RESULTS ON CONVERGENCE OF FOURIER SERIES

(References are from the book Fourier Analysis: An introduction by Stein and Shakarchi)

Let $f: [-\pi, \pi] \to \mathbb{C}$ be a Lebesgue integrable function. Then the Fourier coeffs of f are defined by $\widehat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$, and the partial sums of the Fourier series of f are $S_N f(x) = \sum_{n=-N}^{N} \widehat{f}(n) e^{inx}$. Here are the results we have proved about the convergence of $S_N f$ to f, ordered by decreasing regularity of f:

- If $f \in C^k(\mathbb{T})$:
 - 1. If $k \geq 2$, then $|\widehat{f}(n)| = O(\frac{1}{|n|^k})$ as $n \to \infty$, which implies that $S_N f$ converges to f uniformly on \mathbb{T} (Chapter 2, Corollary 2.4, and Ex. 10).

Note: From Riemann-Lebesgue Lemma, we obtain a better decay of the coefficients: If $k \geq 0$, then $|\hat{f}(n)| = o(\frac{1}{n^k})$ as $n \to \infty$ (Ch.3, Ex.13).

- 2. An improvement: For $k \geq 1$, $||S_N f f||_{L^{\infty}(\mathbb{T})} = O\left(\frac{1}{N^{k-1/2}}\right)$ as $N \to \infty$, and hence $S_N f$ converges to f uniformly on \mathbb{T} (Class notes, Ch.3 Sec.2). See also Ch.3, Ex.14 for the case k = 1.
- If f is Lipschitz:
 - 1. $|\widehat{f}(n)| = O(1/|n|)$ (Ch.3, Ex.15).
 - 2. By Dini's Criterium, $S_N f(x) \to f(x)$ for every $x \in \mathbb{T}$ (Ch.3, Sec.2). Although by Dini's Criterium we cannot prove that the convergence is uniform, that is in fact the case, as seen in Ch.3 Ex.16.
 - 3. A slight variation of the arguments for f Lipschitz shows that if f is Hölder- α for $0 < \alpha < 1$, then $|\widehat{f}(n)| = O(1/|n|^{\alpha})$. And if $1/2 < \alpha < 1$, the Fourier series of f converges uniformly to f (Ch.3 Ex.15, 16).
- If $f \in C(\mathbb{T})$:
 - 1. If $\sum_{n=-\infty}^{\infty} |\widehat{f}(n)| < \infty$, then $S_N f$ converges to f uniformly (Ch.2, Corollary 2.3).
 - 2. If $\widehat{f}(n) = 0$ for every $n \in \mathbb{Z}$, then $f \equiv 0$ (Ch.2, Corollary 2.2).
 - 3. **Pointwise convergence:** There exists a continuous function f such that $S_N f(x)$ does not converge to f(x) for some x. This is a consequence of the fact that the Dirichlet kernels are not uniformly bounded in L^1 .

In fact, there exist a dense G_{δ} subset E of $C(\mathbb{T})$ such that for every $f \in E$, the set $A_f = \{x \in \mathbb{T} : \sup_N S_N(f)(x) = \infty\}$ is a dense G_{δ} subset of \mathbb{T} .

- If $f \in L^2(\mathbb{T})$:
 - 1. Norm convergence: By Hilbert space theory, $||S_N f f||_{L^2(\mathbb{T})} \to 0$ as $N \to \infty$ (Ch.3, Sec.1).
 - 2. Plancherel's identity holds: $||f||_{L^2(\mathbb{T})}^2 = \sum_{n=-\infty}^{\infty} |\widehat{f}(n)|^2$. This implies that the Fourier transform is an isometric isomorphism between $L^2(\mathbb{T})$ and $\ell^2(\mathbb{Z})$ (Ch.3, Sec.1).
 - 3. **Pointwise convergence:** By Carleson Theorem, $S_N f(x)$ converges to f(x) for almost every x. (See discussion in page 5)

• If $f \in L^1(\mathbb{T})$:

- 1. If $\sum_{n=-\infty}^{\infty} |\widehat{f}(n)| < \infty$, then $S_N f$ converges uniformly to a continuous function g such that f = g a.e. (Same proof as Ch.2, Corollary 2.3).
- 2. Uniqueness of Fourier series: If $\widehat{f}(n) = 0$ for every $n \in \mathbb{Z}$, then $f \equiv 0$ a.e., and in particular $f(x_0) = 0$ at any point x_0 where f is continuous (Ch.2, Theorem 2.1).
- 3. Norm convergence: There exists a function $f \in L^1(\mathbb{T})$ such that $S_N f$ does not converge to f in the L^1 norm. This is because the L^1 -norms of the Dirichlet kernels are not uniformly bounded (Ch.2 Prob 2).
- 4. **Pointwise convergence:** Kolmogorov constructed an explicit counterexample of an L^1 function whose Fourier series diverges everywhere.
- 5. Dini's criterium and its consequences:
 - (a) At any point x_0 where Dini's criterium holds, $S_N f(x_0) \to f(x_0)$ as $N \to \infty$ (Ch.3, Sec.2).
 - (b) Localization: If f is identically 0 on an interval (a, b), then $S_N f(x) \to 0$ for every $x \in (a, b)$.
 - (c) Jump discontinuities: If $f \in L^1(\mathbb{T})$, and at a point x_0 the lateral limits $f(x_0+), f(x_0-), f'(x_0+), f'(x_0-)$ exist, then $S_N f(x_0) \to \frac{f(x_0+) + f(x_0-)}{2}$.

Also, Gibbs phenomenon shows that all the partial sums $S_N f$ overshoot f at the jump point by approximately 9% of the jump at x_0 , $(f(x_0+) - f(x_0-))$.

OTHER MODES OF CONVERGENCE OF FOURIER SERIES

• Cesàro Convergence:

Let $\sigma_N f(x) = \frac{1}{N} \sum_{k=0}^{N-1} S_N f(x)$ be the Cesàro sums of the Fourier series of f. Then $\sigma_N f(x) = F_N \star f(x)$, where F_N is the N-th Féjer kernel (a good kernel) and hence we have:

- 1. If $f \in C(\mathbb{T})$, $\sigma_N f$ converges to f uniformly on \mathbb{T} (Ch.2, Theorem 5.2).
- 2. If $f \in L^p(\mathbb{T})$, $1 \leq p < \infty$, then $\lim_{N \to \infty} \|\sigma_N f f\|_{L^p(\mathbb{T})} = 0$ (Class notes and Hw 1).

• Abel Convergence:

For $0 \le r < 1$, let $A_r f(x) = \sum_{n=-\infty}^{\infty} r^{|n|} \widehat{f}(n) e^{inx}$ be the Abel sums of the Fourier series of f. Then $A_r f(x) = P_r \star f(x)$, where P_r is the Poisson kernel (a good kernel) and hence we have:

- 1. If $f \in C(\mathbb{T})$, $A_r f$ converges to f uniformly on \mathbb{T} (Ch.2, Theorem 5.2).
- 2. If $f \in L^p(\mathbb{T})$, $1 \le p < \infty$, then $\lim_{r \to 1^-} ||A_r f f||_{L^p(\mathbb{T})} = 0$ (Class notes and Hw 1).

Besides results 1 and 2, that follow from the properties of good kernels, for Abel summation we get much more:

- 3. If $f \in L^1(\mathbb{T})$ and we define $u(r,\theta) := A_r f(\theta)$, then $u \in C^{\infty}((0,1) \times (0,2\pi))$, by absolute and uniform convergence properties of power series.
- 4. If $f \in L^1(\mathbb{T})$, $\lim_{r \to 1^-} A_r f(x) = f(x)$ a.e., by the weak-(1, 1) estimate for the Hardy-Littlewood maximal function.

THE FOURIER TRANSFORM

Let $f: \mathbb{R} \to \mathbb{C}$ be an $L^1(\mathbb{R})$ function. The (continuous) Fourier transform of f is defined by

$$\widehat{f}(\xi) = \int_{-\infty}^{\infty} f(x)e^{-2\pi ix\xi} dx.$$

- If $f \in L^1(\mathbb{R})$, then \widehat{f} is continuous, and bounded by $||f||_{L^1}$.
- Riemann-Lebesgue: If $f \in L^1(\mathbb{R})$, $\lim_{|\xi| \to \infty} |\widehat{f}(\xi)| = 0$.
- By analogy with the summation of Fourier series, the inverse Fourier transform should be given by $f(x) = \int_{-\infty}^{\infty} \hat{f}(\xi) e^{2\pi i x \xi} d\xi$. But, in general, the Fourier transform of an L^1 function is not in L^1 , hence the integral in the inversion formula is not well defined.
- Unlike in the case of Fourier series, where $L^p(\mathbb{T}) \subseteq L^1(\mathbb{T})$ if p > 1, now there is no relation between the spaces $L^p(\mathbb{R})$ for different values of p. Hence the Fourier transform is not (yet) defined for $f \in L^p(\mathbb{R})$, $p \neq 1$.
- Let S be the class of Schwartz functions ($C^{\infty}(\mathbb{R})$) functions whose decay at infinity is faster than any polynomial, and whose derivatives also have this decay). Then:
 - 1. S is a dense subspace of $L^p(\mathbb{R})$, $1 \leq p < \infty$. In particular, the Fourier transform is well defined for $f \in S$.
 - 2. If $f \in \mathcal{S}$, then $\hat{f} \in \mathcal{S}$ and the inversion formula holds.
 - 3. Plancherel: If $f \in \mathcal{S}$, then $||f||_{L^2(\mathbb{R})} = ||\widehat{f}||_{L^2(\mathbb{R})}$.
- If $f \in L^2(\mathbb{R})$, we use Plancherel's formula and the density of \mathcal{S} in L^2 to define the Fourier transform of f. The Fourier transform thus defined is an isometric isomorphism on $L^2(\mathbb{R})$.
- Interpolation to $L^p(\mathbb{R})$, 1 : Since we have

$$\|\widehat{f}\|_{L^{\infty}} \leq \|f\|_{L^{1}}, \\ \|\widehat{f}\|_{L^{2}} = \|f\|_{L^{2}}$$

then, for $p \in (1,2)$ and $f \in L^p(\mathbb{R})$, we get, by Riesz-Thorin interpolation,

$$\|\widehat{f}\|_{L^{p'}} \le \|f\|_{L^p}$$

where p' = (p-1)/p is the conjugate exponent of p. Thus the Fourier transform can be defined for $f \in L^p(\mathbb{R})$, $1 , and in this case <math>\widehat{f}$ is a function in the dual space $L^{p'}(\mathbb{R})$.

• The Fourier transform of distributions. If $f \in L^p(\mathbb{R})$ for p > 2, then in general the Fourier transform of f is not a function, but it can be defined in the sense of distributions: The Fourier transform of f is defined as the distribution T such that, for every $\phi \in \mathcal{S}$,

$$\langle T, \phi \rangle = \int_{-\infty}^{\infty} f(x)\widehat{\phi}(x)dx.$$

Recovering f from \widehat{f} .

Given $R \in \mathbb{R}$, R > 0, we define S_R (the partial sums of the Fourier transform) by $(S_R f)(\xi) = \widehat{f}(\xi)\chi_{[-R,R]}(\xi)$, or equivalently by

$$S_R f(x) = \int_{-R}^{R} \widehat{f}(\xi) e^{2\pi i x \xi} d\xi, \tag{1}$$

and we study in which sense $S_R f$ converges to f as $R \to \infty$.

- If $f \in \mathcal{S}$, $f(x) = \int_{-\infty}^{\infty} \widehat{f}(\xi) e^{2\pi i x \xi} d\xi$, pointwise.
- If $f \in L^2(\mathbb{R})$, then $||S_R f f||_2 \to 0$ as $R \to \infty$.
- If $f \in L^p(\mathbb{R})$ for $1 \leq p < \infty$, then $||S_R f f||_p \to 0$ as $R \to \infty$ if and only if there exists a constant $C_p > 0$, independent on R, such that for every $f \in L^p(\mathbb{R})$

$$||S_R f||_p \le C_p ||f||_p. \tag{2}$$

- For p = 1, the estimate (2) does not hold since the L^1 -norms of the Dirichlet kernels are not uniformly bounded (Ch.2 Prob 2). Hence in general $S_R f$ does not converge to f in the L^1 norm.
- For $1 , estimate (2) holds, and thus <math>||S_R f f||_p \to 0$ as $R \to \infty$. This result is a consequence of the boundedness of the Hilbert transform on L^p , 1 .
- Pointwise Convergence: The pointwise convergence of the partial sums of Fourier series for $f \in L^p$ is one of the hardest results in Analysis. In 1966 L. Carleson proved that if $f \in L^2$, then the partial sums converge to f almost everywhere. (In the discrete case, for all $f \in L^2(\mathbb{T})$, $S_N f(x) \to f(x)$ $a.e.x \in \mathbb{T}$, and in the continuous case, for every $f \in L^2(\mathbb{R})$, $S_R f(x) \to f(x)$ $a.e.x \in \mathbb{R}$). In 1968 Hunt extended this result to L^p , 1 .

As mentioned in the first page, for L^1 almost everywhere convergence fails. If we consider Orlicz spaces, the best results so far are:

Antonov, 1996: For every $f \in L \log_+(L) \log_+ \log_+ \log_+(L)$, the Fourier series of f converges to f a.e.

Konyagin, 2000: There exists a function in $L \log_{+}(L)^{1/2-\epsilon}$ whose Fourier series is everywhere divergent.

• Other modes of convergence: There is a version of the Féjer kernel \mathcal{F}_R for the continuous Fourier transform, which is an approximate identity. Thus, if f is uniformly continuous on \mathbb{R} , $\mathcal{F}_R \star f$ converges to f uniformly as $R \to \infty$, and if $f \in L^p(\mathbb{R})$ for $1 \le p < \infty$, $\|\mathcal{F}_R \star f - f\|_p \to 0$ (see Ch.5 Ex.9).

APPLICATIONS OF FOURIER ANALYSIS SEEN IN CLASS

1. Solution of various **differential equations** (although convergence was not proved in all cases):

The wave equation

- The vibrating string (Ch.1, Sec.1), with its conservation of energy (Ch.3, Ex.10).
- The general solution of the wave equation in dimensions 1, 2, 3 (Ch.6, Sec.3)

The Laplace equation

- The complete solution of the Dirichlet problem $\Delta u = f$ on the disc (Thm 2.5.7), and the pointwise convergence of u to f (using the Hardy-Littlewood maximal function). See Ch.2, Ex.18 for a non-uniqueness result (the function fails to verify one of the conditions of Thm 2.5.7); and Problem 1 in HW2 for the maximum principle.
- Dirichlet problem for the Laplacian on a rectangle (Ch.1, Prob 1), on a semi-infinite strip (Ch.2, Ex.19), on an annulus (Ch.2, Ex.20), on the upper-half plane (Ch.5, Sec.2)
- The fundamental radial solution for the Laplacian in \mathbb{R}^3 (class notes, Theory of distributions).

The heat equation

- The heat equation on the upper-half-plane (Ch.5, Sec.2, Ex 11-12)
- 2. The Isoperimetric Inequality (Ch.4, Sec.1).
- 3. Weyl's Equidistribution Theorem (Ch.4, Sec.2).
- 4. Construction of a continuous, nowhere differentiable function (Ch.4, Sec.3).
- 5. Poisson's Summation Formula (Ch.5, Sec.3)
- 6. Heisenberg's Uncertainty Principle (Ch.5, Sec.4)
- 7. Shannon's Sampling Theorem (Ch.5, Ex.20)

Other applications that we have not seen include: Number theory (Chapter 8), Geometric tomography (reconstruction of images of a body from its lower-dimensional sections or projections), and more...