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Last lecture’s content is based on Chapter 3 of “An Introduction to Statistical Learning
with Applications in Python” (Gareth et al. 2023; https://www.statlearning.com/).

1 Simple and multiple linear regression: Y = �0 + �1X1 + � � �+ �pXp + �.

2 Estimation: argmin
�0;:::;�p2R

Pn
i=1

�
Yi � �0 � �1Xi1 � � � � � �pXip

�2
.
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3 Model assessment and variable selection:
� F-test for H0 : �p�q+1 = �p�q+2 = � � � = �p = 0.

� Forward and backward selection via Akaike information criteria (AIC) and Bayesian
information criterion (BIC).

� Assess the model fit by R2 and residual standard error.

4 Dummy variable for qualitative predictors, interaction and nonlinear predictors,
outliers, collinearity, etc.
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1 Regression v.s. Classification

2 Drawback of Linear Regression for Classification

3 Logistic Regression
� Modeling, Interpretation, and Estimation

� Gradient Ascent and Iteratively Reweighted Least Squares

4 Multinomial Logistic Regression

▶ Today’s lecture content is based on

� Chapters 4.1-4.3 of “An Introduction to Statistical Learning with Applications in
Python” (Gareth et al. 2023; https://www.statlearning.com/);

� Chapter 4.4 in “The Elements of Statistical Learning” (Hastie et al. 2009;
https://hastie.su.domains/ElemStatLearn/).

Outline of Today’s Lecture
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Regression and classification tasks mainly fall into the supervised learning domain.

� Observed data: f(Xi;Yi)g
n
i=1 with a feature vector Xi = (Xi1; :::;Xip)

T 2 Rp and a
response variable Yi.

� Regression: Yi’s are quantitative (e.g., age, income, price).

� Classification: Yi’s are qualitative/categorical.

▶ For classification, we often encode Yi 2 fC1; :::;CKg as Yi 2 f0; 1; :::;K � 1g.
� eye color 2 fblack, blue, greeng ! f0; 1; 2g.
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Yikun Zhang Statistical Machine Learning: Classification With Logistic Regression 5/20



Regression and classification tasks mainly fall into the supervised learning domain.

� Observed data: f(Xi;Yi)g
n
i=1 with a feature vector Xi = (Xi1; :::;Xip)

T 2 Rp and a
response variable Yi.

� Regression: Yi’s are quantitative (e.g., age, income, price).

� Classification: Yi’s are qualitative/categorical.

▶ For classification, we often encode Yi 2 fC1; :::;CKg as Yi 2 f0; 1; :::;K � 1g.
� eye color 2 fblack, blue, greeng ! f0; 1; 2g.

Regression v.s. Classification

Yikun Zhang Statistical Machine Learning: Classification With Logistic Regression 5/20



Regression and classification tasks mainly fall into the supervised learning domain.

� Observed data: f(Xi;Yi)g
n
i=1 with a feature vector Xi = (Xi1; :::;Xip)

T 2 Rp and a
response variable Yi.

� Regression: Yi’s are quantitative (e.g., age, income, price).

� Classification: Yi’s are qualitative/categorical.

▶ For classification, we often encode Yi 2 fC1; :::;CKg as Yi 2 f0; 1; :::;K � 1g.
� eye color 2 fblack, blue, greeng ! f0; 1; 2g.

Regression v.s. Classification

Yikun Zhang Statistical Machine Learning: Classification With Logistic Regression 5/20



� Prediction: Given a feature vector Xnew = xnew 2 Rp, predict its value for Ynew.

� Interpretability: We are more interested in predicting the probability

P(YnewjXnew = xnew):

Modeling P(Y = kjX = x) for k = 0; 1; :::;K � 1 becomes the key component of
(discriminative) classification methods!

▶ Today, we focus on the logistic regression model, which formulates P(Y = kjX = x)
in a generalized linear way.

Objective of Classification Tasks
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� Response Yi 2 fNo, Yesg: whether an individual will default on his or her credit
card payment.

� Features Xi = (Xi1;Xi2;Xi3): annual income, monthly credit card balance, and student
status (Yes/No).

Data Example: Credit Card Default
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Encode Yi 2 fNo, Yesg by Yi =

8<
:0 if No;

1 if Yes:

� P(Yi = 1jXi = x) = E(YijXi = x), so linear regression is mathematically valid for
binary classification.

� Predict Yes if bYnew > 0:5, which becomes linear discriminant analysis in next lecture.

▶ Issue I: Linear regression might produce probabilities beyond [0; 1]!!

Can We Use Linear Regression?
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Consider a multi-class classification problem

Yi =

8>><
>>:

0 if Assistant Professor;

1 if Associate Professor;

2 if Full Professor:

Yi =

8>><
>>:

0 if Full Professor;

1 if Assistant Professor;

2 if Associate Professor:

� Any encoding suggests an ordering.

� Assume the gap between class 0 and 1 is similar to the gap between class 1 and 2.

▶ Issue II: Different encodings of Yi lead to fundamentally different linear models
and predictions.

Can We Use Linear Regression?
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For a binary classification problem Yi 2 f0; 1g, a direct linear regression has its issue:

P(Yi = 1jXi) = E(YijXi) = �0 + �1Xi1 + � � �+ �pXip = ���TZi;

where ��� = (�0; �1; :::; �p)
T 2 Rp+1 and Zi = (1;Xi1; :::;Xip)

T 2 Rp+1.

Logistic regression assumes the form

P(Yi = 1jXi) =
exp

�
�0 + �1Xi1 + � � �+ �pXip

�
1 + exp

�
�0 + �1Xi1 + � � �+ �pXip

� =
exp

�
���TZi

�
1 + exp

�
���TZi

� ;
where x 7! exp(x) = ex is the exponential function with exp(1) = e � 2:71828.

Logistic Regression: Modeling
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p(Xi) := P(Yi = 1jXi) =
exp

�
���TZi

�
1 + exp

�
���TZi

� with ���;Zi = (1;Xi1; :::;Xip)
T 2 Rp+1:

Some algebra implies that

logit(p(Xi)) := log

�
p(Xi)

1� p(Xi)

�
= �0 + �1Xi1 + � � �+ �pXip = ���TZi:

� x 7! logit(p) = log
�

p
1�p

�
is the logit function or the log odds when p 2 (0; 1).

� Poisson regression (in next lecture): When Yi 2 f0; 1; :::g and is assumed to follow
a Poisson distribution,

log (E(YijXi)) = �0 + �1Xi1 + � � �+ �pXip = ���TZi:

� Generalized linear model: � (E(YijXi)) = ���TZi based on a pre-specified link
function x 7! �(x).

Logistic Regression: Interpretation
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From the observed data f(Xi;Yi)g
n
i=1 � Rp � f0; 1g, we define a likelihood function

L(���) =
nY

i=1

p(Xi)
Yi [1� p(Xi)]

1�Yi :

▶ Maximum likelihood estimation: Find b��� 2 Rp+1 to maximize L(���).

� L(���) quantifies the probability of seeing the data under a statistical model.

� Maximizing L(���) ensures the predicted probability bp(Xi) to be close to Yi.

� For logistic regression, the log-likelihood function is

`(���) = logL(���) =
nX

i=1

n
Yi � ���

TZi � log
h
1 + exp

�
���TZi

�io
:

▶ Difficulty: Unlike linear regression, there are no closed-form solutions for b��� when
maximizing `(���)!

Logistic Regression: Estimation
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b��� = argmax
���2Rp+1

`(���) = argmax
���2Rp+1

nX
i=1

n
Yi � ���

TZi � log
h
1 + exp

�
���TZi

�io
:

A common method for solving an unconstrained optimization problem is to use the
gradient ascent iterative algorithm:

���(t)  ���(t�1) + 
 � r���`
�
���(t�1)

�
for t = 1; 2; ::: (1)

� 
 > 0 is the step size (or learning rate), and the gradient is given by

r���`(���) =
nX

i=1

2
4Yi �

exp
�
���TZi

�
1 + exp

�
���TZi

�
3
5Zi =

nX
i=1

[Yi � p(Xi)]Zi 2 Rp+1:

� Iterate (1) until convergence, e.g.,
���������(t) � ���(t�1)

������
2
< � = 10�8, and take b��� = ���(t).

Gradient Ascent For Logistic Regression
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���(t)  ���(t�1) + 
 � r���`
�
���(t�1)

�
for t = 1; 2; :::

▶ Question: How do we choose the step size 
 > 0 in practice?
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Log-likelihood trajectories for gradient ascent with different step sizes
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Practicality of Gradient Ascent
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nX
i=1

n
Yi � ���

TZi � log
h
1 + exp

�
���TZi

�io
:

The objective function `(���) is concave, and its globally optimal solution b��� satisfies

r���`(b���) = nX
i=1

[Yi � bp(Xi)]Zi = 0 with bp(Xi) =
exp

�b���T
Zi

�

1 + exp

�b���T
Zi

� :

To find the solution/root ofr���`(���) = 0, we use the Newton-Raphson algorithm.
� The rationale is based on Taylor’s approximation:

r���`(���)| {z }
set to 0

= r���`
�
���(t�1)

�
+r2

���`(���
(t�1))

�
��� � ���(t�1)

�
+ o

���������� � ���(t�1)
������

2

�
| {z }

negligible

:

=) ��� � ���(t) = ���(t�1) �
h
r2

���`(���
(t�1))

i
�1
r���`

�
���(t�1)

�
for t = 1; 2; :::

Newton-Raphson Method for Logistic Regression
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� The rationale is based on Taylor’s approximation:
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An illustration of Newton-Raphson method for solving the root of f (p) = 0 (Burden
and Faires, 2011):

Given p(Xi) =
exp(���TZi)

1+exp(���TZi)
, we have

r���`(���) =
nX

i=1

[Yi � p(Xi)]Zi and r2
���`(���) = �

nX
i=1

p(Xi) [1� p(Xi)]ZiZT
i 2 R(p+1)�(p+1):
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nX
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[Yi � p(Xi)]Zi and r2
���`(���) = �

nX
i=1

p(Xi) [1� p(Xi)]ZiZT
i 2 R(p+1)�(p+1):

� Y = (Y1; :::;Yn)
T; � = (p(X1); :::; p(Xn))

T 2 Rn, and Z = (Z1; :::;Zn)
T 2 Rn�(p+1);

� W = Diag (p(X1) [1� p(X1)] ; :::; p(Xn) [1� p(Xn)]) 2 Rn�n.

=) r���`(���) = ZT (Y� �) and r2
���`(���) = �Z

TWZ:
The Newton iterative step becomes

���(t) = ���(t�1) +
�
ZTWZ

�
�1

ZT (Y� �)

=
�
ZTWZ

�
�1

ZTW
h
Z���(t�1) +W�1 (Y� �)

i
| {z }

:= “adjusted response” V depends on t

:

▶ This algorithm is known as the iteratively reweighted least squares (IRLS):

���(t) = argmin
���2Rp+1

(V� Z���)T W (V� Z���) :

Iteratively Reweighted Least Squares (IRLS)
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IRLS

� IRLS converges in fewer iterations than gradient ascent.

� However, each IRLS iteration is more expensive due to invertingr2
���`(���), whose

time complexity is O(p3)!

Comparisons Between Gradient Ascent and IRLS Algorithms

Yikun Zhang Statistical Machine Learning: Classification With Logistic Regression 18/20



For a multi-class classification problem with Yi 2 f0; 1; ; :::;K � 1g, it assumes

P(Yi = kjXi) =
exp

�
�k0 + �k1Xi1 + � � �+ �kpXip

�
PK�1

j=0 exp
�
�j0 + �j1Xi1 + � � �+ �jpXip

� for k = 0; 1; :::;K � 1:

� This is known as the softmax encoding (i.e., a smooth approximation to the
“argmax” function).

▶ Interpretation: The log odds ratio between the k-th and k0-th classes is

log

� P(Yi = kjXi)

P(Yi = k0jXi)

�
= (�k0 � �k00) + (�k1 � �k01)Xi1 + � � �+ (�kp � �k0p)Xip

for k; k0 2 f0; 1; :::;K � 1g.

Multinomial Logistic Regression
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▶ Assignment:
� Implement gradient ascent and IRLS algorithms for logistic regression on the

“Default” dataset: https://colab.research.google.com/drive/
1iO3MkZnyz9Rb4FduthSNuYHYXlD7HrNo?usp=sharing.

▶ Next Lecture:
� Logistic regression is a discriminative model

P(YjX = x) =
exp

�
�0 + �1X1 + � � �+ �pXp

�
1 + exp

�
�0 + �1X1 + � � �+ �pXp

� :
� Generative models instead model P(XjY = y) and apply Bayes’ theorem for
P(YjX = x), e.g., linear discriminant analysis, naive Bayes, K-nearest neighbors.

� Generalized linear model, e.g., Poisson regression.

� Density estimation through classification.

Thank you!

Assignment and Next Lecture
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