
Homework 7 Solution

Yikun Zhang1

Chapter 3. Ex.11 The inequalities of Wirtinger and Poincaré establish a relationship between
the norm of a function and that of its derivative.
(a) If f is T-periodic, continuous, and piecewise C1 with

∫ T
0
f(t)dt = 0, show that∫ T

0

|f(t)|2dt ≤ T 2

4π2

∫ T

0

|f ′(t)|2dt,

with equality if and only if f(t) = Asin(2πt/T ) + B cos(2πt/T ).
(b) If f is as above and g is just C1 and T-periodic, prove that

|
∫ T

0

f(t)g(t)dt|2 ≤ T 2

4π2

∫ T

0

|f(t)|2dt
∫ T

0

|g′(t)|dt.

(c) For any compact interval [a, b] and any continuously differentiable function f with f(a) =
f(b) = 0, show that ∫ b

a

|f(t)|2dt ≤ (b− a)2

π2

∫ b

a

|f ′(t)|2dt.

Discuss the case of equality, and prove that the constant (b−a)2
π2 cannot be improved.

Proof. (a) The condition
∫ T
0
f(t)dt = 0 implies that f̂(0) = 0.

By the smoothness and the periodicity of f , we know that

f̂(n) =
1

T

∫ T

0

f(t)e−
2πnit
T dt

=
1

T
[f(0+)− f(T−)]

T

2πin
+

T

2πin
· 1

T

∫ T

0

f ′(t)e−
2πint
T dt

=
T

2πin
f̂ ′(n).

(1)

Thus, by Parseval’s identity,∫ T

0

|f(t)|2dt = T
∑
|n|>0

|f̂(n)|2 =
T 3

4π2

∑
|n|>0

|f̂ ′(n)|2

n2

≤ T 3

4π2

∑
|n|>0

|f̂ ′(n)|2 =
T 3

4π2
· 1

T

∫ T

0

|f ′(t)|2dt =
T 2

4π2

∫ T

0

|f ′(t)|2dt.

(2)
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The equality holds if and only if f̂(n) = 0 for all n > 1, i.e.,

f(t) = a1e
2πit
T + a−1e

2πit
T = Asin(2πt

T
) +Bcos(2πt

T
).

(b) With the same conditions on f , we still have f̂(0) = 0.
Meanwhile, the equality ĝ(n) = T

2πin
ĝ′(n) holds when n 6= 0.

By Lemma 1.5 and Paserval’s equality, we obtain that

|
∫ T

0

f(t)g(t)dt|2 = T 2|
∑
|n|≥0

f̂(n)ĝ(n)|2 = T 2|
∑
|n|>0

f̂(n)ĝ(n)|2

≤ (T
∑
|n|>0

|f̂(n)|2)(T
∑
|n|>0

|ĝ(n)|2)

=

∫ T

0

|f(t)|2dt · T
3

4π2

∑
|n|>0

|ĝ′(n)|2

n2

≤
∫ T

0

|f(t)|2dt · T
3

4π2

∑
|n|>0

|ĝ′(n)|2

=
T 2

4π2

∫ T

0

|f(t)|2dt
∫ T

0

|g′(t)|dt.

(3)

Remark: Please figure out the correctness of every equalities and inequalities by yourself.

(c) To extend f to be odd with respect to a, we define F as follows,

F (t) =

{
f(t) if t ∈ [a, b],

−f(2a− t) if t ∈ [2a− b, a).

Then we can extend F on the real line such that it is 2(b− a)-periodic.

Then by definition of F , we know that F is piecewise C1,
∫ 2(b−a)
0

F (t)dt = 0, and F ′(a + h) =
F ′(a− h), where h ∈ R.
By (a) and the symmetry of F , we obtain that∫ b

a

|f(t)|2dt =
1

2

∫ 2(b−a)

0

|F (t)|2dt ≤ (b− a)2

2π2

∫ 2(b−a)

0

|F ′(t)|2dt =
(b− a)2

π2

∫ b

a

|f ′(t)|2dt.

Since F (t− a) is an odd function, the equality holds if and only if f(t) = F (t) = Asin( πt
b−a). �

Chapter 3. Ex.16 Let f be a 2π-periodic function which satisfies a Lipschitz condition with
constant K; that is,

|f(x)− f(y)| ≤ K|x− y| for all x, y.

This is simply the Hölder condition with α = 1, so by the previous exercise, we see that
f̂(n) = O(1/|n|). Since the harmonic series

∑
1/n diverges, we cannot say anything (yet)
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about the absolute convergence of the Fourier series of f . The outline below actually proves
that the Fourier series of f converges absolutely and uniformly.
(a) For every positive h we define gh(x) = f(x+ h)− f(x− h). Prove that

1

2π

∫ 2π

0

|gh(x)|2dx =
∞∑

n=−∞

4|sin nh|2|f̂(n)|2,

and show that
∞∑

n=−∞

|sin nh|2|f̂(n)|2 ≤ K2h2.

(b) Let p be a positive integer. By choosing h = π
2p+1 , show that

∑
2p−1<|n|≤2p

|f̂(n)|2 ≤ K2π2

22p+1
.

(c) Estimate
∑

2p−1<|n|≤2p
|f̂(n)|, and conclude that the Fourier series of f converges absolutely,

hence uniformly.
(d) In fact, modify the argument slightly to prove Bernstein’s theorem: If f satisfies a Hölder
condition of order α > 1

2
, then the Fourier series of f converges absolutely.

Proof. (a) First we have

ĝh(n) =
1

2π

∫ π

−π
f(x+ h)e−inxdx− 1

2π

∫ π

−π
f(x− h)e−inxdx

=
1

2π

∫ π+h

−π+h
f(u)e−inu · einhdu− 1

2π

∫ π−h

−π−h
f(u)e−inu · e−inhdu

= einhf̂(n)− e−inhf̂(n)

= [2isin(nh)]f̂(n).

(4)

Applying Parseval’s identity, we obtain that 1
2π

∫ 2π

0
|gh(x)|2dx =

∞∑
n=−∞

4|sin(nh)|2|f̂(n)|2.

Since |gh(x)| = |f(x + h) − f(x − h)| ≤ 2Kh, the inequality
∞∑

n=−∞
|sin nh|2|f̂(n)|2 ≤ K2h2

follows.

(b) The conditions, h = π
2p+1 and 2p−1 < |n| ≤ 2p, imply that π

4
< |n|h ≤ π

2
and thus

|sin nh|2 ≥ 1
2
.

Therefore,
∑

2p−1<|n|≤2p
1 · |f̂(n)|2 ≤ 2

∞∑
n=−∞

|sin nh|2|f̂(n)|2 ≤ K2π2

22p+1 , where we use the fact that

|sin nh|2|f̂(n)|2 ≥ 0 and h = π
2p+1 .

3



(c) By Cauchy-Schwartz inequality, we have∑
2p−1<|n|≤2p

|f̂(n)| ≤ (
∑

2p−1<|n|≤2p
|f̂(n)|2)

1
2 · (

∑
2p−1<|n|≤2p

12)
1
2

≤ Kπ

2p+
1
2

· 2
p−1
2

=
Kπ

2
p
2
+1
.

(5)

Thus,
∑

0≤|n|<∞
|f̂(n)| = f̂(0) +

∞∑
p=1

[
∑

2p−1<|n|≤2p
f̂(n)] ≤ f̂(0) +

∞∑
p=1

Kπ
2(
√
2)p

< ∞, showing that the

Fourier series of f converges absolutely, hence uniformly.

(d) Again, we define gh(x) = f(x+ h)− f(x− h), where h is positive.

Since |gh(x)| ≤ K · 2αhα, we know that
∞∑

n=−∞
|sin nh|2|f̂(n)|2 ≤ K2 · 22α−2h2α.

We still choose h to be π
2p+1 and obtain that

∑
2p−1<|n|≤2p

|f̂(n)|2 ≤ K2π2α

22αp+1 by the same arguments.

Then, by Cauchy-Schwartz inequality, we have
∑

2p−1<|n|≤2p
|f̂(n)| ≤ (K

2π2α

22αp+1 )
1
2 (2p−1)

1
2 = Kπα

2(2α−
1
2 )p

.

Therefore, if α > 1
2
, then

∑
0≤|n|<∞

|f̂(n)| ≤ f̂(0) +
∞∑
p=1

Kπα

2(2α−
1
2 )p

<∞. �
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