RESULTS ON CONVERGENCE OF FOURIER SERIES

(References are from the book Fourier Analysis: An introduction by Stein and Shakarchi)

Let f : [-m,m] — C be a Lebesgue integrable function. Then the Fourier coeffs of f are

defined by

Snf(z) =

J?n) = 5= [7 f(z)e"™*dx, and the partial sums of the Fourier series of f are
N

Z f(n)emx. Here are the results we have proved about the convergence of Sy f
n=—N

to f, ordered by decresing regularity of f:

o If f € CKT):

1.

If £ > 2, then |f(n)| = O(#) as n — oo, which implies that Sy f converges to f
uniformly on T (Chapter 2, Corollary 2.4, and Ex. 10).
Note: From Riemann-Lebesgue Lemma, we obtain a better decay of the coeffi-

cients: If £ > 0, then |f(n)| = o(-%) as n — oo (Ch.3, Ex.13).

An improvement: For k > 1, ||Sy f — f||ree(r) = O (W) as N — oo, and hence
Sy f converges to f uniformly on T (Class notes, Ch.3 Sec.2). See also Ch.3,
Ex.14 for the case k = 1.

e If f is Lipschitz:

~

1£(n)| = O(1/|n]) (Ch.3, Ex.15).

2. By Dini’s Criterium, Sy f(x) — f(z) for every # € T (Ch.3, Sec.2). Although by
Dini’s Criterium we cannot prove that the convergence is uniform, that is in fact
the case, as seen in Ch.3 Ex.16.

3. A slight variation of the arguments for f Lipschitz shows that if f is Holder-a for
0 < a <1, then [f(n)| = O(1/n|*). And if 1/2 < o < 1, the Fourier series of f
converges uniformly to f (Ch.3 Ex.15, 16).

o If f e C(T):
1. If Z |f(n)| < 00, then Sy f converges to f uniformly (Ch.2, Corollary 2.3).
2. If f(n) =0 for every n € Z, then f =0 (Ch.2, Corollary 2.2).

3. Pointwise convergence: There exists a continuous function f such that Sy f(z)

does not converge to f(z) for some z. This is a consequence of the fact that the
Dirichlet kernels are not uniformly bounded in L*.

In fact, there exist a dense Gy subset E of C(T) such that for every f € E, the
set Ay ={z € T :supy Sn(f)(z) = oo} is a dense G subset of T.



o If f € L*(T):

1.

Norm convergence: By Hilbert space theory, ||[Syf — fllz2r) — 0 as N — oo
(Ch.3, Sec.1).

Plancherel’s identity holds: || f H%Q(T) = Z \f(n)]Q This implies that the Fourier

transform is an isometric isomorphism between L?(T) and ¢*(Z) (Ch.3, Sec.1).

Pointwise convergence: By Carleson Theorem, Sy f(z) converges to f(x) for
almost every x. (See discussion in page 5)

o If f € LY(T):

CIf Z |f(n)| < 00, then Syf converges uniformly to a continuous function g

Sucﬁ;hat f =g a.e. (Same proof as Ch.2, Corollary 2.3).

-~

Uniqueness of Fourier series: If f(n) = 0 for every n € Z, then f = 0 a.e.,
and in particular f(zo) = 0 at any point xy where f is continuous (Ch.2, Theorem
2.1).

Norm convergence: There exists a function f € L'(T) such that Syf does
not converge to f in the L' norm. This is because the L!'-norms of the Dirichlet
kernels are not uniformly bounded (Ch.2 Prob 2).

. Pointwise convergence: Kolmogorov constructed an explicit counterexample

of an L' function whose Fourier series diverges everywhere.

Dini’s criterium and its consequences:

(a) At any point xy where Dini’s criterium holds, Sy f(z¢) — f(z0) as N — oo
(Ch.3, Sec.2).

(b) Localization: If f is identically 0 on an interval (a,b), then Sy f(x) — 0 for
every = € (a,b).
(c) Jump discontinuities: If f € L'(T), and at a point z, the lateral limits

f(zo+), f(zo—), f'(xo+), f/(xo—) exist, then Sy f(xg) — f(wot) —12_ f(xo—).

Also, Gibbs phenomenon shows that all the partial sums Sy f overshoot f at
the jump point by approximately 9% of the jump at zo, (f(xo+) — f(zo—)).



OTHER MODES OF CONVERGENCE OF FOURIER SERIES

e Cesaro Convergence:

N-1
1
Let onf(z) = N Z Snyf(x) be the Cesaro sums of the Fourier series of f. Then
k=0

onf(z) = Fy * f(z), where Fy is the N-th Féjer kernel (a good kernel) and hence we
have:

1. If f € C(T), on f converges to f uniformly on T (Ch.2, Theorem 5.2).
2. If f € LP(T), 1 < p < 0o, then A}im lonf — fllze(r) = 0 (Class notes and Hw 1).
—00

e Abel Convergence:

For0<r <1, let A, f(x) = Z T'”‘f(n)eim be the Abel sums of the Fourier series of

n=—oo

f. Then A, f(z) = P, x f(x), where P, is the Poisson kernel (a good kernel) and hence
we have:

1. If f € C(T), A, f converges to f uniformly on T (Ch.2, Theorem 5.2).
2. If fe LP(T), 1 <p < oo, then lim [|A,f — f||Lr(r) = 0 (Class notes and Hw 1).
r—1-

Besides results 1 and 2, that follow from the properties of good kernels, for Abel
summation we get much more:

3. If f € LY(T) and we define u(r,0) := A, f(0), then u € C*°((0,1) x (0,27)), by
absolute and uniform convergence properties of power series.

4. If f € LYT), lim A,f(z) = f(z) a.e., by the weak-(1,1) estimate for the Hardy-
r—1-

Littlewood maximal function.



THE FOURIER TRANSFORM

Let f: R — C be an L'(R) function. The (continuous) Fourier transform of f is defined by

/ f —27rza:§ dr.

o If f € L'(R), then fis continuous, and bounded by || f]|z:.

e Riemann-Lebesgue: If f € L'(R), glim 17(6)| =0.
| =00

e By analogy Wlth the summation of Fourier series, the inverse Fourier transform should
be given by f(z) = [~ F(©)e*mimsd¢ . But, in general, the Fourier transform of an L'
function is not in L1 hence the integral in the inversion formula is not well defined.

e Unlike in the case of Fourier series, where LP(T) C L'(T) if p > 1, now there is no
relation between the spaces LP(R) for different values of p. Hence the Fourier transform

is not (yet) defined for f € LP(R), p # 1.

e Let S be the class of Schwartz functions (C*°(R) functions whose decay at infinity is
faster than any polynomial, and whose derivatives also have this decay). Then:

1. S is a dense subspace of LP(R), 1 < p < co. In particular, the Fourier transform
is well defined for f € S.
2. If fe&, then fE S and the inversion formula holds.
3. Plancherel: If f € S, then || f||.2®) = ||ﬂ|L2(R).
o If f € L*(R), we use Plancherel’s formula and the density of S in L? to define the

Fourier transform of f. The Fourier transform thus defined is an isometric isomorphism
on L*(R) .

e Interpolation to L*(R), 1 < p < 2: Since we have

1F = < N flles

Il = 1]l
then, for p € (1,2) and f € LP(R), we get, by Riesz-Thorin interpolation,
Il < N1l

where p’ = (p — 1)/p is the conjugate exponent of p. Thus the Fourier transform can
be defined for f € LP(R), 1 < p < 2, and in this case f is a function in the dual space
LP (R).

e The Fourier transform of distributions. If f € LP(R) for p > 2, then in general
the Fourier transform of f is not a function, but it can be defined in the sense of
distributions: The Fourier transform of f is defined as the distribution 7" such that,

for every ¢ € S, .
T.0)= [ @i



Recovering f from J?

Given R € R, R > 0, we define Sy (the partial sums of the Fourier transform) by (Sgf)(£) =
f (f)X[fR,R] (&), or equivalently by

Snf(x) = / Flee e 1)

and we study in which sense Sgf converges to f as R — oc.

e Iffes, fla)= /OO f(f)e%m& d€, pointwise.

e If f € L*(R), then ||Srf — f|l2 — 0 as R — oo.

o If f € LP(R) for 1 < p < oo, then [|[Sgf — f|l, — 0 as R — oo if and only if there
exists a constant C), > 0, independent on R, such that for every f € LP(R)

“SRpr < Op“f”p' (2)

e For p = 1, the estimate (2) does not hold since the L'-norms of the Dirichlet kernels
are not uniformly bounded (Ch.2 Prob 2). Hence in general Sk f does not converge to
f in the L' norm.

e For 1 < p < oo, estimate (2) holds, and thus ||Sgf — f|l, = 0 as R — oo. This result
is a consequence of the boundedness of the Hilbert transform on I, 1 < p < oo.

e Pointwise Convergence: The pointwise convergence of the partial sums of Fourier
series for f € LP is one of the hardest results in Analysis. In 1966 L. Carleson proved
that if f € L?, then the partial sums converge to f almost everywhere. (In the discrete
case, for all f € L*(T), Syf(z) — f(x) a.e.x € T, and in the continuous case, for
every f € L*(R), Sgf(x) — f(z) a.e.x € R). In 1968 Hunt extended this result to L?,
1 <p<oo.

As mentioned in the first page, for L! almost everywhere convergence fails. If we
consider Orlicz spaces, the best results so far are:

Antonov, 1996: For every f € Llog,(L)log, log, log, (L), the Fourier series of f
converges to f a.e.

Konyagin, 2000: There exists a function in Llog, (L)!/*~¢ whose Fourier series is ev-
erywhere divergent.

e Other modes of convergence: There is a version of the Féjer kernel Fg for the
continuous Fourier transform, which is an approximate identity. Thus, if f is uniformly
continuous on R, Fg + f converges to f uniformly as R — oo, and if f € LP(R) for
1<p<oo, [[FrR*f— fllp = 0 (see Ch.5 Ex.9).



1.

6.
7.

APPLICATIONS OF FOURIER ANALYSIS SEEN IN CLASS

Solution of various differential equations (although convergence was not proved in
all cases):

The wave equation

e The vibrating string (Ch.1, Sec.1), with its conservation of energy (Ch.3, Ex.10).

e The general solution of the wave equation in dimensions 1, 2, 3 (Ch.6, Sec.3)
The Laplace equation

e The complete solution of the Dirichlet problem Au = f on the disc (Thm 2.5.7),
and the pointwise convergence of u to f (using the Hardy-Littlewood maximal
function). See Ch.2, Ex.18 for a non-uniqueness result (the function fails to verify
one of the conditions of Thm 2.5.7); and Problem 1 in HW2 for the maximum
principle.

e Dirichlet problem for the Laplacian on a rectangle (Ch.1, Prob 1), on a semi-
infinite strip (Ch.2, Ex.19), on an annulus (Ch.2, Ex.20), on the upper-half plane
(Ch.5, Sec.2)

e The fundamental radial solution for the Laplacian in R3 (class notes, Theory of
distributions).

The heat equation
e The heat equation on the upper-half-plane (Ch.5, Sec.2, Ex 11-12)

The Isoperimetric Inequality (Ch.4, Sec.1).

. Weyl’s Equidistribution Theorem (Ch.4, Sec.2).

Construction of a continuous, nowhere differentiable function (Ch.4, Sec.3).
Poisson’s Summation Formula (Ch.5, Sec.3)
Heisenberg’s Uncertainty Principle (Ch.5, Sec.4)

Shannon’s Sampling Theorem (Ch.5, Ex.20)

Other applications that we have not seen include: Number theory (Chapter 8), Geomet-
ric tomography (reconstruction of images of a body from its lower-dimensional sections or
projections), and more...



