
FINITE FOURIER ANALYSIS

NEIL LYALL

1. The group ZN

Let N be a positive integer. A complex number z is an N th root of unity if zN = 1. It is
then easy to verify that the set of N th roots of unity is precisely{

1, e2πi/N , e2πi2/N , . . . , e2πi(N−1)/N
}

.

In fact, if we let ω = e2πi/N we find that ωn exhausts all the N th roots of unity and

ωn = ωm ⇔ n−m is divisible by N.

We denote the set of all N th roots of unity by ZN . It is an easy exercise (do it!) to see that
ZN is an abelian group under complex multiplication.

It turns out that there is another natural way to visualize the group ZN . We can associate
to each root of unity ζ the integer n so that ωn = ζ. We observed above that this integer is
not unique, in fact we saw that there is a whole class of such integer with the property that
any two members of the class must differ by an integer multiple of N .

Two integers x and y whose difference x − y is divisible by N are said to be congruent
modulo N , usually denoted x ≡ y mod N . It is an easy exercise to see that this defines
an equivalence relation on Z. Let R(x) denote the equivalence class of an integer x. There
are precisely N equivalence classes, and each class has a unique representative (element)
between 0 and N − 1. We may add equivalence classes by defining

R(x) + R(y) = R(x + y).

This definition is independent of the representatives x and y (check!) and turns the set of
equivalence classes into an abelian group called the group of integers modulo N , sometimes
denoted by Z/NZ.

The association

R(k) ↔ e2πik/N

gives a correspondence between the two groups, Z/NZ and ZN . Since the operations are
respected, in the sense that addition of integers modulo n becomes multiplication of complex
numbers, we shall also denote the group of integers modulo N by ZN . Observe that 0 (or
N) ∈ Z/NZ corresponds to 1 on the unit circle.
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Let V and W denote the vector spaces of complex-valued functions on the group of integers
modulo N and the N th roots of unity, respectively. Then, the identification given above
carries over to V and W as follows

F (k) ↔ f(e2πik/N),

where F is a function on the group of integers modulo N and f is a function on the N th

roots of unity.

From now on, we write ZN but think of either the group of N th roots of unity or the group
of integers modulo N , which can of course be identified with the set {1, . . . , N}.

2. Functions on ZN

The vector space V of all complex-valued functions f : ZN → C can be identified with the
n-dimensional complex Euclidean space by assigning the vector: vf = (f(1), . . . , f(n)) to
the function f . V is therefore endowed with the (Hermitian) inner product

(1) (f, g) =
N∑

n=1

f(n)g(n)

(where z stands for the complex conjugate of z) and associated `2-norm

(2) ‖f‖2 = (f, f)1/2.

This inner product and associated norm satisfies the following usual properties.

Proposition 2.1. If f, g, h ∈ V and λ, µ are complex numbers then

(i) (f, g) = (g, f)
(ii) (f, f) ≥ 0 and (f, f) = 0 if and only if f = 0.
(iii) (λf + µg, h) = λ(f, h) + µ(g, h).

Proposition 2.2. For f, g,∈ V and λ ∈ C one has

(i) ‖λf‖2 = |λ|‖f‖2

(ii) ‖f + g‖2 ≤ ‖f‖2 + ‖g‖2 (triangle inequality)

where equality holds in (ii) if and only if f and g are linearly dependent.

The proofs of all these properties except the triangle inequality are immediate. In order to
establish the triangle inequality we need the following important inequality.

Proposition 2.3. Cauchy-Schwarz Inequality. If f, g ∈ V then one has

(3) |(f, g)| ≤ ‖f‖2‖g‖2,

where equality holds if and only if f and g are linearly dependent.



FINITE FOURIER ANALYSIS 3

Proof. If f and g are linearly dependent - say f = λg where λ ∈ C, then we clearly have
equality. Suppose now that f and g are linear independent: we must show that (3) hold
with strict inequality. For any λ ∈ C, f + λg 6= 0 and therefore

0, (f = λg, f + λg)

= (f, f) + (f, λg) + (λg, f) + (λg, λg)

= ‖f‖2
2 + λ(f, g) + λ(f, g) + |λ|2‖g‖2

2

= ‖f‖2
2 + 2 Re{λ(f, g)}+ |λ|2‖g‖2

2

We now pick a complex number u of unit modulus such that u(f, g) = |(f, g)|. On putting
λ = tu we deduce that for any t ∈ R,

0 < ‖f‖2
2 + 2t|(f, g)|+ t2‖g‖2

2.

This can only happen if the real quadratic on the right has negative discriminant: that is

4|(f, g)|2 − 4‖f‖2
2‖g‖2

2 < 0,

which yields the desired conclusion. �

Next, we introduce a special basis for the space V consisting of the so-called characters of
the group ZN . For 1 ≤ j ≤ N , let ej : ZN → C be defined by ej(k) = e2πijk/N = ωjk.

Proposition 2.4.

(i) ej(0) = 1 and |ej(k)| = 1 for all j and k
(ii) ej(k + l) = ej(k) · ej(l)
(iii) The functions ej (1 ≤ j ≤ N) form an orthogonal basis of the space V , more precisely

one has

(4) (ej, ek) =

{
N if j = k
0 otherwise

Proof. Parts (i) and (ii) are obvious from the definition and so is part (iii) when j = k. Note,
that if j 6= k then e2πi(j−k)/N 6= 1, and the inner product is the geometric series:

(5) (ej, ek) =
N∑

`=1

e2πi(j−k)`/N =
e2πi(j−k) − 1

e2πi(j−k)/N − 1
= 0.

It follows that the functions ej are linearly independent, indeed if
∑N

j=1 λjej = 0 then taking
the inner product of this sum with ek one gets Nλk = 0. They form a basis since the space
V has dimension N . �

Note that if the δ0 denotes the Delta function, that is δ0(0) = 1 and δ0(k) = 0 if k 6= 0, then
(4) can be written in the more compact form: (ej, ek) = Nδ0(j − k).
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3. Fourier analysis on ZN

Definition 3.1. The (discrete) Fourier transform f̂ , of a function f : ZN → C is defined
by

(6) f̂(k) = (f, ek) =
N∑

x=1

f(x)e−2πixk/N

Of fundamental importance are the following.

Theorem 3.2. Let f, g ∈ V . Then one has

(i) Fourier inversion formula

(7) f(x) =
1

N

∑
k

f̂(k)e2πixk/N

(ii) Parseval’s formula

(8)
∑

x

f(x)g(x) =
1

N

∑
k

f̂(k)ĝ(k)

(iii) Plancherel’s formula

(9)
∑

x

|f(x)|2 =
1

N

∑
k

|f̂(k)|2

Proof. All three formulae follows from (6) �

One of the reasons that the Fourier transform: F : f → f̂ has wide range of applications
is that it has many algebraic properties. Among them is the fact that it takes convolutions
into pointwise multiplication.

Definition 3.3. Let f, g ∈ V . The convolution f ∗ g is defined by

(10) f ∗ g(x) =
∑

y

f(y)g(x− y)

The summation, as always in this section is taken over elements of ZN , unless specified
otherwise. Note that f ∗ g = g ∗ f as can be seen by making the substitution: y := x− y in
the sum.

Proposition 3.4. One has

(11) f̂ ∗ g(k) = f̂(k)ĝ(k)
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Proof. The left side of (11) is of the form∑
x

∑
y

f(y)g(x− y)e−2πiyk/Ne−2πi(x−y)k/N =
∑

x

f(x)e−2πixk/N ·
∑

y

g(y)e−2πiyk/N = f̂(k)ĝ(k)

�

4. Execises

1. Prove all three parts of Theorem 3.2.

2. Again let ω = e2πi/N , we now use this to define the following N ×N matrix;

M = N−1/2(ajk)1≤j,k≤N where ajk = ωjk.

Show that M is unitary and hence
(i) (Mu, Mu) = (u, u)
(ii) (Mu, Mv) = (u, v)
(iii) M∗ = M−1, where M∗ denote the conjugate transpose of M .

Interpret these observations in terms of the Fourier transform.

3. For f, g ∈ V one could define the following “twisted” version of convolution, namely

f ? g(x) =
∑

y

f(y)g(y − x).

Verify that

f̂ ? g(k) = f̂(k)ĝ(k)

4. Use Exercise 3 above and Parseval’s formula to show∑
k

|f̂(k)|2|ĝ(k)|2 = N
∑

x

∣∣∣∣∣∑
y

f(y)g(y − x)

∣∣∣∣∣
2

and consequently ∑
k

|f̂(k)|4 = N
∑

a−b=c−d

f(a)f(b)f(c)f(d).

5. Show that if A ⊂ Zn and f = χA (the indicator function of A), then

#{(x, x + s, x + t, x + s + t) ∈ A4} =
1

N

∑
k

|f̂(k)|4

6. Quadruples of the form (x, x + s, x + t, x + s + t) are called squares. Show that if
A ⊂ ZN of cardinality δN , then it contains at least δ4N3 squares. If A were a random
set of size δN , then how many squares would you expect A to contain?
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7. Can you establish the lower bound for the number of square stated in exercise 6
without resorting to Fourier analysis?

Hint: Consider the relationship between the number of square and the size of the
set |A ∩ (A + k)|.

8. Given a set A with cardinality δN , let us define the balanced function of A to be
fA : ZN → [−1, 1] where

fA(s) =

{
1− δ s ∈ A

−δ s /∈ A.

How does this function relate to χA? Show that
(i)

∑
s fA(s) = 0, we say that fA has mean value zero (hence the term balanced).

(ii) f̂A(r) = χ̂A(r) for r 6= 0.

9. Use the Fourier transform to express the number of solutions to the equations

(i) x + y = z and (ii) x + y = 2z

in ZN and in any subset A of ZN .

10. Verify that if f is a function from ZN to the closed unit disc in C, then the following
are equivalent

(i)
∑

k

∣∣∣∑s f(s)f(s− k)
∣∣∣2 ≤ c1N

3

(ii)
∑

a−b=c−d f(a)f(b)f(c)f(d) ≤ c1N
3

(iii)
∑

r |f̂(r)|4 ≤ c1N
4

(iv) maxr |f̂(r)| ≤ c2N

(v)
∑

k

∣∣∣∑s f(s)g(s− k)
∣∣∣2 ≤ c3N

2‖g‖2
2 for every function g : ZN → C

where when we say that one property involving ci implies another involving cj we
mean that whenever the first holds, then then second holds for a constant cj that
tends to zero as ci tends to zero.


