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• http://snap.stanford.edu/class/cs224w-2015/recitation/linear_algebra.pdf.

Note: We only discuss the vectors and matrices with real entries in this note, though the
stated results also hold for complex entries.

1 Vector Space, Span, and Linear Independence

Vector space: A vector space over the real numbers R is a set of vectors that is closed
under additions with an identity as the zero vector 0 and additive inverses in the set. It is
also closed under scalar multiplications of the vectors by elements in R.
The most common vector space in Machine Learning is the Euclidean space Rn, which
consists of all ordered n-tuples of real numbers. A vector of Rn can be denoted by

x =


x1

x2
...
xn


or a row vector xT = [x1, ..., xn], where xi, i = 1, ..., n are called its components or coordinates.

1.1 Vector Operations

Dot/Inner product: The geometric properties of Rn are derived from the Euclidean dot
product defined as:

⟨x,y⟩ = xTy = x1y1 + · · ·+ xnyn =
n∑

i=1

xiyi,

1See http://faculty.washington.edu/yenchic/20A_stat512.html.
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where x = [x1, ..., xn]
T and y = [y1, ..., yn]

T are in Rn.

Orthogonality: Two vectors in Rn are orthogonal if and only if their dot product is zero.
In R2, we also call orthogonal vectors perpendicular.

Norm: The standard ℓ2-norm or length of a vector x = [x1, ..., xn]
T ∈ Rn is given by

||x||2 =
√

x2
1 + · · ·+ x2

n.

Other possible norms in Rn include

• ℓp-norm: ||x||p =
(

n∑
i=1

xp
i

) 1
p

. It reduces to the above ℓ2-norm when p = 2.

• ℓ∞-norm: ||x||∞ = max
i=1,...,n

|xi|. Notice that ||x||∞ ≤ ||x||p ≤ n
1
p ||x||∞.

When the context is clear, we often write the norm of a vector x as ||x||. The norms in Rn

can be used to measure distances between data points (or vectors) in Rn.

Triangle inequality: For two vectors x,y and any norm ||·|| in Rn, the triangle inequality
states that

||x+ y|| ≤ ||x||+ ||y|| ,
and its reverse version goes as

||x− y|| ≥
∣∣∣ ||x|| − ||y||

∣∣∣.
1.2 Subspaces and Span

Subspace of Rn: A subspace of Rn is a subset of Rn that is, by itself, a vector space over
R using the same operations of vector addition and scalar multiplication in Rn. In other
words, a subset of Rn is a subspace precisely when it is closed under these two operations.

Linear combination: A linear combination of the vectors v1, ...,vk (in Rn) is any expression
of the form a1v1 + · · · + akvk, where k is a positive integer and a1, ..., ak ∈ R. Note that
some of a1, ..., ak may be zero.

Span: The span of a set S of vectors consists of all possible linear combinations of finitely
many vectors in S, i.e.,

spanS = {a1v1 + · · ·+ akvk : v1, ...,vk ∈ S, a1, ..., ak ∈ R, and k = 1, 2, ...} .

1.3 Linear Independence

The vectors v1, ...,vk (in Rn) are linearly dependent if and only if there exist a1, ..., ak ∈ R,
not all zero, such that a1v1 + · · ·+ akvk = 0.

A finite set of vectors v1, ...,vk (in Rn) is linearly independent if it is not linearly dependent.
In other words, we cannot write any vector in v1, ...,vk in terms of a linear combination of
the other vectors.
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2 Matrices

A m× n matrix A ∈ Rm×n is an array of mn numbers as

A =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn

 .

It represents the linear mapping (or linear transformation) from Rn to Rm as

x 7→ Ax =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn



x1

x2
...
xn

 =



n∑
i=1

A1ixi

n∑
i=1

A2ixi

...
n∑

i=1

Amixi


for any x =


x1

x2
...
xn

 ∈ Rn.

Here, the linearity means that A(ax+ by) = aAx+ bAy for any x,y ∈ Rn and a, b ∈ R. In
particular, when m = n, A ∈ Rn×n is called a square matrix.

2.1 Matrix Operations

Matrix addition: If A,B are both m× n matrices, then the matrix addition is defined as
elementwise additions as:

[A+B]ij = Aij +Bij.

Example 1. Here is an example of a matrix addition for two matrices in R2×2 as[
1 2
3 4

]
+

[
5 6
7 8

]
=

[
1 + 5 2 + 6
3 + 7 4 + 8

]
=

[
6 8
10 12

]
.

Matrix multiplication: For two matrices A ∈ Rm×n, B ∈ Rn×p, the product AB is a m×p
matrix, whose (i, j)-entry is

[AB]ij =
n∑

k=1

AikBkj

for all 1 ≤ i ≤ m and 1 ≤ j ≤ p.

Example 2. Here is an example of the matrix multiplication for two square matrices in
R2×2 as [

1 2
3 4

]
·
[
5 6
7 8

]
=

[
1× 5 + 2× 7 1× 6 + 2× 8
3× 5 + 4× 7 3× 6 + 4× 8

]
=

[
19 22
43 50

]
.

We can also multiply non-square matrices when their dimensions are matched (i.e., the
number of columns of the first matrix should be equal to the number of rows of the second
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matrix) as1 2
3 4
5 6

 ·
[
1 2 3
4 5 6

]
=

1 · 1 + 2 · 4 1 · 2 + 2 · 5 1 · 3 + 2 · 6
3 · 1 + 4 · 4 3 · 2 + 4 · 5 3 · 3 + 4 · 6
5 · 1 + 6 · 4 5 · 2 + 6 · 5 5 · 3 + 6 · 6

 =

 9 12 15
19 26 33
29 40 51

 .

Properties of matrix multiplications:

• Associativity : (AB)C = A(BC).

• Distributivity: A(B + C) = AB + AC.

• However, matrix multiplication is in general not commutative. That is, AB is not
necessarily equal to BA.

• The matrix multiplication between a 1-by-n matrix and an n-by-1 matrix is the same
as taking the dot product of the corresponding vectors.

Matrix transpose: If A = [Aij] ∈ Rm×n, then its transpose AT is a n ×m matrix, whose
(i, j)-entry is Aji. That is, [A

T ]ij = Aji.

Example 3. Here is an example of transposing a 3×2 matrix, where we switch the matrix’s
rows with its columns as 1 2

3 4
5 6

T

=

[
1 3 5
2 4 6

]
.

Properties of matrix transpose:

• (AT )T = A for any matrix A ∈ Rm×n.

• (A+B)T = AT +BT with A,B ∈ Rm×n.

• (AB)T = BTAT with A ∈ Rm×n and B ∈ Rn×p.

Proof. Let AB = C and (AB)T = D. Then,

(AB)Tij = Dij = Cji

=
∑
k

AjkBki

=
∑
k

(AT )kj(B
T )ik

=
∑
k

(BT )ik(A
T )kj.

It shows that D = BTAT and the result follows.
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Identity matrix: The identity matrix In is an n× n (square) matrix given by

In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 ,

where it has all 1’s on the diagonal and 0’s everywhere else. It is sometimes abbreviated I
when the dimension of the matrix is clear. For any A ∈ Rm×n, it holds that AIn = ImA.

Matrix inverse: Given a square matrix A ∈ Rn×n, its inverse A−1 (if it exists) is the
unique matrix satisfying

AA−1 = A−1A = In.

Notice that the inverse of a matrix may not always exist. Those matrices that have an
inverse are called invertible or nonsingular.

Properties of matrix inverse: Whenever the matrices A,B ∈ Rn×n are invertible, we
have the following properties.

• (A−1)−1 = A.

• (AB)−1 = B−1A−1.

• (A−1)T = (AT )−1. (It can be proved by noting that (A−1)T (AT ) = (AA−1)T = In.)

• All the columns (or rows) of A are linearly independent, i.e., rank(A) = n.

• det(A) ̸= 0.

Matrix rank: The rank of a matrix A ∈ Rm×n is the dimension of the linear space spanned
by its rows (or columns). One can verify that

• rank(A) ≤ min{m,n} and rank(A) = rank(AT ).

• rank(AB) ≤ min {rank(A), rank(B)} for any A ∈ Rm×n and B ∈ Rn×p.

Matrix trace: For a square matrix A ∈ Rn×n, the trace of A is defined as

tr(A) =
n∑

i=1

Aii,

i.e., it is the sum of all the diagonal entries of A. Specifically, the traces of matrices satisfy
the following properties:

• tr(aA+ bB) = a · tr(A) + b · tr(B) for any A,B ∈ Rn×n and a, b ∈ R.

• tr(A) = tr(AT ) for any A ∈ Rn×n.

• tr(AB) = tr(BA) for any A ∈ Rm×n and B ∈ Rn×m.
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Proof. By direct calculations,

tr(AB) =
m∑
i=1

[AB]ii =
m∑
i=1

(
n∑

k=1

AikBki

)

=
n∑

k=1

(
m∑
i=1

BkiAik

)
=

n∑
k=1

[BA]kk = tr(BA).

Determinant: For a square matrix A ∈ Rn×n, its determinant det(A) or |A| is defined as

det(A) =
∑
π

(
sign(π)

n∏
i=1

Aiπ(i)

)
,

where the sum is over all n! permutations π : {1, ..., n} → {1, ..., n} and sign(π) = 1 or −1
according to whether the minimum number of transpositions (i.e., pairwise interchanges)
necessary to achieve it starting from {1, ..., n} is even or odd. One can also calculate det(A)
through the Laplace expansion by minor along row i or column j as

det(A) =
n∑

k=1

(−1)i+kAik det(Mik) =
n∑

k=1

(−1)k+jAkj det(Mkj),

whereMik ∈ R(n−1)×(n−1) denotes the submatrix of A obtained by removing row i and column
k of A. Geometrically, the determinant of A = [a1,a2, ...,an] ∈ Rn×n gives the signed volume
of a n-dimensional parallelotope P = {c1a1 + · · ·+ cnan : c1, ..., cn ∈ [0, 1]}, i.e.,

detA = ±Volume(P),

where a1, ...,an are column vectors of A.

Example 4. We give explicit formulae for computing the determinants of square matrices
with dimension less than 3 as:

det[A11] = A11,

det

[
A11 A12

A21 A22

]
= A11A22 − A12A21,

det

A11 A12 A13

A21 A22 A23

A31 A23 A33

 = A11A22A33 + A12A23A31 + A13A21A32

− A11A23A32 − A12A21A33 − A13A22A31.

Properties of determinant: For any A,B ∈ Rn×n,

• det(AB) = det(A) · det(B).

• det(A−1) = [det(A)]−1 and det(AT ) = det(A).
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2.2 Special Types of Matrices

Diagonal matrix: A matrix D ∈ Rn×n is diagonal if Dij = 0 whenever i ̸= j. We write a
diagonal matrix D as

D = diag(d1, d2, . . . , dn) =


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn

 .

One can verify that

Dk =


dk1 0 · · · 0
0 dk2 · · · 0
...

...
. . .

...
0 0 · · · dkn

 .

Triangular matrix: A matrix A ∈ Rn×n is lower triangular if Aij = 0 whenever i < j.
That is, a lower triangular matrix has all its nonzero elements on or below the diagonal.
Similarly, a matrix A is upper triangular if its transpose AT is lower triangular. When A is
a lower or upper triangular matrix, det(A) =

∏n
i=1Aii.

Orthogonal matrix: A square matrix U ∈ Rn×n is orthogonal if UUT = UTU = In. This
implies that

• U−1 = UT , i.e., the inverse of an orthogonal matrix is its transpose. Moreover,
det(U) = ±1.

• the rows (or columns) of U form an orthonormal basis for Rn.

• U preserves angles and lengths, i.e., for any vectors x,y ∈ Rn,

⟨Ux, Uy⟩ = (Ux)T (Uy) = xTUTUy = ⟨x,y⟩ and ||Ux||22 = ||x||22 .

Symmetric matrix: A square matrix A ∈ Rn×n is symmetric if A = AT , i.e., Aij = Aji for
all entries of A.

Projection matrix: A square matrix P ∈ Rn×n is a projection matrix if it is symmetric
and idempotent: P 2 = P .

Positive definite matrix: A (real) symmetric matrix S ∈ Rn×n is positive semi-definite
(PSD) if its quadratic form is nonnegative, i.e.,

xTSx ≥ 0

for all x ∈ Rn. Furthermore, S is positive definite (PD) if its quadratic form is strictly
positive, i.e.,

xTSx > 0

for all x ∈ Rn with x ̸= 0. Here are some useful properties of PSD or PD matrices.
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• A diagonal matrix D = diag(d1, ..., dn) is PSD if and only if di ≥ 0 for all i = 1, ..., n.
It is PD if and only if di > 0 for all i = 1, ..., n. In particular, the identity matrix In
is PD.

• If S ∈ Rn×n is PSD, then ASAT is also PSD for any matrix A ∈ Rm×n.

• If S ∈ Rn×n is PD, then ASAT is also PD for any matrix A ∈ Rm×n with full rank
rank(A) = m ≤ n.

• AAT is PSD for any matrix A ∈ Rm×n. AAT is PD for any matrix A ∈ Rm×n with full
rank rank(A) = m ≤ n.

• S ∈ Rn×n is PD =⇒ S has full rank =⇒ S−1 exists =⇒ S−1 = (S−1)S(S−1)T is
PD.

2.3 Eigenvalues and Eigenvectors

Given a square matrix A ∈ Rn×n, λ ∈ R is an eigenvalue of A with the corresponding
eigenvector x ∈ Rn and x ̸= 0 if Ax = λx.

Here, 0 ∈ Rn stands for a vector whose entries are all zero. By convention, the zero vector
cannot be an eigenvector of any matrix.

Example 5. If A =

[
2 1
1 2

]
, then the vector x =

[
3
−3

]
is an eigenvector with eigenvalue 1,

because

Ax =

[
2 1
1 2

] [
3
−3

]
=

[
3
−3

]
= 1×

[
3
−3

]
.

2.3.1 Solving for eigenvalues and eigenvectors

We exploit the fact that Ax = λx if and only if

(A− λIn)x = 0. (1)

(Note that λIn is the diagonal matrix where all the diagonal entries are λ, and all other
entries are zero.)

The equation (1) has a nonzero solution x if and only if det(A − λIn) = 0; see Section 1.1
in Horn and Johnson (2012). Therefore, we can obtain the eigenvalues of a matrix A by
solving the characteristic equation det(A−λIn) = 0 for λ. Once we have done that, you can
find the corresponding eigenvector for each eigenvalue λ by solving the system of equations
(A− λIn)x = 0 for x.

Example 6. If A =

[
2 1
1 2

]
, then

A− λIn =

[
2− λ 1
1 2− λ

]

8
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and
det(A− λIn) = (2− λ)2 − 1 = λ2 − 4λ+ 3.

Setting it to 0 yields that λ = 1 and λ = 3 are possible eigenvalues.

(i) To find the eigenvectors for λ = 1, we plug λ into the equation (A − λIn)x = 0. This
gives us [

1 1
1 1

] [
x1

x2

]
=

[
0
0

]
Any vector with x2 = −x1 is a solution to this equation, and in particular,

[
3
−3

]
is one

solution.

(ii) To find the eigenvectors for λ = 3, we again plug λ into the equation and obtain that[
−1 1
1 −1

] [
x1

x2

]
=

[
0
0

]
Any vector where x2 = x1 is a solution to this equation.

⋆ Note: The above method is never used to calculate eigenvalues and eigenvectors for large
matrices in practice. We will introduce the power iterative method in the lecture (Lecture
6: Dimensionality Reduction) to find eigenpairs instead.

2.3.2 Properties of eigenvalues and eigenvectors

• If A ∈ Rn×n is symmetric, then all its eigenvalues are real.

• The eigenvalues of any (lower or upper) triangular matrix A ∈ Rn×n are its diagonal
entries.

• The trace of a matrix A ∈ Rn×n is equal to the sum of its eigenvalues, i.e., tr(A) =∑n
i=1 λi with λ1, ..., λn being the eigenvalues of A.

• det(A) =
∏n

i=1 λi, where λ1, ..., λn is the eigenvalues of A ∈ Rn×n.

• A symmetric matrix is PSD (PD) if all its eigenvalues are nonnegative (positive).

• The eigenvalues of a projection matrix are either 1 or 0.

2.4 Matrix Norms

Frobenius norm: Given a matrix A ∈ Rm×n, its Frobenius norm is defined as

||A||F =

√∑
i,j

A2
ij = tr(ATA).

We can compute ||A||F as ||A||F =
√
σ1(A)2 + · · ·σq(A)2, where σi(A), i = 1, ..., q are sin-

gular values of A and q = min{m,n}; see Section 3 for the definition of singular values. In
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particular, if A is a symmetric matrix in Rn×n, then ||A||F =
√∑n

i=1 λ
2
i with λ1, ..., λn being

the eigenvalues of A.

Maximum norm: The maximum norm (or ℓ∞-norm) for A ∈ Rm×n is defined as ||A||max =
maxi,j |Aij|. Strictly speaking, ||·||max is not a matrix norm because it does not satisfy the
submultiplicativity ||AB|| ≤ ||A|| ||B||. However, it is a vector norm when we consider Rm×n

as a mn-dimensional vector space; see Section 5.6 in Horn and Johnson (2012).

Operator norm: For any matrix A ∈ Rm×n and ℓp-norm for vectors in Rm and Rn, then
the corresponding operator norm ||A||p is defined as

||A||p = sup
x̸=0

||Ax||p
||x||p

.

For the special cases when p = 1, 2,∞, these (induced) operator norms can be computed as

• ||A||1 = max
1≤j≤n

∑m
i=1 |Aij|, which is simply the maximum absolute column sum of the

matrix.

• ||A||∞ = max
1≤i≤m

∑n
j=1 |Aij|, which is simply the maximum absolute row sum of the

matrix.

• ||A||2 =
√

λmax(AAT ) = σmax(A), where λmax(AA
T ) is the maximum eigenvalue of

AAT and σmax(A) is the maximum singular value of A.

There are several useful inequalities between these matrix norms. For any A ∈ Rm×n,

||A||2 ≤ ||A||F ≤
√
n ||A||2 , ||A||max ≤ ||A||2 ≤

√
mn ||A||max , and ||A||F ≤

√
mn ||A||max .

3 Spectral Decomposition and Singular Value Decom-

position (SVD)

Theorem 1 (Spectral Decomposition of a Real Symmetric Matrix). For a symmetric (square)
matrix A ∈ Rn×n, there exists a real orthogonal matrix U ∈ Rn×n such that

A = UΛUT =
n∑

i=1

λiuiu
T
i ,

where Λ = diag(λ1, ..., λn), U = [u1,u2, ...,un], and u1, ...,un are orthonormal eigenvectors
of A associated with eigenvalues λ1, ..., λn.

The spectral decomposition also provides us with a convenient method for computing the
power Ak = UΛkUT and exponentiation exp(A) = U exp(Λ)UT of a real symmetric matrix
A ∈ Rn×n.

While the spectral decomposition (Theorem 1) only works for symmetric (square) matrices,
it is also feasible to diagonalize a rectangular matrix A ∈ Rm×n through orthogonal matrices.
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Theorem 2 (Singular Value Decomposition (SVD)). Let A ∈ Rm×n with q = min{m,n}.
There exist orthogonal matrices Ũ = [u1, ...,um] ∈ Rm×m and Ṽ = [v1, ...,vn] ∈ Rn×n as
well as a (square) diagonal matrix Σq = diag(σ1, ..., σq) ∈ Rq×q such that

A = ŨΣṼ T =

q∑
i=1

σquiv
T
i = UΣqV

T ,

where U = [u1, ...,uq] ∈ Rm×q, V = [v1, ...,vq] ∈ Rn×q, and

Σ = Σq if m = n,

Σ = [Σq 0] ∈ Rm×n if n > m,

Σ =

[
Σq

0

]
∈ Rm×n if m > n.

Here, σ1 ≥ · · · ≥ σq ≥ 0 are called the singular values of A, which are eigenvalues of AAT

when m ≤ n or ATA when m > n.

Notice that the number of nonzero singular values of A determines the rank of A. Dur-
ing the lecture (Lecture 6: Dimensionality Reduction), we will leverage the singular value
decomposition to reduce the dimension (or matrix rank) of a user-movie rating matrix.
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