## Homework 7 Solution

Yikun Zhang ${ }^{1}$

Chapter 3. Ex. 11 The inequalities of Wirtinger and Poincaré establish a relationship between the norm of a function and that of its derivative.
(a) If $f$ is T-periodic, continuous, and piecewise $C^{1}$ with $\int_{0}^{T} f(t) d t=0$, show that

$$
\int_{0}^{T}|f(t)|^{2} d t \leq \frac{T^{2}}{4 \pi^{2}} \int_{0}^{T}\left|f^{\prime}(t)\right|^{2} d t
$$

with equality if and only if $f(t)=A \sin (2 \pi t / T)+B \cos (2 \pi t / T)$.
(b) If $f$ is as above and $g$ is just $C^{1}$ and T-periodic, prove that

$$
\left|\int_{0}^{T} \overline{f(t)} g(t) d t\right|^{2} \leq \frac{T^{2}}{4 \pi^{2}} \int_{0}^{T}|f(t)|^{2} d t \int_{0}^{T}\left|g^{\prime}(t)\right| d t
$$

(c) For any compact interval $[a, b]$ and any continuously differentiable function $f$ with $f(a)=$ $f(b)=0$, show that

$$
\int_{a}^{b}|f(t)|^{2} d t \leq \frac{(b-a)^{2}}{\pi^{2}} \int_{a}^{b}\left|f^{\prime}(t)\right|^{2} d t
$$

Discuss the case of equality, and prove that the constant $\frac{(b-a)^{2}}{\pi^{2}}$ cannot be improved.
Proof. (a) The condition $\int_{0}^{T} f(t) d t=0$ implies that $\hat{f}(0)=0$.
By the smoothness and the periodicity of $f$, we know that

$$
\begin{align*}
\hat{f}(n) & =\frac{1}{T} \int_{0}^{T} f(t) e^{-\frac{2 \pi n i t}{T}} d t \\
& =\frac{1}{T}\left[f\left(0^{+}\right)-f\left(T^{-}\right)\right] \frac{T}{2 \pi i n}+\frac{T}{2 \pi i n} \cdot \frac{1}{T} \int_{0}^{T} f^{\prime}(t) e^{-\frac{2 \pi i n t}{T}} d t  \tag{1}\\
& =\frac{T}{2 \pi i n} \hat{f}^{\prime}(n)
\end{align*}
$$

Thus, by Parseval's identity,

$$
\begin{align*}
\int_{0}^{T}|f(t)|^{2} d t=T \sum_{|n|>0}|\hat{f}(n)|^{2} & =\frac{T^{3}}{4 \pi^{2}} \sum_{|n|>0} \frac{\left|\hat{f}^{\prime}(n)\right|^{2}}{n^{2}} \\
& \leq \frac{T^{3}}{4 \pi^{2}} \sum_{|n|>0}\left|\hat{f}^{\prime}(n)\right|^{2}=\frac{T^{3}}{4 \pi^{2}} \cdot \frac{1}{T} \int_{0}^{T}\left|f^{\prime}(t)\right|^{2} d t=\frac{T^{2}}{4 \pi^{2}} \int_{0}^{T}\left|f^{\prime}(t)\right|^{2} d t \tag{2}
\end{align*}
$$

[^0]The equality holds if and only if $\hat{f}(n)=0$ for all $n>1$, i.e., $f(t)=a_{1} e^{\frac{2 \pi i t}{T}}+a_{-1} e^{\frac{2 \pi i t}{T}}=A \sin \left(\frac{2 \pi t}{T}\right)+B \cos \left(\frac{2 \pi t}{T}\right)$.
(b) With the same conditions on $f$, we still have $\hat{f}(0)=0$.

Meanwhile, the equality $\hat{g}(n)=\frac{T}{2 \pi i n} \hat{g}^{\prime}(n)$ holds when $n \neq 0$.
By Lemma 1.5 and Paserval's equality, we obtain that

$$
\begin{align*}
\left|\int_{0}^{T} \overline{f(t)} g(t) d t\right|^{2}=T^{2}\left|\sum_{|n| \geq 0} \overline{\hat{f}(n)} \hat{g}(n)\right|^{2} & =T^{2}\left|\sum_{|n|>0} \overline{\hat{f}(n)} \hat{g}(n)\right|^{2} \\
& \leq\left(T \sum_{|n|>0}|\hat{f}(n)|^{2}\right)\left(T \sum_{|n|>0}|\hat{g}(n)|^{2}\right) \\
& =\int_{0}^{T}|f(t)|^{2} d t \cdot \frac{T^{3}}{4 \pi^{2}} \sum_{|n|>0} \frac{\left|\hat{g}^{\prime}(n)\right|^{2}}{n^{2}}  \tag{3}\\
& \leq \int_{0}^{T}|f(t)|^{2} d t \cdot \frac{T^{3}}{4 \pi^{2}} \sum_{|n|>0}\left|\hat{g}^{\prime}(n)\right|^{2} \\
& =\frac{T^{2}}{4 \pi^{2}} \int_{0}^{T}|f(t)|^{2} d t \int_{0}^{T}\left|g^{\prime}(t)\right| d t .
\end{align*}
$$

Remark: Please figure out the correctness of every equalities and inequalities by yourself.
(c) To extend $f$ to be odd with respect to $a$, we define $F$ as follows,

$$
F(t)= \begin{cases}f(t) & \text { if } t \in[a, b] \\ -f(2 a-t) & \text { if } t \in[2 a-b, a)\end{cases}
$$

Then we can extend $F$ on the real line such that it is $2(b-a)$-periodic.
Then by definition of $F$, we know that $F$ is piecewise $C^{1}, \int_{0}^{2(b-a)} F(t) d t=0$, and $F^{\prime}(a+h)=$ $F^{\prime}(a-h)$, where $h \in \mathbb{R}$.
By (a) and the symmetry of $F$, we obtain that

$$
\int_{a}^{b}|f(t)|^{2} d t=\frac{1}{2} \int_{0}^{2(b-a)}|F(t)|^{2} d t \leq \frac{(b-a)^{2}}{2 \pi^{2}} \int_{0}^{2(b-a)}\left|F^{\prime}(t)\right|^{2} d t=\frac{(b-a)^{2}}{\pi^{2}} \int_{a}^{b}\left|f^{\prime}(t)\right|^{2} d t .
$$

Since $F(t-a)$ is an odd function, the equality holds if and only if $f(t)=F(t)=A \sin \left(\frac{\pi t}{b-a}\right)$.
Chapter 3. Ex. 16 Let $f$ be a $2 \pi$-periodic function which satisfies a Lipschitz condition with constant $K$; that is,

$$
|f(x)-f(y)| \leq K|x-y| \text { for all } x, y
$$

This is simply the Hölder condition with $\alpha=1$, so by the previous exercise, we see that $\hat{f}(n)=O(1 /|n|)$. Since the harmonic series $\sum 1 / n$ diverges, we cannot say anything (yet)
about the absolute convergence of the Fourier series of $f$. The outline below actually proves that the Fourier series of $f$ converges absolutely and uniformly.
(a) For every positive $h$ we define $g_{h}(x)=f(x+h)-f(x-h)$. Prove that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|g_{h}(x)\right|^{2} d x=\sum_{n=-\infty}^{\infty} 4|\sin n h|^{2}|\hat{f}(n)|^{2}
$$

and show that

$$
\sum_{n=-\infty}^{\infty}|\sin n h|^{2}|\hat{f}(n)|^{2} \leq K^{2} h^{2}
$$

(b) Let $p$ be a positive integer. By choosing $h=\frac{\pi}{2^{p+1}}$, show that

$$
\sum_{2^{p-1}<|n| \leq 2^{p}}|\hat{f}(n)|^{2} \leq \frac{K^{2} \pi^{2}}{2^{2 p+1}}
$$

(c) Estimate $\sum_{2^{p-1}<|n| \leq 2^{p}}|\hat{f}(n)|$, and conclude that the Fourier series of $f$ converges absolutely, hence uniformly.
(d) In fact, modify the argument slightly to prove Bernstein's theorem: If $f$ satisfies a Hölder condition of order $\alpha>\frac{1}{2}$, then the Fourier series of $f$ converges absolutely.
Proof. (a) First we have

$$
\begin{align*}
\hat{g}_{h}(n) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x+h) e^{-i n x} d x-\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x-h) e^{-i n x} d x \\
& =\frac{1}{2 \pi} \int_{-\pi+h}^{\pi+h} f(u) e^{-i n u} \cdot e^{i n h} d u-\frac{1}{2 \pi} \int_{-\pi-h}^{\pi-h} f(u) e^{-i n u} \cdot e^{-i n h} d u  \tag{4}\\
& =e^{i n h} \hat{f}(n)-e^{-i n h} \hat{f}(n) \\
& =[2 i \sin (n h)] \hat{f}(n)
\end{align*}
$$

Applying Parseval's identity, we obtain that $\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|g_{h}(x)\right|^{2} d x=\sum_{n=-\infty}^{\infty} 4|\sin (n h)|^{2}|\hat{f}(n)|^{2}$.
Since $\left|g_{h}(x)\right|=|f(x+h)-f(x-h)| \leq 2 K h$, the inequality $\sum_{n=-\infty}^{\infty}|\sin n h|^{2}|\hat{f}(n)|^{2} \leq K^{2} h^{2}$ follows.
(b) The conditions, $h=\frac{\pi}{2^{p+1}}$ and $2^{p-1}<|n| \leq 2^{p}$, imply that $\frac{\pi}{4}<|n| h \leq \frac{\pi}{2}$ and thus $|\sin n h|^{2} \geq \frac{1}{2}$.
Therefore, $\sum_{2^{p-1}<|n| \leq 2^{p}} 1 \cdot|\hat{f}(n)|^{2} \leq 2 \sum_{n=-\infty}^{\infty}|\sin n h|^{2}|\hat{f}(n)|^{2} \leq \frac{K^{2} \pi^{2}}{2^{2 p+1}}$, where we use the fact that $|\sin n h|^{2}|\hat{f}(n)|^{2} \geq 0$ and $h=\frac{\pi}{2^{p+1}}$.
(c) By Cauchy-Schwartz inequality, we have

$$
\begin{align*}
\sum_{2^{p-1}<|n| \leq 2^{p}}|\hat{f}(n)| & \leq\left(\sum_{2^{p-1}<|n| \leq 2^{p}}|\hat{f}(n)|^{2}\right)^{\frac{1}{2}} \cdot\left(\sum_{2^{p-1}<|n| \leq 2^{p}} 1^{2}\right)^{\frac{1}{2}} \\
& \leq \frac{K \pi}{2^{p+\frac{1}{2}}} \cdot 2^{\frac{p-1}{2}}  \tag{5}\\
& =\frac{K \pi}{2^{\frac{p}{2}+1}} .
\end{align*}
$$

Thus, $\sum_{0 \leq|n|<\infty}|\hat{f}(n)|=\hat{f}(0)+\sum_{p=1}^{\infty}\left[\sum_{2^{p-1}<|n| \leq 2^{p}} \hat{f}(n)\right] \leq \hat{f}(0)+\sum_{p=1}^{\infty} \frac{K \pi}{2(\sqrt{2})^{p}}<\infty$, showing that the Fourier series of $f$ converges absolutely, hence uniformly.
(d) Again, we define $g_{h}(x)=f(x+h)-f(x-h)$, where $h$ is positive.

Since $\left|g_{h}(x)\right| \leq K \cdot 2^{\alpha} h^{\alpha}$, we know that $\sum_{n=-\infty}^{\infty}|\sin n h|^{2}|\hat{f}(n)|^{2} \leq K^{2} \cdot 2^{2 \alpha-2} h^{2 \alpha}$.
We still choose $h$ to be $\frac{\pi}{2^{p+1}}$ and obtain that $\sum_{2^{p-1}<|n| \leq 2^{p}}|\hat{f}(n)|^{2} \leq \frac{K^{2} \pi^{2 \alpha}}{2^{2 \alpha p+1}}$ by the same arguments. Then, by Cauchy-Schwartz inequality, we have $\sum_{2^{p-1}<|n| \leq 2^{p}}|\hat{f}(n)| \leq\left(\frac{K^{2} \pi^{2 \alpha}}{2^{2 \alpha p+1}}\right)^{\frac{1}{2}}\left(2^{p-1}\right)^{\frac{1}{2}}=\frac{K \pi^{\alpha}}{2\left(2^{\alpha-\frac{1}{2}}\right)^{p}}$.
Therefore, if $\alpha>\frac{1}{2}$, then $\sum_{0 \leq|n|<\infty}|\hat{f}(n)| \leq \hat{f}(0)+\sum_{p=1}^{\infty} \frac{K \pi^{\alpha}}{2\left(2^{\alpha-\frac{1}{2}}\right)^{p}}<\infty$.


[^0]:    ${ }^{1}$ School of Mathematics, Sun Yat-sen University

