
Homework 5 Solution

Yikun Zhang1

Chapter 2. Ex.13 The purpose of this exercise is to prove that Abel summability is stronger
than the standard or Cesáro methods of summation.

(a) Show that if the series
∞∑
n=1

cn of complex numbers converges to a finite limit s, then the

series is Abel summable to s.
(b) However, show that there exist series which are Abel summable, but that do not converge.

(c) Argue similarly to prove that if a series
∞∑
n=1

cn is Cesáro summable to σ, then it is Abel

summable to σ.
(d) Give an example of a series that is Abel summable but not Cesáro summable.
The results above can be summarized by the following implications about series:

convergent =⇒ Ceráro summable =⇒ Abel summable,

and the fact that none of the arrows can be reversed.

Proof. (a) Without loss of generality, we assume that s = 0. In fact, if
∞∑
n=1

cn = s 6= 0, we can

simply define dn = cn − s
2n

and
∞∑
n=1

dn = 0.

Letting s1 = c1, sN = c1 + c2 + · · ·+ cN , we have

N∑
n=1

cnr
n =

N−1∑
n=1

(sn+1 − sn)rn+1 + c1r

=
N∑

n=1

snr
n −

N−1∑
n=1

snr
n+1

= (1− r)
N∑

n=1

snr
n + sNr

N+1.

(1)

With the assumption that s = 0, we will obtain that
∞∑
n=1

cnr
n = (1− r)

∞∑
n=1

snr
n as N →∞ in

the preceding equation.
For any ε > 0, we may choose N large enough such that |sn| < ε when n > N . Also, there
exists an M > 0 such that sup

n∈N
|sn| ≤M .
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Then we have

|
∞∑
n=1

cnr
n| = |(1− r)

∞∑
n=1

snr
n|

≤ |(1− r)
N∑

n=1

snr
n|+ |(1− r)

∞∑
n=N+1

snr
n|

< (1− r)
N∑

n=1

Mrn + (1− r) εr
N

1− r

≤Mr(1− rN) + ε.

(2)

Thus, lim
r→1−

sup |
∞∑
n=1

cnr
n| ≤ ε. Since ε is arbitrary, we have lim

r→1−

∞∑
n=1

cnr
n = 0.

(b) Consider cn = (−1)n. The partial sum sN =
N∑

n=1

cn is −1 when N is odd and 0 when N is

even. Thus it does not converge. However, its Abel limit is lim
r→1−

∞∑
n=1

(−r)n = lim
r→1−

−r
1+r

= −1
2
.

(c) First we let σN = s1+s2+···+sN
N

and obtain that s1 = σ1, sN = NσN − (N − 1)σN−1.
Then assuming σ = 0 and by (a), we obtain that

N∑
n=1

cnr
n = (1− r)

N∑
n=1

snr
n + sNr

N+1

= (1− r)
N∑

n=1

[nσn − (n− 1)σn−1]r
n + [NσN − (N − 1)σN−1]r

N+1

= (1− r)
N∑

n=1

nσnr
n − (1− r)

N−1∑
n=1

nσnr
n + [NσN − (N − 1)σN−1]r

N+1

(1− r)2
N∑

n=1

nσnr
n + (2− r)NσNrN+1 − (N − 1)σN−1r

N+1.

(3)

Since {σn} is bounded and the series
∞∑
n=1

rn converges for any 0 < r < 1, the derivative of
∞∑
n=1

rn

with respect to r also converges, yielding that the single items NrN−1 and (N − 1)rN−2 tend
to 0 as N →∞.

Letting N →∞ in the previous equation, we have
∞∑
n=1

cnr
n = (1− r)2

∞∑
n=1

nσnr
n.

With the assumption σ = 0, we can choose N large enough such that |σn| < ε when n > N for
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any ε > 0. Meanwhile, there exists a B > 0 such that |σn| ≤ B for all n ∈ N. Therefore,

|
∞∑
n=1

cnr
n| = |(1− r)2

∞∑
n=1

nσnr
n|

≤ (1− r)2
N∑

n=1

Bnrn + (1− r)2
∞∑

n=N+1

εnrn

= (1− r)2Br − (N + 1)rN+1 +NrN+2

(1− r)2
+ (1− r)2ε(N + 2)rN+1 − (1 +N)rN+2

(1− r)2

= B[r − (N + 1)rN+1 +NrN+2] + ε[(N + 2)rN+1 − (1 +N)rN+2].

(4)

As r → 1−, we have lim
r→1−

sup |
∞∑
n=1

cnr
n| ≤ ε, i.e., lim

r→1−

∞∑
n=1

cnr
n = 0 by the arbitrariness of ε.

In the case when σ 6= 0, we let d1 = c1 − σ, dn = cn for n > 1.

Then lim
r→1−

∞∑
n=1

dnr
n = 0 = lim

r→1−

∞∑
n=1

cnr
n − σ.

(d) Consider cn = (−1)n−1n. Then
∞∑
n=1

(−1)n−1nrn = −[
∞∑
n=1

(n+ 1)(−r)n −
∞∑
n=1

(−r)n] = r
(1+r)2

.

Thus its Abel limit is lim
r→1−

∞∑
n=1

(−1)n−1rn = lim
r→1−

r
(1+r)2

= 1
4
.

Note that the Cesáro sum has the property σn− (n−1
n

)σn−1 = an
n

. Hence for a Cesáro summable

series
∞∑
n=1

an, lim
n→∞

an
n

must be 0.

Therefore,
∞∑
n=1

(−1)n−1n is not Cesáro summable. �
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