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Review on Last Lecture

Last lecture’s content is based on Chapter 3 of “An Introduction to Statistical Learning
with Applications in Python” (Gareth et al. 2023; https://www.statlearning.com/).

y

Simple and multiple linear regression: Y = By + 1 X1 + - + B, Xp, + €.

2
Estimation: argmin X', (YZ- —Bo—PriXn — - — ﬁpxip) :
Boy--BpER
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Review on Last Lecture

y

Model assessment and variable selection:
F-test for Hy : fy—g41 = Byp—gy2 = -~ =B, = 0.

Forward and backward selection via Akaike information criteria (AIC) and Bayesian
information criterion (BIC).

Assess the model fit by R? and residual standard error.

Dummy variable for qualitative predictors, interaction and nonlinear predictors,
outliers, collinearity, etc.
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Outline of Today’s Lecture

Regression v.s. Classification
Drawback of Linear Regression for Classification

Logistic Regression
Modeling, Interpretation, and Estimation

Gradient Ascent and Iteratively Reweighted Least Squares

Multinomial Logistic Regression
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Outline of Today’s Lecture

Regression v.s. Classification
Drawback of Linear Regression for Classification

Logistic Regression
Modeling, Interpretation, and Estimation

Gradient Ascent and Iteratively Reweighted Least Squares

Multinomial Logistic Regression

» Today’s lecture content is based on

Chapters 4.1-4.3 of “An Introduction to Statistical Learning with Applications in
Python” (Gareth et al. 2023; https://www.statlearning.com/);

Chapter 4.4 in “The Elements of Statistical Learning” (Hastie et al. 2009;
https://hastie.su.domains/ElemStatLearn/).
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Regression v.s. Classification

Regression and classification tasks mainly fall into the supervised learning domain.

Observed data: {(X;, Y;)}!, with a feature vector X; = (X1, ..., Xjp)" € R? and a
response variable Y;.
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Regression v.s. Classification

Regression and classification tasks mainly fall into the supervised learning domain.

Observed data: {(X;, Y;)}!, with a feature vector X; = (X1, ..., Xjp)" € R? and a
response variable Y;.

Regression: Y;’s are quantitative (e.g., age, income, price).

Classification: Y;’s are qualitative/categorical.

Regression

» For classification, we often encode Y; € {Cy,...,Cx}as Y; € {0,1,...,K — 1}.
eye color € {black, blue, green} — {0,1,2}.
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Objective of Classification Tasks
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Objective of Classification Tasks

Prediction: Given a feature vector Xnew = ¥new € R, predict its value for Ypew.

Binary Classification Multi-class Classification
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Objective of Classification Tasks

Prediction: Given a feature vector Xnew = ¥new € R, predict its value for Ypew.
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Interpretability: We are more interested in predicting the probability

IP)(Ynewp(new = xnew)-

Modeling P(Y = k|X = x) for k = 0,1, ..., K — 1 becomes the key component of
(discriminative) classification methods!
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Objective of Classification Tasks

Prediction: Given a feature vector Xnew = ¥new € R, predict its value for Ypew.

Binary Classification Multi-class Classification
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Interpretability: We are more interested in predicting the probability
IP)(Ynewp(new = xnew)-

Modeling P(Y = k|X = x) for k = 0,1, ..., K — 1 becomes the key component of
(discriminative) classification methods!

» Today, we focus on the logistic regression model, which formulates P(Y = k|X = x)
in a generalized linear way.
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Data Example: Credit Card Default
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Response Y; € {INo, }: whether an individual will default on his or her credit
card payment.

Features X; = (Xi1, Xi2, Xi3): annual income, monthly credit card balance, and student
status (Yes /No).
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Can We Use Linear Regression?

0 if No,

Encode Y; € {lNo, Yes} by Y; = "
1
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Can We Use Linear Regression?

0 if No,
if
P(Y; = 1|X; = x) = E(Yi|X; = x), so linear regression is mathematically valid for
binary classification.

Encode Y; € {No, Yes} by Y; =

Predict if Yoew > 0.5, which becomes linear discriminant analysis in next lecture.
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Can We Use Linear Regression?

0 if No,
if
P(Y; = 1|X; = x) = E(Yi|X; = x), so linear regression is mathematically valid for
binary classification.

Encode Y; € {No, Yes} by Y; =

Predict if Ynew > 0.5, which becomes linear discriminant analysis in next lecture.
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» Issue I: Linear regression might produce probabilities beyond [0, 1]!!
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Can We Use Linear Regression?

Multiclass Classification

X

Consider a multi-class classification problem

0 if Assistant Professor,

Y;i =141 if Associate Professor,

2 if
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Can We Use Linear Regression?

Multiclass Classification

Consider a multi-class classification problem

0 if Assistant Professor, 0 if ,
Y;i =141 if Associate Professor, Y; =41 if Assistant Professor,
2 if . 2 if Associate Professor.

Any encoding suggests an ordering.
Assume the gap between class 0 and 1 is similar to the gap between class 1 and 2.

» Issue II: Different encodings of Y; lead to fundamentally different linear models
and predictions.
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Logistic Regression: Modeling

For a binary classification problem Y; € {0, 1}, a direct linear regression has its issue:
P(Y:i = 11X) = E(Yi|X;) = fo + BiXn + - + BXyp = B' Z;,
where B = (B, b1, ...,,BP)T c Rl and Z; = (1, Xy, ...,Xip)T € R+l
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Logistic Regression: Modeling

For a binary classification problem Y; € {0, 1}, a direct linear regression has its issue:
P(Y:i = 11X) = E(Yi|X;) = fo + BiXn + - + BXyp = B' Z;,
where B = (B, b1, ...,,BP)T c Rl and Z; = (1, Xy, ...,Xip)T € R+l
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Logistic regression assumes the form
T
exp (ﬂo +b1 X+ + ,BpXip> exp (.3 Zi)
P(Y; =1|X;) = =

1+ exp (/30 + 61X+ + ﬂpXiP) 1tex (ﬁTZi> |

where x — exp(x) = e is the exponential function with exp(1) = e ~ 2.71828.
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Logistic Regression: Interpretation

exp (ﬂTZz')

X)) :=P(Y; = 1|X;) =
PR = =1 = T

with  B8,Z; = (1, Xu, ..., Xp)" € RPFHL,
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Logistic Regression: Interpretation

exp (ﬂTZz')
1+ exp (ﬁTZl)

p(X;) :=P(Y; = 1|X;) = with  B,Zi = (1,Xa, ..., Xjp)" € RPHL

Some algebra implies that

p(X;)

logit(p(X;)) := log (1 - p(Xz-)) = PotPiXa+- -+ ByXyy = B Z

x — logit(p) = log (%) is the logit function or the log odds when p € (0, 1).
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Logistic Regression: Interpretation

exp (ﬂTZz')

X)) :=P(Y; = 1|X;) =
p(X;) = B(Y; = 1|X)) o (772)

with  B8,Z; = (1, Xu, ..., Xp)" € RPFHL,

Some algebra implies that

logit(p(X;)) := log (%) = Bo+ BiXn + - + BpXip = B’z

x +— logit(p) = log (%) is the logit function or the log odds when p € (0, 1).

Poisson regression (in next lecture): When Y; € {0, 1, ...} and is assumed to follow
a Poisson distribution,

log (E(YiX:)) = Bo + Bi1Xa + -+ + BpXip = B' Zi.

Generalized linear model: 7 (E(Yi|X;)) = B"Z; based on a pre-specified link
function x — n(x).
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Logistic Regression: Estimation

From the observed data {(X;, Y;)}; C R? x {0, 1}, we define a likelihood function

n

L) =[Tp(X)" [1 - p(x))' "

i=1

» Maximum likelihood estimation: Find f € RP*! to maximize £(B).
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i=1
» Maximum likelihood estimation: Find f € RP*! to maximize £(B).

L(B) quantifies the probability of seeing the data under a statistical model.
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Logistic Regression: Estimation

From the observed data {(X;, Y;)}; C R? x {0, 1}, we define a likelihood function

n

L) =[Tp(X)" [1 - p(x))' "

i=1
» Maximum likelihood estimation: Find f € RP*! to maximize £(B).
L(B) quantifies the probability of seeing the data under a statistical model.
Maximizing £(f) ensures the predicted probability p(X;) to be close to Y;.
For logistic regression, the log-likelihood function is

n

UB)=10g£(B) = >_{Yi F72i ~log [1 +exp (B"Z)] |

i=1
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Logistic Regression: Estimation

From the observed data {(X;, Y;)}; C R? x {0, 1}, we define a likelihood function

n

L) =[Tp(X)" [1 - p(x))' "

i=1
» Maximum likelihood estimation: Find f € RP*! to maximize £(B).
L(B) quantifies the probability of seeing the data under a statistical model.
Maximizing £(f) ensures the predicted probability p(X;) to be close to Y;.
For logistic regression, the log-likelihood function is

n

UB)=10g£(B) = >_{Yi F72i ~log [1 +exp (B"Z)] |

i=1

» Difficulty: Unlike linear regression, there are no closed-form solutions for B when
maximizing £(8)!
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Gradient Ascent For Logistic Regression

n

B~ wgmaxt(p) ~sgmax 3~ (11872 g 1 + s (672)] }.

A common method for solving an unconstrained optimization problem is to use the
gradient ascent iterative algorithm:

B — BV 4y . Vet (ﬁ(f—l)) for t=1,2,.. (1)
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Gradient Ascent For Logistic Regression

n

B~ wgmaxt(p) ~sgmax 3~ (11872 g 1 + s (672)] }.

A common method for solving an unconstrained optimization problem is to use the
gradient ascent iterative algorithm:

B — BV 4y . Vet (ﬁ(f—l)) for t=1,2,.. (1)

7 > 0 is the step size (or learning rate), and the gradient is given by

N (ﬂTZi)
Vl(B) = [Yz e (ﬁTZi)

Zi=) [Yi—p(X)] Zi € RV
i—1

i=1
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Gradient Ascent For Logistic Regression

n

B~ wgmaxt(p) ~sgmax 3~ (11872 g 1 + s (672)] }.

A common method for solving an unconstrained optimization problem is to use the
gradient ascent iterative algorithm:

B — BV 4y . Vet (ﬁ(f—l)) for t=1,2,.. (1)

7 > 0 is the step size (or learning rate), and the gradient is given by

N (ﬂTZi)
Vl(B) = [Yz e (ﬁTZi)

Zi=) [Yi—p(X)] Zi € RV
i—1

i=1

Iterate (1) until convergence, e.g., Hﬂ(t) - ﬁ(t_l)Hz <e=10"8, and take g = ().
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Practicality of Gradient Ascent

B — pt-D 4 . Vgl (ﬁ(t_l)) for t=1,2,..

» Question: How do we choose the step size ¥ > 0 in practice?
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Practicality of Gradient Ascent
B — pt-D 4 . Vgl (ﬁ(t_l)) for t=1,2,..
» Question: How do we choose the step size ¥ > 0 in practice?

Log-likelihood trajectories for gradient ascent with different step sizes
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Newton-Raphson Method for Logistic Regression

n

B~ wgmax(p) ~ sgmax 3~ (11872 g 1 + s (672)] }.

The objective function £(B) is concave, and its globally optimal solution f satisfies
T
n exp (ﬂ Zi>

Vel(B) = [Vi-P(X)]Zi =0 with P(X)= RN
i=1 1+ exp <ﬁ ZZ-)
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Newton-Raphson Method for Logistic Regression

n

B~ wgmax(p) ~ sgmax 3~ (11872 g 1 + s (672)] }.

The objective function £(B) is concave, and its globally optimal solution f satisfies
T
n exp (ﬂ Zi>

Vel(B) = [Vi-P(X)]Zi =0 with P(X)= RN
i=1 1+ exp <ﬁ ZZ-)

To find the solution/root of Vgf(B) = 0, we use the Newton-Raphson algorithm.
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Newton-Raphson Method for Logistic Regression

n

B~ wgmax(p) ~ sgmax 3~ (11872 g 1 + s (672)] }.

The objective function £(B) is concave, and its globally optimal solution f satisfies
T
n exp (ﬂ Zi>

Vel(B) = [Vi-P(X)]Zi =0 with P(X)= RN
i=1 1+ exp <ﬁ ZZ-)

To find the solution/root of Vgf(B) = 0, we use the Newton-Raphson algorithm.
The rationale is based on Taylor’s approximation:

Vpl(B) = Vpt (BU) + Ve V) (8- B7V) +o(||B-8"7|,)-

setto 0

negligible
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Newton-Raphson Method for Logistic Regression

n

B~ wgmax(p) ~ sgmax 3~ (11872 g 1 + s (672)] }.

The objective function £(B) is concave, and its globally optimal solution f satisfies
n exp (BTZi)

Vel(B) = [Vi-P(X)]Zi =0 with P(X)= RN
i=1 1+ exp <ﬁ ZZ-)

To find the solution/root of Vgf(B) = 0, we use the Newton-Raphson algorithm.
The rationale is based on Taylor’s approximation:

Vpl(B) = Vpt (BU) + Ve V) (8- B7V) +o(||B-8"7|,)-

setto 0

negligible

-1
— BB =i - [Vhe(B' )| Vet (BV) for t=1,2,..
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Newton-Raphson Method for Logistic Regression

-1
g — g1 _ [V%Z(ﬂ(t*”)] Vpl (ﬂ(H)) for t=1,2,..
An illustration of Newton-Raphson method for solving the root of f(p) = 0 (Burden
and Faires, 2011): v

Slope ["(py) y=fx)

(P, f(p1)

Slope /"(py)

x

(po. f(po)
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Newton-Raphson Method for Logistic Regression

-1
g — g1 _ [V%Z(ﬂ(t*”)] Vpl (ﬂ(H)) for t=1,2,..
An illustration of Newton-Raphson method for solving the root of f(p) = 0 (Burden
and Faires, 2011): v

Slope ["(py) y=fx)

(P, f(p1)

I

|

I

i/ Slope 1'(py)
Py

x

(po. f(po)

Given p(X;) = %, we have

Val(B) =3 [Yi—p(X)|Zi and  VAUB) = — 3 p(X) 1 — p(X)] ZZ! € ROFDX(4),
=1 i=1

i
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Iteratively Reweighted Least Squares (IRLS)

Vl(B) = z”: [Yi - p(Xi)]Z; and V34(B) = — zn:P(Xi) [1—p(X)) Z:Z] € RPHDx(PHD),
i=1 i=1
Y = (Y1,..., Yo) ', T = (p(X1), .., p(X0))T € RY, and Z = (Z4, ..., Z,)" € R*(PH1);
W = Diag (p(X1) [1 — p(X1)], ..., p(Xn) [1 — p(Xin)]) € R™.
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Iteratively Reweighted Least Squares (IRLS)
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i=1 i=1

Y = (Y1,..., Yo) ', T = (p(X1), .., p(X0))T € RY, and Z = (Z4, ..., Z,)" € R*(PH1);
W = Diag (p(X1) [1 — p(X1)], ..., p(Xu) [1 — p(Xi)]) € R™".
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Iteratively Reweighted Least Squares (IRLS)

Vl(B) = z”: [Yi - p(Xi)]Z; and V34(B) = — zn:P(Xi) [1—p(X)) Z:Z] € RPHDx(PHD),
i=1 i=1

Y = (Y1,..., Yo) ', T = (p(X1), .., p(X0))T € RY, and Z = (Z4, ..., Z,)" € R*(PH1);
W = Diag (p(X1) [1 = p(X1)], -, p(X) [1 = p(Xi)]) € R**™.
— Vpl(B)=7Z"(Y-1) and Vz{(B)=-Z"WZ.
The Newton iterative step becomes
B =g 4 (ZTWZ)_l Z' (Y - 1)

= (z'wz) " Z'W [28¢D + W (Y - 1)

:= “adjusted response” V depends on ¢
» This algorithm is known as the iteratively reweighted least squares (IRLS):
BY) = argmin (V — ZB8)T W (V — ZB) .
BERM!
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Comparisons Between Gradient Ascent and IRLS Algorithms

Log-likelihood trajectories for gradient ascent and IRLS
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IRLS converges in fewer iterations than gradient ascent.

However, each IRLS iteration is more expensive due to inverting V%Z(ﬂ), whose
time complexity is O(p®)!
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Multinomial Logistic Regression

For a multi-class classification problem with Y; € {0, 1,, ..., K — 1}, it assumes

exp (ﬂko + PaXn + -+ IkaXip)

P(Y: = k|X;) =
Z]K:_ol exp (ﬁjo +BnXin+ -+ ﬂijip)

for k=0,1,....,K—-1.

This is known as the softmax encoding (i.e., a smooth approximation to the
“arg max” function).

» Interpretation: The log odds ratio between the k-th and k’-th classes is

1 <P(Yi = k|Xi)

W) = (Bro — Bro) + (Br1 — Br1)Xin + -+ + (Brp — Brp) Xip

for k, k' € {0,1,..., K — 1}.
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Assignment and Next Lecture

» Assignment:
Implement gradient ascent and IRLS algorithms for logistic regression on the
“Default” dataset: https://colab.research.google.com/drive/
1iO3MkZnyz9Rb4FduthSNuYHY X1ID7HrNo?7usp=sharing.
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Assignment and Next Lecture

» Assignment:
Implement gradient ascent and IRLS algorithms for logistic regression on the
“Default” dataset: https://colab.research.google.com/drive/
1iO3MkZnyz9Rb4FduthSNuYHY X1ID7HrNo?7usp=sharing.

» Next Lecture:
Logistic regression is a discriminative model
B(YIX = x) = - SR LA EBX)
1+ exp (,30 + 61 X1+ + ﬂpo)
Generative models instead model P(X|Y = y) and apply Bayes’ theorem for
P(Y|X = x), e.g., linear discriminant analysis, naive Bayes, K-nearest neighbors.
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Assignment and Next Lecture

» Assignment:
Implement gradient ascent and IRLS algorithms for logistic regression on the
“Default” dataset: https://colab.research.google.com/drive/
1iO3MkZnyz9Rb4FduthSNuYHY X1ID7HrNo?7usp=sharing.

» Next Lecture:
Logistic regression is a discriminative model
B(YIX = x) = - SR LA EBX)
1+ exp (,30 + 61 X1+ + ﬂpo)
Generative models instead model P(X|Y = y) and apply Bayes’ theorem for
P(Y|X = x), e.g., linear discriminant analysis, naive Bayes, K-nearest neighbors.

Generalized linear model, e.g., Poisson regression.

Density estimation through classification.
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Assignment and Next Lecture

» Assignment:
Implement gradient ascent and IRLS algorithms for logistic regression on the
“Default” dataset: https://colab.research.google.com/drive/
1iO3MkZnyz9Rb4FduthSNuYHY X1ID7HrNo?7usp=sharing.

» Next Lecture:
Logistic regression is a discriminative model
B(YIX = x) = - SR LA EBX)
1+ exp (,30 + 61 X1+ + ﬂpo)
Generative models instead model P(X|Y = y) and apply Bayes’ theorem for
P(Y|X = x), e.g., linear discriminant analysis, naive Bayes, K-nearest neighbors.

Generalized linear model, e.g., Poisson regression.

Density estimation through classification.

Thank you!
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