## Homework 3 Solution

Yikun Zhang ${ }^{1}$

Chapter 2. Problem 1 One can construct Riemann integrable functions on $[0,1]$ that have a dense set of discontinuities as follows.
(a) Let $f(x)=0$ when $x<0$, and $f(x)=1$ if $x \geq 0$. Choose a countable dense sequence $\left\{r_{n}\right\}$ in $[0,1]$. Then, show that the function

$$
F(x)=\sum_{n=1}^{\infty} \frac{1}{n^{2}} f\left(x-r_{n}\right)
$$

is integrable and has discontinuities at all points of the sequence $\left\{r_{n}\right\}$.
(b) Consider next

$$
F(x)=\sum_{n=1}^{\infty} 3^{-n} g\left(x-r_{n}\right)
$$

where $g(x)=\sin 1 / x$ when $x \neq 0$, and $g(0)=0$. Then $F$ is integrable, discontinuous at each $x=r_{n}$, and fails to be monotonic in any subinterval of $[0,1]$.
(c) The original example of Riemann is the function

$$
F(x)=\sum_{n=1}^{\infty} \frac{(n x)}{n^{2}},
$$

where $(x)=x$ for $x \in(-1 / 2,1 / 2]$ and $(x)$ is continued to $\mathbb{R}$ by periodicity, that is, $(x+1)=(x)$. It can be shown that $F$ is discontinuous whenever $x=m / 2 n$, where $m, n \in \mathbb{Z}$ with $m$ odd and $n \neq 0$.
Proof. (a) First we have $|F(x)| \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty$, yielding that $F$ is bounded.
Then $F(x)$ is nondecreasing because $f(x)$ is nondecreasing.
Thus, by the Proposition 1.3 in the Appendix, we know that $F(x)$ is integrable.
For any countable dense set $\left\{r_{n}\right\}$ in $[0,1]$, like $\mathbb{Q} \cap[0,1]$, it suffices to prove that $F$ is discontinuous at an arbitrary point $r_{k}$ selected from the reordered set $\left\{r_{n}\right\}$, where $r_{k}<r_{k+1}, k=1,2, \ldots$
The left limit of $F$ at $r_{k}$ is $\lim _{x \rightarrow r_{k}^{-}} F(x)=\lim _{x \rightarrow r_{k}^{-}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} f\left(x-r_{n}\right)=\sum_{n=1}^{k-1} \frac{1}{n^{2}}$, while the right limit of $F$ at the same point is $\lim _{x \rightarrow r_{k}^{+}} F(x)=\lim _{x \rightarrow r_{k}^{+}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} f\left(x-r_{n}\right)=\sum_{n=1}^{k} \frac{1}{n^{2}} \neq \lim _{x \rightarrow r_{k}^{-}} F(x)$.
Therefore, $F$ has discontinuities as all points of the sequence $\left\{r_{n}\right\}$.
(b) Similarly, we have $|F(x)| \leq \sum_{n=1}^{\infty} \frac{1}{3^{n}}=\frac{1}{2}$, showing that $F$ is bounded.

Moreover, since $g(x)=\sin \frac{1}{x}$ is discontinuous only at the point $x=0$, for each $n \in \mathbb{Z}^{+}$,

[^0]$3^{-n} g\left(x-r_{n}\right)$ has a unique discontinuity at $r_{n}$. Together with Lemma 1.6 in the Appendix and the fact that $\left\{r_{n}\right\}$ is countable, we conclude that the discontinuities of $F$ has measure 0 and thus $F$ is integrable.
Next we want to prove that $F$ is discontinuous at each $x=r_{n}$ and fails to be monotonic in any subinterval of $[0,1]$, by leveraging the fluctuation of $\sin \frac{1}{x}$ around 0 . See Figure (a) for a visualization.


Since $\left\{r_{n}\right\}$ is dense in $[0,1]$, any subinterval of $[0,1]$ contains at least one element in $\left\{r_{n}\right\}$, says $r_{k}$.
Consider four numerical sequences $a_{k, m}=r_{k}-\frac{1}{\frac{\pi}{2}+2 m \pi}, a_{k, m}^{\prime}=r_{k}-\frac{1}{\frac{3 \pi}{2}+2 m \pi}, b_{k, m}=r_{k}+\frac{1}{\frac{\pi}{2}+2 m \pi}$, and $b_{k, m}^{\prime}=r_{k}+\frac{1}{\frac{3 \pi}{2}+2 m \pi}$. See Figure (b) for a visualization.
Then $g\left(a_{k, m}-r_{k}\right)^{2}=g\left(b_{k, m}^{\prime}-r_{k}\right)=-1$, and $g\left(a_{k, m}^{\prime}-r_{k}\right)=g\left(b_{k, m}-r_{k}\right)=1$.
We respectively divide the summation in $F\left(a_{k, m}\right)$ and $F\left(b_{k, m}\right)$ into three parts as follows,
$F\left(a_{k, m}\right)=\sum_{n=1}^{k-1} 3^{-n} g\left(a_{k, m}-r_{n}\right)+3^{-k} g\left(a_{k, m}-r_{k}\right)+\sum_{n=k+1}^{\infty} 3^{-n} g\left(a_{k, m}-r_{n}\right)=I_{1}^{a}+I I_{2}^{a}+I I I_{3}^{a}$
$F\left(b_{k, m}\right)=\sum_{n=1}^{k-1} 3^{-n} g\left(b_{k, m}-r_{n}\right)+3^{-k} g\left(b_{k, m}-r_{k}\right)+\sum_{n=k+1}^{\infty} 3^{-n} g\left(b_{k, m}-r_{n}\right)=I I_{1}^{b}+I I_{2}^{b}+I I I_{3}^{b}$.
Since $\lim _{m \rightarrow \infty} a_{k, m}=\lim _{m \rightarrow \infty} b_{k, m}=r_{k}$, we obtain that $I_{1}^{a}=I_{1}^{b}$ when $m$ is sufficiently large.
Using the fact that $3^{-k}>\sum_{n>k} 3^{-n}$ and $g\left(a_{k, m}-r_{k}\right)=-1$, we know that

$$
I I_{2}^{a}+I I I_{3}^{a} \leq-3^{-k}+\left|\sum_{n=k+1}^{\infty} 3^{-n} g\left(a_{k, m}-r_{n}\right)\right|<-3^{-k}+\sum_{n>k} 3^{-n}<0
$$

On the other hand, we also have

$$
I I_{2}^{b}+I I I_{3}^{b} \geq 3^{-k}-\left|\sum_{n=k+1}^{\infty} 3^{-n} g\left(a_{k, m}-r_{n}\right)\right|>3^{-k}-\sum_{n>k} 3^{-n}>0 .
$$

Therefore, we obtain that $F\left(a_{k, m}\right)<F\left(b_{k, m}\right)$.
Likewise, we can prove that $F\left(a_{k, m}\right)<F\left(a_{k, m}^{\prime}\right)$ and $F\left(a_{k, m}^{\prime}\right)>F\left(b_{k, m}^{\prime}\right)$ with the same argument. Since $a_{k, m}<a_{k, m}^{\prime}<r_{k}<b_{k, m}^{\prime}<b_{k, m}$ for each $m$ and $\left|a_{k, m}-b_{k, m}\right| \rightarrow 0$ as $m \rightarrow 0, F$ is discontinuous at $r_{k}$ and fails to be monotonic in $\left[a_{k, m}, b_{k, m}\right.$ and thus in any subinterval of $[0,1]$.
(c) Let $x_{m}=\frac{m}{2 n}$, where $m, n \in \mathbb{Z}$ with $m$ odd and $n \neq 0$.

Then $\left|F\left(x_{m}+0\right)-F\left(x_{m}-0\right)\right|=\frac{1}{2 m^{2}}>0$. Thus $F$ is discontinuous at $x_{m}$.


[^0]:    ${ }^{1}$ School of Mathematics, Sun Yat-sen University

