
Homework 10 Solution

Yikun Zhang1

Chapter 5. Ex.9 If f is of moderate decrease, then∫ R

−R
(1− |ξ|

R
)f̂(ξ)e2πixξdξ = (f ∗ FR)(x), (1)

where the Fejér kernel on the real line is defined by

FR(t) =

{
R( sin πtR

πtR
)2 if t 6= 0,

R if t = 0.

Show that {FR} is a family of good kernels as R → ∞, and therefore (1) tends uniformly to
f(x) as R → ∞. This is the analogue of Fejér’s theorem for Fourier series in the context of
the Fourier transform.

Proof. We first derive the explicit formula of the Fejér kernel from (1).

From (1), we know that (f ∗FR)(x) =
∫∞
−∞

∫ R
−R(1− |ξ|

R
)f(y)e2πi(x−y)ξdξdy, where we can change

the order of integration because f is of moderate decrease. Thus, if t 6= 0, then

FR(t) =

∫ R

−R
(1− |ξ|

R
)e2πitξdξ

=

∫ R

0

(1− ξ

R
)e2πitξdξ +

∫ 0

−R
(1 +

ξ

R
)e2πitξdξ

=
e2πitR − 1

2πit
− R

2πitR
e2πitR +

e2πitR − 1

(2πit)2R
+

1− e−2πitR

2πit
− −R

2πitR
e−2πitR − 1− e−2πitR

(2πit)2R

=
e2πitR + e−2πitR − 2

(2πit)2R

= R(
sinπtR

πtR
)2.

(2)

If t = 0, FR(t) =
∫ R
−R(1− |ξ|

R
)dξ = R.

Then, to prove that {FR} is a family of good kernels as R→∞, we first show that∫ ∞
−∞
FR(t)dt =

2

π

∫ ∞
0

(
sinu

u
)2du = − 2

π

sin2u

u

∣∣∞
0

+
2

π

∫ ∞
0

sin 2u

u
du = 1,

where we change the variable by u = πtR and use the fact that
∫∞
0

sinu
u
du = π

2
.

Since FR ≥ 0,
∫∞
−∞ |FR(t)|dt ≤M also holds.
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For any δ > 0,
∫
|t|>δ |FR(t)|dt =

∫
|u|>δπR

1
π
( sinu

u
)2du → 0 as R → ∞, since

∫∞
−∞( sin t

t
)2dt con-

verges.
As a consequence, by the continuity of f , (1) tends uniformly to f(x) as R→∞. �

Chapter 5. Ex.10 Below is an outline of a different proof of the Weierstrass approximation
theorem.
Define the Landau kernels by

Ln(x) =

{
(1−x2)n

cn
if − 1 ≤ x ≤ 1,

0if |x| ≥ 1,

where cn is chosen so that
∫∞
−∞ Ln(x)dx = 1. Prove that {Ln}n≥0 is a family of good kernels

as n → ∞. As a result, show that if f is a continuous function supported in [−1
2
, 1
2
], then

(f ∗ Ln)(x) is a sequence of polynomials on [−1
2
, 1
2
] which converges uniformly to f .

Proof. By the choice of cn, we immediately have
∫∞
−∞ Ln(x)dx = 1.

Since 1− x2 ≥ 1− x ≥ 0 when x ∈ [−1, 1], we obtain that

1 =

∫ 1

−1

(1− x2)n

cn
dx = 2

∫ 1

0

(1− x2)n

cn
dx ≥ 2

∫ 1

0

(1− x)n

cn
dx =

2

(n+ 1)cn
,

yielding that cn ≥ 2
n+1

.

Thus Ln(x) ≥ 0 and
∫∞
−∞ |Ln(x)|dx ≤M , where M is a constant.

Moreover, for any η > 0,
∫
|x|≥η Ln(x)dx = 2

∫ 1

η
(1−x2)n

cn
dx ≤ (n + 1)(1 − η)(1 − η2)n → 0, as

n→∞.
As a result, {Ln} is a family of good kernels and by Theorem 4.1 in Chapter 2, (f ∗ Ln)(x)
converges uniformly to f on [−1

2
, 1
2
] if f is a continuous function supported in [−1

2
, 1
2
].

Since Ln(x) indeed is a polynomial of x, (f ∗ Ln)(x) =
∫ 1/2

−1/2 f(y)Ln(x − y)dy is a sequence of

polynomials of x. �

Chapter 5. Ex.12 Show that the function defined by

u(x, t) =
x

t
Ht(x)

satisfied the heat equation for t > 0 and lim
t→0

u(x, t) = 0 for every x, but u is not continuous at

the origin.

Proof. We are just making some direct computations when verifying u(x, t) = x

2
√
πt

3
2
e−

x2

4t

satisfies the heat equation. We thus only write down the ultimate result

∂2u

∂x2
= (− 3x

4
√
πt

5
2

+
x3

8
√
πt

7
2

)e−
x2

4t =
∂u

∂t
.
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By L’Hospital Rule, lim
t→0

u(x, t) = lim
t→0

x

2
√
πt

3
2 e

x2
4t

= 0.

However, lim
x2=4ct,x→0

u(x, t) = lim
x→0

4c
3
2√
πx2

e−c =∞ 6= 0.

Thus u is not continuous at the origin. �
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