
Homework 14 Solution

Yikun Zhang1

Chapter 7. Ex.5 Show that all characters on S1 are given by

en(x) = e2πinx with n ∈ Z,

and check that en 7→ n defines an isomorphism from Ŝ1 to Z.

Proof. Suppose that F is a character on S1. Then by definition at the bottom of Page 231, F
is continuous on S1, F (0) 6= 0, and F (x+ y) = F (x)F (y).
With the continuity of F and F (0) 6= 0, we can choose an appropriate δ such that c =∫ δ
0
F (y)dy 6= 0.

Then we have

cF (x) =

∫ δ

0

F (x)F (y)dy =

∫ δ

0

F (x+ y)dy =

∫ x+δ

x

F (u)du. (1)

Differentiating (1) on both sides yields that cF ′(x) = F (x+ δ)− F (x) = [F (δ)− 1]F (x).
If F (δ) = 1, then F (x) ≡ constant. Together with the fact that F (0) = 1, we only obtain a
trivial character.
If F (δ) 6= 1, we conclude that F (x) = eAx for some A, since F (0) = 1.
Since |F (x)| = 1, we know that |F (1)| = eRe(A) = 1 and thus A is purely imaginary, which, on
the other hand, means that F (x) = eipx for some p ∈ R.
Note that S1 is isomorphic to Rmodulo 2π, we can derive that F (π)F (π) = F (2π) = F (0) = 1
and therefore e2πip = 1, showing that p ∈ Z.
Hence all the characters on S1 are given by e2πinx, with n ∈ Z.

Define φ : Ŝ1 → Z by taking the reciprocal of the minimal period of en, i.e., en 7→ n. This
definition is well-defined because the minimal period of a character is unique.
Subjection: For any n ∈ Z, by definition of the character on S1, there exists a character of the
form en(x) = e2πinx.
Injection: If m = n, it is by no means that en and em have any difference.

Therefore, φ is an isomorphism from Ŝ1 to Z. �

Chapter 7. Ex.8 Suppose that P (x) =
N∑
n=1

ane
2πinx.

(a) Show by using the Parseval identities for the circle and Z(N), that∫ 1

0

|P (x)|2dx =
1

N

N∑
j=1

|P (
j

N
)|2.
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(b) Prove the reconstruction formula

P (x) =
N∑
j=1

P (
j

N
)K(x− j

N
)

where

K(x) =
e2πix

N

1− e2πiNx

1− e2πix
=

1

N
(e2πix + e2πi2x + · · ·+ e2πiNx).

Observe that P is completely determined by the values P ( j
N

) for 1 ≤ j ≤ N . Note also that

K(0) = 1, and K( j
N

) = 0 whenever j is not congruent to 0 module N .

Proof. (a) On one hand, by the Parseval identity for the circle, we have∫ 1

0

|P (x)|2dx =
N∑
n=1

|an|2. (2)

On the other hand, P ( j
N

) =
N∑
n=1

ane
2πinj
N . As a function on Z(N), the norm of P is

||P ||2 =
1

N

N∑
j=1

P (
j

N
) · P (

j

N
)

=
1

N

N∑
j=1

(
N∑
n=1

ane
2πinj
N ) · (

N∑
k=1

āke
− 2πikj

N )

=
1

N

N∑
j=1

N∑
n=1

N∑
k=1

anāke
2πi(n−k)j

N

=
N∑
n=1

|an|2,

(3)

since
N∑
j=1

e
2πi(n−k)j

N =

{
N if n = k,

0 n 6= k.

With the Parseval identity on Z(N), we obtain that

||P ||2 =
∑

e∈Ẑ(N)

|P̂ (e)|2

=
N∑
l=1

(
1

N

N∑
j=1

P (
j

N
)e

2πilj
N ) · ( 1

N

N∑
k=1

P (
k

N
)e−

2πilk
N )

=
1

N

N∑
j=1

|P (
j

N
)|2,

(4)
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Combining the equations (2), (3), and (4), the result follows.

(b) Note that K(x) =
N∑
k=1

e2πikx satisfies K(0) = 1 and K( j
N

) = 0 whenever j is not congruent

to 0 modulo N .
Therefore, we have

N∑
j=1

P (
j

N
)K(x− j

N
) =

N∑
j=1

(
N∑
n=1

ane
2πinj
N ) · ( 1

N

N∑
k=1

e2πikxe−
2πikj
N )

=
1

N

N∑
j=1

(
N∑
n=1

N∑
k=1

ane
2πikxe

2πi(n−k)j
N )

=
N∑
n=1

ane
2πinx

= P (x),

(5)

where we again use the fact that {e 2πikl
N }Nl=1, k = 1, ..., N is an orthogonal family on Z(N). �

Chapter 7. Ex.9 To prove the following assertions, modify the argument given in the text.
(a) Show that one can compute the Fourier coefficients of a function on Z(N) when N = 3n

with at most 6N log3N operations.
(b) Generalize this to N = αn where α is an integer > 1.

Proof. We only present the proof for (b) because (a) is just a special case of (b).

Given ωN = e−
2πi
N with N = αn, we aim to prove that it is possible to calculate the Fourier

coefficients of a function on Z(N) with at most

2αN logαN

operations.
Let #(M) denote the minimum number of operations needed to calculate all the Fourier coef-
ficients of any functions on Z(M). We first prove a lemma.

Lemma. If we are given ωαM = e−
2πi
αM , then

#(αM) ≤ α#(M) + 2α2M.

Proof. The calculation of ωαM , ..., ω
αM
αM requires no more than αM operations. Note that in

particular we get ωM = e−
2πi
M = ωααM . The main idea is that for any given function F on

Z(αM), we consider α functions on Z(M) defined by

Fj(n) = F (αn+ j), 0 ≤ j ≤ α− 1.
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We assume that it is possible to calculate the Fourier coefficients of Fj in no more than #(M)
operations each. If we denote the Fourier coefficients corresponding to the groups Z(αM) and
Z(M) by aαMk and aMk , respectively, then we have

aαMk (F ) =
1

α
[aMk (F0) + aMk (F1)ω

k
αM + · · ·+ aMk (Fα−1)ω

(α−1)k
αM ]

with some similar arguments in the text.
As a result, knowing aMk (Fj), j = 0, ..., α − 1, and ωkαM , we see that each aαMk (F ) can be
computed via no more than (2α− 1) operations. So

#(αM) ≤ αM + α#(M) + (2α− 1)αM ≤ α#(M) + 2α2M,

and the proof of the lemma is complete.
An induction on n, where N = αn, will conclude the proof of the theorem. The initial step
n = 1 is subtle, since we have to separate the case k = 0 from others in order to deduce a more
precise upper bound.
If n = 1, i.e., N = α, aNk (F ) = 1

N

∑N−1
r=0 F (r)ωkrN . When k = 0 there are totally α operations

((α−1) additions and one multiplication). As for the rest, there are (α−1) additions and (α+1)
multiplications for each k 6= 0. Together with (α − 1) operations for ωkrN , r = 0, ..., N − 1, the
total operations for the Fourier coefficients whenN = α are α−1+α+2α(α−1) = 2α2−1 ≤ 2α2.
Suppose the result is true up to N = αn−1 so that #(N) ≤ 2α(n− 1)αn−1. By the lemma we
must have

#(αN) ≤ α[2α(n− 1)αn−1] + 2α2 · αn−1,

which concludes the inductive step. �
Remark. This exercise generalizes Theorem 1.3 in the text and their proofs are also similar.
However, some attentions still have to be paid when we inherit the argument from the text.
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