Homework 12 Solution

Yikun Zhang ${ }^{1}$

Chapter 5. Ex. 21 Suppose that f is continuous on \mathbb{R}. Show that f and \hat{f} cannot both be compactly supported unless $f=0$. This can be viewed in the same spirit as the uncertainty principle.
Proof. Assume that f is supported in $\left[0, \frac{1}{2}\right]$. We expand f in a Fourier series in the interval $[0,1]$, i.e., $f(x) \sim \sum_{n=-\infty}^{\infty} \hat{f}(n) e^{2 \pi i n x}$, where $\hat{f}(n)=\int_{0}^{1} f(x) e^{-2 \pi i n x} d x$.
By Fejér theorem, we know that $f(x)=\lim _{N \rightarrow \infty} \sigma_{N}(f)(x)=\lim _{N \rightarrow \infty} \frac{\sum_{k=0}^{N-1} S_{k}(f)(x)}{N}$.
If we suppose that \hat{f} is also compactly supported, then there exists an $M>0$ such that $\hat{f}(x)=0$ when $|x| \geq M$.
Thus, the preceding Cesàro mean is just a trigonometric polynomial.
However, a trigonometric polynomial of degree N has at most $2 N$ roots in the periodic interval (finite roots), contradicting to the fact that $f(x)=0$ when $x \in\left(\frac{1}{2}, 1\right)$ (infinite roots).
Hence f and \hat{f} cannot both be compactly supported unless $f=0$.

Chapter 5. Ex. 22 The heuristic assertion stated before Theorem 4.1 can be made precise as follows. If F is a function on \mathbb{R}, then we say that the preponderance of its mass is contained in an interval I (centered at the origin) if

$$
\begin{equation*}
\int_{I} x^{2}|F(x)|^{2} d x \geq \frac{1}{2} \int_{\mathbb{R}} x^{2}|F(x)|^{2} d x \tag{1}
\end{equation*}
$$

Now suppose $f \in \mathcal{S}$, and (1) holds with $F=f$ and $I=I_{1}$; also with $F=\hat{f}$ and $I=I_{2}$. Then if L_{j} denotes the length of I_{j}, we have

$$
L_{1} L_{2} \geq \frac{1}{2 \pi}
$$

A similar conclusion holds if the intervals are not necessarily centered at the origin.
Proof. Given the conditions, we have $\frac{1}{2} \int_{\mathbb{R}} x^{2}|f(x)|^{2} d x \leq \int_{I_{1}} x^{2}|f(x)|^{2} d x \leq\left(\frac{L_{1}}{2}\right)^{2} \int_{\mathbb{R}}|f(x)|^{2} d x$ and $\frac{1}{2} \int_{\mathbb{R}} x^{2}|\hat{f}(x)|^{2} d x \leq \int_{I_{2}} x^{2}|\hat{f}(x)|^{2} d x \leq\left(\frac{L_{2}}{2}\right)^{2} \int_{\mathbb{R}}|\hat{f}(x)|^{2} d x$, where I_{1}, I_{2} are centered at the

[^0]origin. Meanwhile,
\[

$$
\begin{align*}
\int_{\mathbb{R}}|f(x)|^{2} d x & =\int_{\mathbb{R}} x\left(f^{\prime}(x) \overline{f(x)}+f(x) \overline{f^{\prime}(x)}\right) d x \\
& \leq 2 \int_{\mathbb{R}}|x| \cdot|f(x)| \cdot\left|f^{\prime}(x)\right| d x \\
& \leq 2\left(\int_{\mathbb{R}}|x|^{2}|f(x)|^{2} d x\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}}\left|f^{\prime}(x)\right|^{2} d x\right)^{\frac{1}{2}} \tag{2}\\
& =2\left(\int_{\mathbb{R}}|x|^{2}|f(x)|^{2} d x\right)^{\frac{1}{2}}\left(4 \pi^{2} \int_{\mathbb{R}} \xi^{2}|\hat{f}(\xi)|^{2} d \xi\right)^{\frac{1}{2}}
\end{align*}
$$
\]

where we use the Cauchy-Schwarz inequality, properties of the Fourier transform, and the Plancherel formula in $\mathcal{S}(\mathbb{R})$.
Therefore, we obtain that

$$
\begin{align*}
\left(\int_{\mathbb{R}}|f(x)|^{2} d x\right)^{2} & \left.\leq 16 \pi^{2}\left(\int_{\mathbb{R}}|x|^{2}|f(x)|^{2} d x\right)\right)\left(\int_{\mathbb{R}} \xi^{2}|\hat{f}(\xi)|^{2} d \xi\right) \\
& \leq 4 \pi^{2} L_{1}^{2} L_{2}^{2}\left(\int_{\mathbb{R}}|f(x)|^{2} d x\right)\left(\int_{\mathbb{R}}|\hat{f}(\xi)|^{2} d \xi\right) \tag{3}
\end{align*}
$$

Again by the Plancherel formula, we have $\int_{\mathbb{R}}|f(x)|^{2} d x=\int_{\mathbb{R}}|\hat{f}(\xi)|^{2} d \xi$ and the result follows from the preceding inequality.

[^0]: ${ }^{1}$ School of Mathematics, Sun Yat-sen University

