Homework 3 Solution

Yikun Zhang¹

Chapter 2. Problem 1 One can construct Riemann integrable functions on [0,1] that have a dense set of discontinuities as follows.

(a) Let f(x) = 0 when x < 0, and f(x) = 1 if $x \ge 0$. Choose a countable dense sequence $\{r_n\}$ in [0, 1]. Then, show that the function

$$F(x) = \sum_{n=1}^{\infty} \frac{1}{n^2} f(x - r_n)$$

is integrable and has discontinuities at all points of the sequence $\{r_n\}$. (b) Consider next

$$F(x) = \sum_{n=1}^{\infty} 3^{-n} g(x - r_n),$$

where $g(x) = \sin 1/x$ when $x \neq 0$, and g(0) = 0. Then F is integrable, discontinuous at each $x = r_n$, and fails to be monotonic in any subinterval of [0, 1]. (c) The original example of Riemann is the function

$$F(x) = \sum_{n=1}^{\infty} \frac{(nx)}{n^2},$$

where (x) = x for $x \in (-1/2, 1/2]$ and (x) is continued to \mathbb{R} by periodicity, that is, (x+1) = (x). It can be shown that F is discontinuous whenever x = m/2n, where $m, n \in \mathbb{Z}$ with m odd and $n \neq 0$.

Proof. (a) First we have $|F(x)| \leq \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$, yielding that F is bounded. Then F(x) is nondecreasing because f(x) is nondecreasing.

Thus, by the Proposition 1.3 in the Appendix, we know that F(x) is integrable.

For any countable dense set $\{r_n\}$ in [0, 1], like $\mathbb{Q} \cap [0, 1]$, it suffices to prove that F is discontinuous at an arbitrary point r_k selected from the reordered set $\{r_n\}$, where $r_k < r_{k+1}$, k = 1, 2, ...The left limit of F at r_k is $\lim_{x \to r_k^-} F(x) = \lim_{x \to r_k^-} \sum_{n=1}^{\infty} \frac{1}{n^2} f(x - r_n) = \sum_{n=1}^{k-1} \frac{1}{n^2}$, while the right limit of

F at the same point is $\lim_{x \to r_k^+} F(x) = \lim_{x \to r_k^+} \sum_{n=1}^{\infty} \frac{1}{n^2} f(x - r_n) = \sum_{n=1}^k \frac{1}{n^2} \neq \lim_{x \to r_k^-} F(x).$ Therefore, *F* has discontinuities as all points of the sequence $\{r_n\}$.

(b) Similarly, we have $|F(x)| \leq \sum_{n=1}^{\infty} \frac{1}{3^n} = \frac{1}{2}$, showing that F is bounded. Moreover, since $g(x) = \sin \frac{1}{x}$ is discontinuous only at the point x = 0, for each $n \in \mathbb{Z}^+$,

¹School of Mathematics, Sun Yat-sen University

 $3^{-n}g(x-r_n)$ has a unique discontinuity at r_n . Together with Lemma 1.6 in the Appendix and the fact that $\{r_n\}$ is countable, we conclude that the discontinuities of F has measure 0 and thus F is integrable.

Next we want to prove that F is discontinuous at each $x = r_n$ and fails to be monotonic in any subinterval of [0, 1], by leveraging the fluctuation of $sin\frac{1}{x}$ around 0. See Figure (a) for a visualization.

Since $\{r_n\}$ is dense in [0, 1], any subinterval of [0, 1] contains at least one element in $\{r_n\}$, says r_k .

Consider four numerical sequences $a_{k,m} = r_k - \frac{1}{\frac{\pi}{2} + 2m\pi}$, $a'_{k,m} = r_k - \frac{1}{\frac{3\pi}{2} + 2m\pi}$, $b_{k,m} = r_k + \frac{1}{\frac{\pi}{2} + 2m\pi}$, and $b'_{k,m} = r_k + \frac{1}{\frac{3\pi}{2} + 2m\pi}$. See Figure (b) for a visualization. Then $g(a_{k,m} - r_k) = g(b'_{k,m} - r_k) = -1$, and $g(a'_{k,m} - r_k) = g(b_{k,m} - r_k) = 1$. We respectively divide the summation in $F(a_{k,m})$ and $F(b_{k,m})$ into three parts as follows,

$$F(a_{k,m}) = \sum_{n=1}^{k-1} 3^{-n} g(a_{k,m} - r_n) + 3^{-k} g(a_{k,m} - r_k) + \sum_{n=k+1}^{\infty} 3^{-n} g(a_{k,m} - r_n) = I_1^a + II_2^a + III_3^a$$

$$F(b_{k,m}) = \sum_{n=1}^{k-1} 3^{-n} g(b_{k,m} - r_n) + 3^{-k} g(b_{k,m} - r_k) + \sum_{n=k+1}^{\infty} 3^{-n} g(b_{k,m} - r_n) = I_1^b + II_2^b + III_3^b.$$

Since $\lim_{m\to\infty} a_{k,m} = \lim_{m\to\infty} b_{k,m} = r_k$, we obtain that $I_1^a = I_1^b$ when *m* is sufficiently large. Using the fact that $3^{-k} > \sum_{n>k} 3^{-n}$ and $g(a_{k,m} - r_k) = -1$, we know that

$$II_2^a + III_3^a \le -3^{-k} + \left|\sum_{n=k+1}^{\infty} 3^{-n} g(a_{k,m} - r_n)\right| < -3^{-k} + \sum_{n>k} 3^{-n} < 0.$$

On the other hand, we also have

$$II_{2}^{b} + III_{3}^{b} \ge 3^{-k} - \left|\sum_{n=k+1}^{\infty} 3^{-n}g(a_{k,m} - r_{n})\right| > 3^{-k} - \sum_{n>k} 3^{-n} > 0$$

Therefore, we obtain that $F(a_{k,m}) < F(b_{k,m})$.

Likewise, we can prove that $F(a_{k,m}) < F(a'_{k,m})$ and $F(a'_{k,m}) > F(b'_{k,m})$ with the same argument. Since $a_{k,m} < a'_{k,m} < r_k < b'_{k,m} < b_{k,m}$ for each m and $|a_{k,m} - b_{k,m}| \to 0$ as $m \to 0$, F is discontinuous at r_k and fails to be monotonic in $[a_{k,m}, b_{k,m}]$ and thus in any subinterval of [0, 1].

(c) Let $x_m = \frac{m}{2n}$, where $m, n \in \mathbb{Z}$ with m odd and $n \neq 0$. Then $|F(x_m + 0) - F(x_m - 0)| = \frac{1}{2m^2} > 0$. Thus F is discontinuous at x_m .