Homework 11 Solution

Yikun Zhang ${ }^{1}$

Chapter 5. Ex. 11 Suppose that u is the solution to the heat equation given by $u=f * \mathcal{H}_{t}$ where $f \in \mathcal{S}(\mathbb{R})$. If we also set $u(x, 0)=f(x)$, prove that u is continuous on the closure of the upper half-plane, and vanishes at infinity, that is,

$$
u(x, t) \rightarrow 0 \text { as }|x|+t \rightarrow \infty
$$

Proof. By Theorem 2.1 in Chapter 5, we know that u is continuous on the closure of the upper half-plane.
By definition, we have $u(x, t)=\int_{-\infty}^{\infty} f(x-y) \frac{1}{\sqrt{4 \pi t}} e^{-\frac{y^{2}}{4 t}} d y$.
Hence, on one hand, since $e^{-\frac{y^{2}}{4 t}} \leq 1$ and $f \in \mathcal{S}(\mathbb{R})$,

$$
|u(x, t)| \leq \frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} f(x-y) d y \leq \frac{C}{\sqrt{t}}
$$

where C is a constant.
On the other hand, since f is rapidly decreasing, $|f(x-y)| \leq \frac{C_{N}}{(1+|x-y|)^{N}} \leq \frac{4 C_{N}}{(1+|x|)^{N}}$ when $|y| \leq \frac{|x|}{2}$ and therefore

$$
|u(x, t)| \leq \frac{C_{N}}{(1+|x|)^{N}} \int_{-\infty}^{\infty} \mathcal{H}_{t}(y) d y+C t^{-\frac{1}{2}} e^{-\frac{x^{2}}{16 t}} \int_{|y| \geq \frac{|x|}{2}}|f(x-y)| d y \leq \frac{C}{1+|x|^{2}}+C t^{-\frac{1}{2}} e^{-\frac{c x^{2}}{t}}
$$

Thus, as $|x|+t \rightarrow \infty$, in the case when $|x| \leq t,|u(x, t)| \leq \frac{C}{\sqrt{t}} \rightarrow 0$ because $t \rightarrow \infty$;
otherwise, if $|x|>t,|u(x, t)| \leq \frac{C}{1+|x|^{2}}+C t^{-\frac{1}{2}} e^{-\frac{c x^{2}}{t}} \rightarrow 0$ because $|x| \rightarrow \infty$.

Chapter 5. Ex. 14 Prove that the periodization of the Fejér kernel \mathcal{F}_{N} on the real line is equal to the Fejér kernel for periodic functions of period 1. In other words,

$$
\sum_{n=-\infty}^{\infty} \mathcal{F}_{N}(x+n)=F_{N}(x)
$$

when $N \geq 1$ is an integer, and where

$$
F_{N}(x)=\sum_{n=-N}^{N}\left(1-\frac{|n|}{N}\right) e^{2 \pi i n x}=\frac{1}{N} \frac{\sin ^{2}(N \pi x)}{\sin ^{2}(\pi x)}
$$

[^0]Proof. Method 1: Consider

$$
\hat{f}(\xi)= \begin{cases}1-\frac{|\xi|}{N} & \text { if }|\xi| \leq N \\ 0 & \text { if }|\xi|>N\end{cases}
$$

Obviously, \hat{f} is at least of moderate decrease, since \hat{f} is continuous and supported in $[-N, N]$. Applying the Fourier inversion formula, we know that $f(x)=\mathcal{F}_{N}(x)=\int_{-N}^{N}\left(1-\frac{|\xi|}{N}\right) e^{2 \pi i \xi x} d \xi$, where \mathcal{F}_{N} is the Fejér kernel on the real line.
By the Poisson summation formula, we have

$$
\sum_{n=-\infty}^{\infty} \mathcal{F}_{N}(x+n)=\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{2 \pi i n x}=\sum_{n=-N}^{N}\left(1-\frac{|n|}{N}\right) e^{2 \pi i n x}=F_{N}(x)
$$

Method 2: Note that $N \geq 1$ is an integer. Hence, $\sum_{n=-\infty}^{\infty} \mathcal{F}_{N}(x+n)=\sum_{n=-\infty}^{\infty} N\left[\frac{\sin (\pi(x+n) N)}{\pi(x+n) N}\right]^{2}=$ $\sum_{n=-\infty}^{\infty} \frac{1}{N \pi^{2}} \cdot \frac{\sin ^{2}(\pi N x)}{(x+n)^{2}}=\frac{1}{N} \cdot \frac{\sin ^{2}(\pi N x)}{\sin ^{2}(\pi x)}$, where we use the formula for the Fejér kernel in Exercise 9 and the result of Exercise 15 (a).
Chapter 5. Ex. 15 This exercise provides another example of periodization.
(a) Apply the Poisson summation formula to the function g, where

$$
g(x)= \begin{cases}1-|x| & \text { if }|x| \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

and $\hat{g}(\xi)=\left(\frac{\sin \pi \xi}{\pi \xi}\right)^{2}$ to obtain

$$
\sum_{n=-\infty}^{\infty} \frac{1}{(n+\alpha)^{2}}=\frac{\pi^{2}}{(\sin \pi \alpha)}
$$

whenever α is real, but not equal to an integer.
(b) Prove as a consequence that

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} \frac{1}{(n+\alpha)}=\frac{\pi}{\tan \pi \alpha} \tag{1}
\end{equation*}
$$

whenever α is real but not equal to an integer.
Proof. (a) By direct calculations, we know that $\hat{g}(\xi)=\int_{-\infty}^{\infty} g(x) e^{-2 \pi i x \xi} d x=\left(\frac{\sin \pi \xi}{\pi \xi}\right)^{2}$.
Thanks to the bijective relation of the Fourier transform, we can regard g as the Fourier transform of \hat{g}, where both g and \hat{g} are of moderate decrease.
Therefore, by the Poisson summation formula, we have $\sum_{n=-\infty}^{\infty} \frac{\sin ^{2}[\pi(n+\alpha)]}{\pi^{2}(n+\alpha)^{2}}=\sum_{n=-\infty}^{\infty} g(n) e^{2 \pi i n \alpha}=1$, yielding that $\sum_{n=-\infty}^{\infty} \frac{1}{(n+\alpha)^{2}}=\frac{\pi^{2}}{(\sin \pi \alpha)^{2}}$.
(b) Assume that $0<\alpha<1$. For any $x \in[0,1], \sum_{n \neq 0} \frac{1}{(n+x)^{2}}$ converges absolutely and uniformly. Therefore,

$$
\int_{0}^{\alpha} \sum_{n \neq 0} \frac{1}{(n+x)^{2}} d x=\sum_{n \neq 0}\left[\int_{0}^{\alpha} \frac{d x}{(-n+x)^{2}}+\int_{0}^{\alpha} \frac{d x}{(n+x)^{2}}\right]=-\left(\frac{1}{-n+\alpha}+\frac{1}{n+\alpha}\right)
$$

Since $\lim _{x \rightarrow 0}\left[\frac{\pi^{2}}{(\sin \pi x)^{2}}-\frac{1}{x^{2}}\right]=\lim _{x \rightarrow 0} \frac{\pi^{2} x^{2}-\left[\pi x-(\pi x)^{3} / 3!+\cdots\right]^{2}}{x^{2}\left[\pi x-(\pi x)^{3} / 3!+\cdots\right]^{2}}=\lim _{x \rightarrow 0} \frac{\pi^{4} x^{4} / 3+o\left(x^{4}\right)}{\pi^{2} x^{4}+o\left(x^{4}\right)}=\frac{\pi^{2}}{3}$ and $\lim _{x \rightarrow 0}\left(-\frac{\pi}{\tan \pi x}+\frac{1}{x}\right]=$ 0 also via Taylor expansions, $\int_{0}^{\alpha}\left[\frac{\pi^{2}}{\sin ^{2}(\pi x)}-\frac{1}{x^{2}}\right] d x=-\frac{\pi}{\tan \pi \alpha}+\frac{1}{\alpha}$ makes sense. Thus, by integrating out x for $\sum_{n=-\infty}^{\infty} \frac{1}{(n+x)^{2}}=\frac{\pi^{2}}{(\sin \pi x)^{2}}$ on $[0, \alpha]$, we have $\frac{1}{\alpha}+\sum_{n=1}^{\infty}\left(\frac{1}{-n+\alpha}+\frac{1}{n+\alpha}\right)=$ $\frac{\pi}{\tan \pi \alpha}$. In the case when $\alpha=\frac{1}{2}$, the right hand side of (1) is 0 and its left hand side is $2+\sum_{n=1}^{\infty}\left(\frac{2}{2 n+1}-\frac{2}{2 n-1}\right)$, whose sum is also 0 .
Finally, for any $\alpha_{1} \in \mathbb{R}$, we can write it into $\alpha_{1}=\left[\alpha_{1}\right]+\alpha$, where $\alpha \in(0,1)$ and $\left[\alpha_{1}\right]$ is the least integer less than or equal to α_{1}. Then $\sum_{n=-\infty}^{\infty} \frac{1}{\left(n+\alpha_{1}\right)}=\sum_{n=-\infty}^{\infty} \frac{1}{(n+\alpha)}=\frac{\pi}{\tan \pi \alpha}=\frac{\pi}{\tan \pi \alpha_{1}}$.

[^0]: ${ }^{1}$ School of Mathematics, Sun Yat-sen University

