
RESULTS ON CONVERGENCE OF FOURIER SERIES
(References are from the book Fourier Analysis: An introduction by Stein and Shakarchi)

Let f : [−π, π] → C be a Lebesgue integrable function. Then the Fourier coeffs of f are

defined by f̂(n) = 1
2π

∫ π
−π f(x)e−inxdx, and the partial sums of the Fourier series of f are

SNf(x) =
N∑

n=−N

f̂(n)einx. Here are the results we have proved about the convergence of SNf

to f , ordered by decresing regularity of f :

• If f ∈ Ck(T):

1. If k ≥ 2, then |f̂(n)| = O( 1
|n|k ) as n→∞, which implies that SNf converges to f

uniformly on T (Chapter 2, Corollary 2.4, and Ex. 10).

Note: From Riemann-Lebesgue Lemma, we obtain a better decay of the coeffi-
cients: If k ≥ 0, then |f̂(n)| = o( 1

nk ) as n→∞ (Ch.3, Ex.13).

2. An improvement: For k ≥ 1, ‖SNf−f‖L∞(T) = O
(

1
Nk−1/2

)
as N →∞, and hence

SNf converges to f uniformly on T (Class notes, Ch.3 Sec.2). See also Ch.3,
Ex.14 for the case k = 1.

• If f is Lipschitz:

1. |f̂(n)| = O(1/|n|) (Ch.3, Ex.15).

2. By Dini’s Criterium, SNf(x)→ f(x) for every x ∈ T (Ch.3, Sec.2). Although by
Dini’s Criterium we cannot prove that the convergence is uniform, that is in fact
the case, as seen in Ch.3 Ex.16.

3. A slight variation of the arguments for f Lipschitz shows that if f is Hölder-α for
0 < α < 1, then |f̂(n)| = O(1/|n|α). And if 1/2 < α < 1, the Fourier series of f
converges uniformly to f (Ch.3 Ex.15, 16).

• If f ∈ C(T):

1. If
∞∑

n=−∞

|f̂(n)| <∞, then SNf converges to f uniformly (Ch.2, Corollary 2.3).

2. If f̂(n) = 0 for every n ∈ Z, then f ≡ 0 (Ch.2, Corollary 2.2).

3. Pointwise convergence: There exists a continuous function f such that SNf(x)
does not converge to f(x) for some x. This is a consequence of the fact that the
Dirichlet kernels are not uniformly bounded in L1.

In fact, there exist a dense Gδ subset E of C(T) such that for every f ∈ E, the
set Af = {x ∈ T : supN SN(f)(x) =∞} is a dense Gδ subset of T.



• If f ∈ L2(T):

1. Norm convergence: By Hilbert space theory, ‖SNf − f‖L2(T) → 0 as N → ∞
(Ch.3, Sec.1).

2. Plancherel’s identity holds: ‖f‖2L2(T) =
∞∑

n=−∞

|f̂(n)|2. This implies that the Fourier

transform is an isometric isomorphism between L2(T) and `2(Z) (Ch.3, Sec.1).

3. Pointwise convergence: By Carleson Theorem, SNf(x) converges to f(x) for
almost every x. (See discussion in page 5)

• If f ∈ L1(T):

1. If
∞∑

n=−∞

|f̂(n)| < ∞, then SNf converges uniformly to a continuous function g

such that f = g a.e. (Same proof as Ch.2, Corollary 2.3).

2. Uniqueness of Fourier series: If f̂(n) = 0 for every n ∈ Z, then f ≡ 0 a.e.,
and in particular f(x0) = 0 at any point x0 where f is continuous (Ch.2, Theorem
2.1).

3. Norm convergence: There exists a function f ∈ L1(T) such that SNf does
not converge to f in the L1 norm. This is because the L1-norms of the Dirichlet
kernels are not uniformly bounded (Ch.2 Prob 2).

4. Pointwise convergence: Kolmogorov constructed an explicit counterexample
of an L1 function whose Fourier series diverges everywhere.

5. Dini’s criterium and its consequences:

(a) At any point x0 where Dini’s criterium holds, SNf(x0) → f(x0) as N → ∞
(Ch.3, Sec.2).

(b) Localization: If f is identically 0 on an interval (a, b), then SNf(x) → 0 for
every x ∈ (a, b).

(c) Jump discontinuities: If f ∈ L1(T), and at a point x0 the lateral limits

f(x0+), f(x0−), f ′(x0+), f ′(x0−) exist, then SNf(x0)→
f(x0+) + f(x0−)

2
.

Also, Gibbs phenomenon shows that all the partial sums SNf overshoot f at
the jump point by approximately 9% of the jump at x0, (f(x0+)− f(x0−)).



OTHER MODES OF CONVERGENCE OF FOURIER SERIES

• Cesàro Convergence:

Let σNf(x) =
1

N

N−1∑
k=0

SNf(x) be the Cesàro sums of the Fourier series of f . Then

σNf(x) = FN ? f(x), where FN is the N -th Féjer kernel (a good kernel) and hence we
have:

1. If f ∈ C(T), σNf converges to f uniformly on T (Ch.2, Theorem 5.2).

2. If f ∈ Lp(T), 1 ≤ p <∞, then lim
N→∞

‖σNf − f‖Lp(T) = 0 (Class notes and Hw 1).

• Abel Convergence:

For 0 ≤ r < 1, let Arf(x) =
∞∑

n=−∞

r|n|f̂(n)einx be the Abel sums of the Fourier series of

f . Then Arf(x) = Pr ? f(x), where Pr is the Poisson kernel (a good kernel) and hence
we have:

1. If f ∈ C(T), Arf converges to f uniformly on T (Ch.2, Theorem 5.2).

2. If f ∈ Lp(T), 1 ≤ p <∞, then lim
r→1−

‖Arf − f‖Lp(T) = 0 (Class notes and Hw 1).

Besides results 1 and 2, that follow from the properties of good kernels, for Abel
summation we get much more:

3. If f ∈ L1(T) and we define u(r, θ) := Arf(θ), then u ∈ C∞((0, 1) × (0, 2π)), by
absolute and uniform convergence properties of power series.

4. If f ∈ L1(T), lim
r→1−

Arf(x) = f(x) a.e., by the weak-(1, 1) estimate for the Hardy-

Littlewood maximal function.



THE FOURIER TRANSFORM

Let f : R→ C be an L1(R) function. The (continuous) Fourier transform of f is defined by

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πixξdx.

• If f ∈ L1(R), then f̂ is continuous, and bounded by ‖f‖L1 .

• Riemann-Lebesgue: If f ∈ L1(R), lim
|ξ|→∞

|f̂(ξ)| = 0.

• By analogy with the summation of Fourier series, the inverse Fourier transform should
be given by f(x) =

∫∞
−∞ f̂(ξ)e2πixξdξ . But, in general, the Fourier transform of an L1

function is not in L1, hence the integral in the inversion formula is not well defined.

• Unlike in the case of Fourier series, where Lp(T) ⊆ L1(T) if p > 1, now there is no
relation between the spaces Lp(R) for different values of p. Hence the Fourier transform
is not (yet) defined for f ∈ Lp(R), p 6= 1.

• Let S be the class of Schwartz functions (C∞(R) functions whose decay at infinity is
faster than any polynomial, and whose derivatives also have this decay). Then:

1. S is a dense subspace of Lp(R), 1 ≤ p <∞. In particular, the Fourier transform
is well defined for f ∈ S.

2. If f ∈ S, then f̂ ∈ S and the inversion formula holds.

3. Plancherel: If f ∈ S, then ‖f‖L2(R) = ‖f̂‖L2(R).

• If f ∈ L2(R), we use Plancherel’s formula and the density of S in L2 to define the
Fourier transform of f . The Fourier transform thus defined is an isometric isomorphism
on L2(R) .

• Interpolation to Lp(R), 1 < p < 2: Since we have

‖f̂‖L∞ ≤ ‖f‖L1 ,

‖f̂‖L2 = ‖f‖L2

then, for p ∈ (1, 2) and f ∈ Lp(R), we get, by Riesz-Thorin interpolation,

‖f̂‖Lp′ ≤ ‖f‖Lp

where p′ = (p − 1)/p is the conjugate exponent of p. Thus the Fourier transform can

be defined for f ∈ Lp(R), 1 < p < 2, and in this case f̂ is a function in the dual space
Lp
′
(R).

• The Fourier transform of distributions. If f ∈ Lp(R) for p > 2, then in general
the Fourier transform of f is not a function, but it can be defined in the sense of
distributions: The Fourier transform of f is defined as the distribution T such that,
for every φ ∈ S,

〈T, φ〉 =

∫ ∞
−∞

f(x)φ̂(x)dx.



Recovering f from f̂ .

Given R ∈ R, R > 0, we define SR (the partial sums of the Fourier transform) by (SRf )̂(ξ) =

f̂(ξ)χ[−R,R](ξ), or equivalently by

SRf(x) =

∫ R

−R
f̂(ξ)e2πixξ dξ, (1)

and we study in which sense SRf converges to f as R→∞.

• If f ∈ S, f(x) =

∫ ∞
−∞

f̂(ξ)e2πixξ dξ, pointwise.

• If f ∈ L2(R), then ‖SRf − f‖2 → 0 as R→∞.

• If f ∈ Lp(R) for 1 ≤ p < ∞, then ‖SRf − f‖p → 0 as R → ∞ if and only if there
exists a constant Cp > 0, independent on R, such that for every f ∈ Lp(R)

‖SRf‖p ≤ Cp‖f‖p. (2)

• For p = 1, the estimate (2) does not hold since the L1-norms of the Dirichlet kernels
are not uniformly bounded (Ch.2 Prob 2). Hence in general SRf does not converge to
f in the L1 norm.

• For 1 < p <∞, estimate (2) holds, and thus ‖SRf − f‖p → 0 as R→∞. This result
is a consequence of the boundedness of the Hilbert transform on Lp, 1 < p <∞.

• Pointwise Convergence: The pointwise convergence of the partial sums of Fourier
series for f ∈ Lp is one of the hardest results in Analysis. In 1966 L. Carleson proved
that if f ∈ L2, then the partial sums converge to f almost everywhere. (In the discrete
case, for all f ∈ L2(T), SNf(x) → f(x) a.e.x ∈ T, and in the continuous case, for
every f ∈ L2(R), SRf(x)→ f(x) a.e.x ∈ R). In 1968 Hunt extended this result to Lp,
1 < p <∞.

As mentioned in the first page, for L1 almost everywhere convergence fails. If we
consider Orlicz spaces, the best results so far are:

Antonov, 1996: For every f ∈ L log+(L) log+ log+ log+(L), the Fourier series of f
converges to f a.e.

Konyagin, 2000: There exists a function in L log+(L)1/2−ε whose Fourier series is ev-
erywhere divergent.

• Other modes of convergence: There is a version of the Féjer kernel FR for the
continuous Fourier transform, which is an approximate identity. Thus, if f is uniformly
continuous on R, FR ? f converges to f uniformly as R → ∞, and if f ∈ Lp(R) for
1 ≤ p <∞, ‖FR ? f − f‖p → 0 (see Ch.5 Ex.9).



APPLICATIONS OF FOURIER ANALYSIS SEEN IN CLASS

1. Solution of various differential equations (although convergence was not proved in
all cases):

The wave equation

• The vibrating string (Ch.1, Sec.1), with its conservation of energy (Ch.3, Ex.10).

• The general solution of the wave equation in dimensions 1, 2, 3 (Ch.6, Sec.3)

The Laplace equation

• The complete solution of the Dirichlet problem ∆u = f on the disc (Thm 2.5.7),
and the pointwise convergence of u to f (using the Hardy-Littlewood maximal
function). See Ch.2, Ex.18 for a non-uniqueness result (the function fails to verify
one of the conditions of Thm 2.5.7); and Problem 1 in HW2 for the maximum
principle.

• Dirichlet problem for the Laplacian on a rectangle (Ch.1, Prob 1), on a semi-
infinite strip (Ch.2, Ex.19), on an annulus (Ch.2, Ex.20), on the upper-half plane
(Ch.5, Sec.2)

• The fundamental radial solution for the Laplacian in R3 (class notes, Theory of
distributions).

The heat equation

• The heat equation on the upper-half-plane (Ch.5, Sec.2, Ex 11-12)

2. The Isoperimetric Inequality (Ch.4, Sec.1).

3. Weyl’s Equidistribution Theorem (Ch.4, Sec.2).

4. Construction of a continuous, nowhere differentiable function (Ch.4, Sec.3).

5. Poisson’s Summation Formula (Ch.5, Sec.3)

6. Heisenberg’s Uncertainty Principle (Ch.5, Sec.4)

7. Shannon’s Sampling Theorem (Ch.5, Ex.20)

Other applications that we have not seen include: Number theory (Chapter 8), Geomet-
ric tomography (reconstruction of images of a body from its lower-dimensional sections or
projections), and more...


