Homework 1 Solution

Yikun Zhang ${ }^{1}$

Chapter 2. Ex. 16 The Weierstrass approximation theorem states: Let f be a continuous function on the closed and bounded interval $[a, b] \subset \mathbb{R}$. Then, for any $\epsilon>0$, there exists a polynomial P such that

$$
\sup _{x \in[a, b]}|f(x)-P(x)|<\epsilon .
$$

Prove this by applying Corollary 5.4 of Fejér's theorem and using the fact that the exponential function $e^{i x}$ can be approximated by polynomials uniformly on any interval.
Proof. With loss of generosity, we assume that $a>0$. Define

$$
F(x)= \begin{cases}f(x), & x \in[a, b] \\ f(2 b-x), & x \in(b, 2 b-a]\end{cases}
$$

Then $F(x)$ is continuous on $[a, 2 b-a]$ with $F(a)=F(2 b-a)$. We can extend F to be a continuous $(2 b-2 a)$-periodic function on the real line \mathbb{R}.
Letting $x=\left(\frac{b-a}{\pi}\right) t+b, \phi(t)=F\left[\left(\frac{b-a}{\pi}\right) t+b\right]$ would be a 2π-periodic function with $\phi(-\pi)=\phi(\pi)$ on \mathbb{R}.

By Corollary 5.4 of Fejér's theorem, for any $\epsilon>0$, there exists a trigonometric polynomial Q such that $|\phi(t)-Q(t)|<\frac{\epsilon}{2}$ for all $-\pi \leq t \leq \pi$.
Thus, by letting $t=\frac{\pi(x-b)}{b-a}$, we obtain that $\left|F(x)-Q\left[\frac{\pi(x-b)}{b-a}\right]\right|<\frac{\epsilon}{2}$ for all $a<x<2 b-a$.
Denote $Q\left[\frac{\pi(x-b)}{b-a}\right]$ by $Q_{1}(x)$ and it can be written as $Q_{1}(x)=\sum_{n=M}^{N} a_{n} e^{\frac{n \pi i x}{b-a}}$, where $N, M \in \mathbb{Z}$.
By Taylor's Expansion, we know that $e^{i x}=1+i x+\frac{(i x)^{2}}{2!}+\cdots+\frac{(i x)^{n}}{n!}+\frac{e^{\theta x}}{(n+1)!}(i x)^{n+1}$, where $x \in[a, 2 b-a], \theta \in(0,1)$.
Therefore, with $\left|\frac{e^{\theta x}}{(n+1)!}(i x)^{n+1}\right|<\frac{e^{2 b-a}(2 b-a)^{n+1}}{(n+1)!} \rightarrow 0$ as $n \rightarrow \infty$, there exists a polynomial $P_{n}(x)$ such that $\left|a_{n} e^{\frac{n \pi x}{b-a}}-P_{n}(x)\right|<\frac{\epsilon}{2(N-M+1)}$ for each $n, M \leq n \leq N$.
Let $P(x)$ be $\sum_{n=M}^{N} P_{n}(x)$. Therefore,

$$
\begin{align*}
|F(x)-P(x)| & \leq\left|F(x)-Q_{1}(x)\right|+\left|Q_{1}(x)-P(x)\right| \\
& \leq \frac{\epsilon}{2}+(N-M+1) \cdot \frac{\epsilon}{2(N-M+1)} \tag{1}\\
& <\epsilon
\end{align*}
$$

Restricting $P(x)$ to $[a, b]$, we obtain the desired polynomial.

[^0]
[^0]: ${ }^{1}$ School of Mathematics, Sun Yat-sen University

