by

$$e_n(x) = e^{2\pi i n x}$$
 with $n \in \mathbb{Z}$,

and check that $e_n \mapsto n$ defines an isomorphism from \hat{S}^1 to \mathbb{Z} .

Proof. Suppose that F is a character on S^1 . Then by definition at the bottom of Page 231, F is continuous on S^1 , $F(0) \neq 0$, and F(x+y) = F(x)F(y).

With the continuity of F and $F(0) \neq 0$, we can choose an appropriate δ such that $c = \int_0^{\delta} F(y) dy \neq 0$.

Then we have

$$cF(x) = \int_0^{\delta} F(x)F(y)dy = \int_0^{\delta} F(x+y)dy = \int_x^{x+\delta} F(u)du.$$
 (1)

Differentiating (1) on both sides yields that $cF'(x) = F(x+\delta) - F(x) = [F(\delta) - 1]F(x)$. If $F(\delta) = 1$, then $F(x) \equiv constant$. Together with the fact that F(0) = 1, we only obtain a trivial character.

If $F(\delta) \neq 1$, we conclude that $F(x) = e^{Ax}$ for some A, since F(0) = 1.

Since |F(x)| = 1, we know that $|F(1)| = e^{Re(A)} = 1$ and thus A is purely imaginary, which, on the other hand, means that $F(x) = e^{ipx}$ for some $p \in \mathbb{R}$.

Note that S^1 is isomorphic to \mathbb{R} modulo 2π , we can derive that $F(\pi)F(\pi) = F(2\pi) = F(0) = 1$ and therefore $e^{2\pi i p} = 1$, showing that $p \in \mathbb{Z}$.

Hence all the characters on S^1 are given by $e^{2\pi i n x}$, with $n \in \mathbb{Z}$.

Define $\phi : \widehat{S^1} \to \mathbb{Z}$ by taking the reciprocal of the minimal period of e_n , i.e., $e_n \mapsto n$. This definition is well-defined because the minimal period of a character is unique.

Subjection: For any $n \in \mathbb{Z}$, by definition of the character on S^1 , there exists a character of the form $e_n(x) = e^{2\pi i n x}$.

Injection: If m = n, it is by no means that e_n and e_m have any difference. Therefore, ϕ is an isomorphism from $\widehat{S^1}$ to \mathbb{Z} .

Chapter 7. Ex.8 Suppose that $P(x) = \sum_{n=1}^{N} a_n e^{2\pi i n x}$. (a) Show by using the Parseval identities for the circle and $\mathbb{Z}(N)$, that

$$\int_0^1 |P(x)|^2 dx = \frac{1}{N} \sum_{j=1}^N |P(\frac{j}{N})|^2.$$

¹School of Mathematics, Sun Yat-sen University

(b) Prove the reconstruction formula

$$P(x) = \sum_{j=1}^{N} P(\frac{j}{N}) K(x - \frac{j}{N})$$

where

$$K(x) = \frac{e^{2\pi i x}}{N} \frac{1 - e^{2\pi i N x}}{1 - e^{2\pi i x}} = \frac{1}{N} (e^{2\pi i x} + e^{2\pi i 2x} + \dots + e^{2\pi i N x}).$$

Observe that P is completely determined by the values $P(\frac{j}{N})$ for $1 \le j \le N$. Note also that K(0) = 1, and $K(\frac{j}{N}) = 0$ whenever j is not congruent to 0 module N.

Proof. (a) On one hand, by the Parseval identity for the circle, we have

$$\int_0^1 |P(x)|^2 dx = \sum_{n=1}^N |a_n|^2.$$
 (2)

On the other hand, $P(\frac{j}{N}) = \sum_{n=1}^{N} a_n e^{\frac{2\pi i n j}{N}}$. As a function on $\mathbb{Z}(N)$, the norm of P is

$$||P||^{2} = \frac{1}{N} \sum_{j=1}^{N} P(\frac{j}{N}) \cdot \overline{P(\frac{j}{N})}$$

$$= \frac{1}{N} \sum_{j=1}^{N} (\sum_{n=1}^{N} a_{n} e^{\frac{2\pi i n j}{N}}) \cdot (\sum_{k=1}^{N} \bar{a_{k}} e^{-\frac{2\pi i k j}{N}})$$

$$= \frac{1}{N} \sum_{j=1}^{N} \sum_{n=1}^{N} \sum_{k=1}^{N} a_{n} \bar{a_{k}} e^{\frac{2\pi i (n-k) j}{N}}$$

$$= \sum_{n=1}^{N} |a_{n}|^{2},$$
(3)

since

$$\sum_{j=1}^{N} e^{\frac{2\pi i (n-k)j}{N}} = \begin{cases} N & \text{if } n = k, \\ 0 & n \neq k. \end{cases}$$

With the Parseval identity on $\mathbb{Z}(N)$, we obtain that

$$\begin{split} ||P||^{2} &= \sum_{e \in \widehat{\mathbb{Z}(N)}} |\hat{P}(e)|^{2} \\ &= \sum_{l=1}^{N} \left(\frac{1}{N} \sum_{j=1}^{N} P(\frac{j}{N}) e^{\frac{2\pi i l j}{N}}\right) \cdot \left(\frac{1}{N} \sum_{k=1}^{N} \overline{P(\frac{k}{N})} e^{-\frac{2\pi i l k}{N}}\right) \\ &= \frac{1}{N} \sum_{j=1}^{N} |P(\frac{j}{N})|^{2}, \end{split}$$
(4)

Combining the equations (2), (3), and (4), the result follows.

(b) Note that $K(x) = \sum_{k=1}^{N} e^{2\pi i kx}$ satisfies K(0) = 1 and $K(\frac{j}{N}) = 0$ whenever j is not congruent to 0 modulo N.

Therefore, we have

$$\sum_{j=1}^{N} P(\frac{j}{N}) K(x - \frac{j}{N}) = \sum_{j=1}^{N} (\sum_{n=1}^{N} a_n e^{\frac{2\pi i n j}{N}}) \cdot (\frac{1}{N} \sum_{k=1}^{N} e^{2\pi i k x} e^{-\frac{2\pi i k j}{N}})$$
$$= \frac{1}{N} \sum_{j=1}^{N} (\sum_{n=1}^{N} \sum_{k=1}^{N} a_n e^{2\pi i k x} e^{\frac{2\pi i (n-k) j}{N}})$$
$$= \sum_{n=1}^{N} a_n e^{2\pi i n x}$$
$$= P(x),$$
(5)

where we again use the fact that $\{e^{\frac{2\pi ikl}{N}}\}_{l=1}^{N}, k = 1, ..., N$ is an orthogonal family on $\mathbb{Z}(N)$. \Box

Chapter 7. Ex.9 To prove the following assertions, modify the argument given in the text. (a) Show that one can compute the Fourier coefficients of a function on $\mathbb{Z}(N)$ when $N = 3^n$ with at most $6N \log_3 N$ operations.

(b) Generalize this to $N = \alpha^n$ where α is an integer > 1.

Proof. We only present the proof for (b) because (a) is just a special case of (b). Given $\omega_N = e^{-\frac{2\pi i}{N}}$ with $N = \alpha^n$, we aim to prove that it is possible to calculate the Fourier coefficients of a function on $\mathbb{Z}(N)$ with at most

$$2\alpha N \log_{\alpha} N$$

operations.

Let #(M) denote the minimum number of operations needed to calculate all the Fourier coefficients of any functions on $\mathbb{Z}(M)$. We first prove a lemma.

Lemma. If we are given $\omega_{\alpha M} = e^{-\frac{2\pi i}{\alpha M}}$, then

$$#(\alpha M) \le \alpha #(M) + 2\alpha^2 M.$$

Proof. The calculation of $\omega_{\alpha M}, ..., \omega_{\alpha M}^{\alpha M}$ requires no more than αM operations. Note that in particular we get $\omega_M = e^{-\frac{2\pi i}{M}} = \omega_{\alpha M}^{\alpha}$. The main idea is that for any given function F on $\mathbb{Z}(\alpha M)$, we consider α functions on $\mathbb{Z}(M)$ defined by

$$F_j(n) = F(\alpha n + j), 0 \le j \le \alpha - 1.$$

We assume that it is possible to calculate the Fourier coefficients of F_j in no more than #(M) operations each. If we denote the Fourier coefficients corresponding to the groups $\mathbb{Z}(\alpha M)$ and $\mathbb{Z}(M)$ by $a_k^{\alpha M}$ and a_k^M , respectively, then we have

$$a_{k}^{\alpha M}(F) = \frac{1}{\alpha} [a_{k}^{M}(F_{0}) + a_{k}^{M}(F_{1})\omega_{\alpha M}^{k} + \dots + a_{k}^{M}(F_{\alpha-1})\omega_{\alpha M}^{(\alpha-1)k}]$$

with some similar arguments in the text.

As a result, knowing $a_k^M(F_j)$, $j = 0, ..., \alpha - 1$, and $\omega_{\alpha M}^k$, we see that each $a_k^{\alpha M}(F)$ can be computed via no more than $(2\alpha - 1)$ operations. So

$$#(\alpha M) \le \alpha M + \alpha #(M) + (2\alpha - 1)\alpha M \le \alpha #(M) + 2\alpha^2 M,$$

and the proof of the lemma is complete.

An induction on n, where $N = \alpha^n$, will conclude the proof of the theorem. The initial step n = 1 is subtle, since we have to separate the case k = 0 from others in order to deduce a more precise upper bound.

If n = 1, i.e., $N = \alpha$, $a_k^N(F) = \frac{1}{N} \sum_{r=0}^{N-1} F(r) \omega_N^{kr}$. When k = 0 there are totally α operations $((\alpha - 1) \text{ additions and one multiplication})$. As for the rest, there are $(\alpha - 1)$ additions and $(\alpha + 1)$ multiplications for each $k \neq 0$. Together with $(\alpha - 1)$ operations for ω_N^{kr} , r = 0, ..., N - 1, the total operations for the Fourier coefficients when $N = \alpha$ are $\alpha - 1 + \alpha + 2\alpha(\alpha - 1) = 2\alpha^2 - 1 \le 2\alpha^2$. Suppose the result is true up to $N = \alpha^{n-1}$ so that $\#(N) \le 2\alpha(n-1)\alpha^{n-1}$. By the lemma we must have

$$#(\alpha N) \le \alpha [2\alpha(n-1)\alpha^{n-1}] + 2\alpha^2 \cdot \alpha^{n-1},$$

which concludes the inductive step.

Remark. This exercise generalizes Theorem 1.3 in the text and their proofs are also similar. However, some attentions still have to be paid when we inherit the argument from the text.