This note intends to give a brief review on lecture materials and highlight those important concepts/results in STAT 512. The review is by no means comprehensive and in order to excel at the final exam, a student is expected to master those fundamentals in the course instead of simply memorizing the key formulae or theorems.

Most parts of this note are selected from Professor Yen-Chi Chen's ${ }^{1}$ and Professor Michael Perlman's lecture notes [Perlman, 2020].

1 Probability Distributions and Random Variables

Probability space: A probability space is written as $(\Omega, \mathcal{F}, \mathbb{P})$, where

1. Ω is the sample space;
2. \mathcal{F} is a σ-algebra (also called σ-field);
3. \mathbb{P} is a probability measure with $\mathbb{P}(\Omega)=1$.
\star Notes: You should be familiar with the definition of σ-algebra, properties of a probability measure (countable additivity, inclusion, complementation, monotone continuity, etc.).

Random variable: A random variable $X: \Omega \rightarrow \mathbb{R}$ is a (measurable) function satisfying

$$
X^{-1}((-\infty, c]):=\{\omega \in \Omega: X(\omega) \leq c\} \in \mathcal{F} \quad \text { for all } c \in \mathbb{R}
$$

The probability that X takes on a value in a Borel set $B \subseteq \mathbb{R}$ is written as:

$$
\mathbb{P}(X \in B)=\mathbb{P}(\{\omega \in \Omega: X(\omega) \in B\})
$$

Cumulative distribution function (CDF): The CDF $F: \mathbb{R} \rightarrow[0,1]$ of a random variable X is defined as:

$$
F(x):=\mathbb{P}(X \leq x)=\mathbb{P}(\{\omega \in \Omega: X(\omega) \leq x\})
$$

Probability mass function (PMF) and probability density function (PDF):

- If the range $\mathcal{X} \subset \mathbb{R}$ of a random variable X is countable, it is called a discrete random variable, whose distribution can be characterized by the PMF as:

$$
\mathbb{P}(X=x)=F(x)-\lim _{\epsilon \rightarrow 0^{+}} F(x-\epsilon) \quad \text { for all } x \in \mathcal{X}
$$

- If the range $\mathcal{X} \subseteq \mathbb{R}$ of a random variable X has an absolutely continuous CDF F, then we can describe its distribution through the PDF as:

$$
p(x)=F^{\prime}(x)=\frac{d}{d x} F(x) .
$$

In this case, $F(x)=\mathbb{P}(X \leq x)=\int_{-\infty}^{x} p(u) d u$.

[^0]\star Notes: You are expected to know the PMF or PDF of all the common distributions in Statistics; see Section 1.3 in Lecture 1 notes.

Conditional probability and distribution: For two events $A, B \in \mathcal{F}$, the conditional probability of A given B is given by

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}=\frac{\mathbb{P}(B \mid A) \cdot \mathbb{P}(A)}{\mathbb{P}(B)}
$$

where the second equality follows from Bayes formula. Similarly, when both X and Y are continuous/discrete random variables, the conditional $\mathrm{PDF} / \mathrm{PMF}$ of Y given $X=x$ is

$$
p_{Y \mid X}(y \mid x)=\frac{p_{X Y}(x, y)}{p_{X}(x)}=\frac{p_{X \mid Y}(x \mid y) \cdot p_{Y}(y)}{p_{X}(x)},
$$

where $p_{X}(x)=\int_{-\infty}^{\infty} p_{X Y}(x, y) d y$ or $p_{X}(x)=\sum_{y} p_{X Y}(x, y)$ is the marginal PDF or PMF of X.
Independence and conditional independence: Two events A and B are independent if

$$
\mathbb{P}(A \mid B)=\mathbb{P}(A) \quad \text { or equivalently, } \mathbb{P}(A \cap B)=\mathbb{P}(A) \cdot \mathbb{P}(B)
$$

For three events A, B, C, we say that A and B are conditionally independent given C if

$$
\mathbb{P}(A \cap B \mid C)=\mathbb{P}(A \mid C) \cdot \mathbb{P}(B \mid C)
$$

The independence and conditional independence can be analogously defined for random variables X, Y, Z as:

- We say that X and Y are independent $(X \perp Y)$ if

$$
F(x, y)=\mathbb{P}(X \leq x, Y \leq y)=\mathbb{P}(X \leq x) \cdot \mathbb{P}(Y \leq y)
$$

If X and Y have PDFs or PMFs, then the independence of X and Y can be equivalently defined as:

$$
p_{X Y}(x, y)=p_{X}(x) \cdot p_{Y}(y)
$$

where p_{X}, p_{Y} are marginal PDFs or PMFs of X and Y.

- We say that X and Y are conditionally independent given Z (i.e., $X \perp Y \mid Z$) if

$$
\mathbb{P}(X \leq x, Y \leq y \mid Z)=\mathbb{P}(X \leq x \mid Z) \cdot \mathbb{P}(Y \leq y \mid Z)
$$

Recall Theorem 1.1 and subsequent discussions in Lecture 1 notes for equivalently definitions and key properties of conditional independence.

2 Transforming continuous distributions

For a continuous random variable X with $\operatorname{PDF} p_{X}(x)$ supported on $[a, b]$, the PDF of a transformed random variable $Y=f(X)$ by a strictly increasing function f is

$$
p_{Y}(y)= \begin{cases}\frac{p_{X}\left(f^{-1}(y)\right)}{f^{\prime}\left(f^{-1}(y)\right)}, & f(a) \leq y \leq f(b) \\ 0, & \text { otherwise }\end{cases}
$$

For deriving the distribution $U=f(X, Y)$, which is a function of two (or more) random variables X, Y, one can start from its CDF as:

$$
F_{U}(u)=\mathbb{P}(f(X, Y) \leq u)
$$

and determine the region $\left\{(X, Y) \in \mathcal{X} \times \mathcal{Y} \subset \mathbb{R}^{2}: g(X, Y) \leq u\right\}$. Or, one can introduce a second variable $V=h(X, Y)$, where the function h is chosen cleverly, so that it is relatively easy to find the joint distribution of (U, V) via the Jacobian method and then marginalize to find the distribution of U.

3 Expectation and Basic Asymptotic Theories

Expectation, variance, and covariance: For random variables X, Y, we define

- expectation (or mean): $\mathbb{E}(X)=\int_{-\infty}^{\infty} x \cdot p_{X}(x) d x$ or $\sum_{x \in \mathcal{X}} x \cdot p_{X}(x)$.
- variance: $\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}(X))^{2}\right]$.
- Covariance: $\operatorname{Cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}(X))(Y-\mathbb{E}(Y))]$.
\star Notes: You should be able to compute the expectations and variances of those common probability distributions in Statistics.

Moment generating function (MGF): The MGF of a random variable X is defined as:

$$
M_{X}(t)=\mathbb{E}\left(e^{t X}\right)
$$

for some $t \in \mathbb{R} . M_{X}$ may not exist for some or all $t \in \mathbb{R}$. When M_{X} exists in a neighborhood of 0 , we have that

$$
\mathbb{E}\left(X^{j}\right)=M_{X}^{(j)}(0)=\left.\frac{d^{j} M_{X}(t)}{d t^{j}}\right|_{t=0}
$$

For two random variables X, Y, if their MGFs exist and $M_{X}(t)=M_{Y}(t)$ for all t in some neighborhood of 0 , then they have the same distributions; see Theorem 2.3.11 in Casella and Berger [2002]. For a sequence of random variables $X_{i}, i=1,2, \ldots$, if $\lim _{i \rightarrow \infty} M_{X_{i}}(t)=M_{X}(t)$ around a neighborhood of 0 , then

$$
\lim _{i \rightarrow \infty} F_{X_{i}}(x)=F_{X}(x)
$$

for all x at which F_{X} is continuous; see Theorem 2.3.12 in Casella and Berger [2002].
The multivariate MGF for a random vector $X=\left(X_{1}, \ldots, X_{d}\right) \in \mathbb{R}^{d}$ is defined as:

$$
M_{X}(t)=\mathbb{E}\left(e^{t^{T} X}\right)
$$

with $t \in \mathbb{R}^{d}$. The MGF of a multivariate normal random vector $X \sim N_{d}(\mu, \Sigma)$ can be utilized to derive that

$$
Z=A X+b \sim N_{d}\left(A \mu+b, A \Sigma A^{T}\right)
$$

where $A \in \mathbb{R}^{d \times d}$ and $b \in \mathbb{R}^{d}$ are deterministic.
Convergence of random variables: We discuss four different convergences of a sequence $\left\{X_{n}\right\}_{n=1}^{\infty}$ of random variables:

- Convergence in distribution: $\lim _{n \rightarrow \infty} F_{n}(x)=F(x)$, where the CDF of F is continuous at $x \in \mathbb{R}$ and $\left\{F_{n}\right\}_{n=1}^{\infty}$ are CDFs of $\left\{X_{n}\right\}_{n=1}^{\infty}$. We can write $X_{n} \xrightarrow{D} X$ or $X_{n} \rightsquigarrow X$.
- Convergence in probability: For any $\epsilon>0, \lim _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{n}-X\right|>\epsilon\right)=0$ and we can write $X_{n} \xrightarrow{P} X$.
- Convergence in L^{p}-norm: $\lim _{n \rightarrow \infty} \mathbb{E}\left(\left|X_{n}-X\right|^{p}\right)=0$, provided that the p-th absolute moments $\mathbb{E}\left|X_{n}\right|^{p}$ and $E|X|^{p}$ of $\left\{X_{n}\right\}_{n=1}^{\infty}$ and X exist.

We prove the implications between the above convergences and provide counterexamples for which the converse directions do not hold in Quiz Session 3.

Markov's inequality: For a nonnegative random variables X, we have that

$$
\mathbb{P}(X>\epsilon) \leq \frac{\mathbb{E}(X)}{\epsilon} \quad \text { for any } \epsilon>0
$$

Chebyshev's inequality: For a random variable X with finite variance, we have that

$$
\mathbb{P}(|X-\mathbb{E}(X)|>\epsilon) \leq \frac{\operatorname{Var}(X)}{\epsilon^{2}} \quad \text { for any } \epsilon>0
$$

Weak Law of Large Numbers: Let X_{1}, \ldots, X_{n} be independent and identically distributed (IID) random variables with $\mu=\mathbb{E}\left|X_{1}\right|<\infty$ and $\operatorname{Var}\left(X_{1}\right)<\infty$. The sample average converges in probability to μ, i.e.,

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{P} \mu
$$

The strong law of large number strengthens the convergence in probability to the almost sure convergence.
Central Limit Theorem: Let X_{1}, \ldots, X_{n} be IID random variables with $\mu=\mathbb{E}\left|X_{1}\right|<\infty$ and $\sigma^{2}=$ $\operatorname{Var}\left(X_{1}\right)<\infty$. We also denote the sample average by $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Then,

$$
\sqrt{n}\left(\frac{\bar{X}_{n}-\mu}{\sigma}\right) \stackrel{D}{\rightarrow} Z,
$$

where Z follows the standard normal distribution $N(0,1)$.
\star Notes: You should be familiar with the proofs of weak law of large numbers and central limit theorem.
Continuous mapping theorem: Let g be a continuous function and $\left\{X_{n}\right\}_{n=1}^{\infty}$ be a sequence of random variables.

- If $X_{n} \xrightarrow{D} X$, then $g\left(X_{n}\right) \xrightarrow{D} g(X)$;
- If $X_{n} \xrightarrow{P} X$, then $g\left(X_{n}\right) \xrightarrow{P} g(X)$;
- If $X_{n} \xrightarrow{\text { a.s. }} X$, then $g\left(X_{n}\right) \xrightarrow{\text { a.s. }} g(X)$.

Slutsky's theorem: Let $\left\{X_{n}\right\}_{n=1}^{\infty}$ and $\left\{Y_{n}\right\}_{n=1}^{\infty}$ be two sequences of random variables such that $X_{n} \xrightarrow{D} X$ and $Y_{n} \xrightarrow{P} c$, where X is a random variable and c is a constant. Then,

$$
X_{n}+Y_{n} \xrightarrow{D} X+c, \quad X_{n} Y_{n} \xrightarrow{D} c X, \quad \text { and } \quad \frac{X_{n}}{Y_{n}} \xrightarrow{D} \frac{X}{c}(\text { when } c \neq 0) .
$$

Hoeffding's inequality: Let $X_{1}, \ldots, X_{n} \in[m, M]$ be IID random variables with $-\infty<m<M<\infty$ and \bar{X}_{n} be their sample average. Then, for any $\epsilon>0$,

$$
\mathbb{P}\left(\left|\bar{X}_{n}-\mathbb{E}\left(\bar{X}_{n}\right)\right| \geq \epsilon\right) \leq 2 \exp \left(-\frac{2 n \epsilon^{2}}{(M-m)^{2}}\right)
$$

It provides an improved concentration bound for \bar{X}_{n} than the one derived from Chebyshev's inequality.
\star Notes: You are encouraged to understand the proof and related examples about the concentration of mean in Lecture 3 notes.

4 Conditional Expectation

The conditional expectation of Y given X is the random variable $\mathbb{E}(Y \mid X)$ such that when $X=x$, its value is $\mathbb{E}(Y \mid X=x)=\int y \cdot p(y \mid x) d y$ or $\sum_{y} y \cdot p(y \mid x)$.
Law of total expectation: For any measurable function $g(x, y)$, we have that $\mathbb{E}[\mathbb{E}(g(X, Y) \mid X)]=$ $\mathbb{E}[g(X, Y)]$. It gives rise to several applications:

- For any measurable functions $g(x), h(y)$, we have that $\mathbb{E}[g(X) \cdot h(Y)]=\mathbb{E}[g(X) \cdot \mathbb{E}(h(Y) \mid X)]$.
- For any measurable functions $g(x), h(y)$, we have that $\operatorname{Cov}(g(X), h(Y))=\operatorname{Cov}(g(X), \mathbb{E}[h(Y) \mid X])$.

Law of total variance: Given a random variable Y, we have that $\operatorname{Var}(Y)=\mathbb{E}[\operatorname{Var}(Y \mid X)]+\operatorname{Var}[\mathbb{E}(Y \mid X)]$.

* Notes: Both examples about missing data and survey sampling are instructive, and you are expected to fully understand them.

5 Correlation, Prediction, and Regression

Pearson's correlation coefficient: For two random variables X and Y, their (Pearson's) correlation coefficient is defined as:

$$
\rho_{X Y}=\operatorname{Cor}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \cdot \operatorname{Var}(Y)}}
$$

where $\rho_{X Y} \in[-1,1]$ by the Cauchy-Schwarz inequality; see Quiz Session 1 notes. It measures the linear relation between two random variables.

Mean-square error prediction: The regression function (or best predictor) $\mathbb{E}(Y \mid X=x):=m(x)$ of Y on X minimizes the mean square error $R(g)=\mathbb{E}\left[(Y-g(X))^{2}\right]$ among all possible functions for g.
\star Notes: You should be able to derive those properties about the best predictor $\mathbb{E}(Y \mid X)$ and residual $Y-\mathbb{E}(Y \mid X)$.

Linear prediction: The linear regression function that minimizes the mean square error $R(\alpha, \beta)=$ $\mathbb{E}\left[(Y-\alpha-\beta X)^{2}\right]$ is given by

$$
\begin{aligned}
m^{*}(x) & =\mathbb{E}(Y)+\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(Y)}[x-\mathbb{E}(X)] \\
& =\mu_{Y}+\rho_{X Y} \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right)
\end{aligned}
$$

where $\mu_{X}=\mathbb{E}(X), \mu_{Y}=\mathbb{E}(Y), \sigma_{X}^{2}=\operatorname{Var}(X), \sigma_{Y}^{2}=\operatorname{Var}(Y)$, and $\rho_{X Y}$ is the Pearson's correlation coefficient. In practice, these population quantities $\mu_{X}, \mu_{Y}, \sigma_{X}^{2}, \sigma_{Y}^{2}, \rho_{X Y}$ are estimated from a data sample $\left\{\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right\}$ as:

$$
\begin{aligned}
\widehat{\mu}_{X} & =\frac{1}{n} \sum_{i=1}^{n} X_{i}:=\bar{X}_{n}, \quad \widehat{\sigma}_{X}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}, \quad \widehat{\mu}_{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}:=\bar{Y}_{n} \\
\widehat{\sigma}_{Y}^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2}, \quad \widehat{\rho}_{X Y}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)\left(Y_{i}-\bar{Y}_{n}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2}}}
\end{aligned}
$$

\star Notes: You should be familiar with the generalization of the above results for the univariate linear regression to the multivariate setting.

Classification: Our goal is to find a classifier that minimizes the risk $R(c)=\mathbb{E}[L(c(X), Y)]$ for a given loss function L. Under the 0-1 loss $L(u, v)=\mathbb{1}_{\{u \neq v\}}$, one can obtain the Bayes classifier as:

$$
c_{*}(x)=\underset{y \in\{0,1\}}{\arg \max } \mathbb{P}(y \mid x)= \begin{cases}0, & \text { if } \mathbb{P}(0 \mid x) \geq \mathbb{P}(1 \mid x), \\ 1, & \text { if } \mathbb{P}(1 \mid x)>\mathbb{P}(0 \mid x)\end{cases}
$$

Note that the Bayes classifier only depends on the distribution of (X, Y) but not the class of classifiers (such as k-Nearest Neighbors, decision trees, etc.).

6 Estimators

The central topic of this section is to estimate the parameter (vector) $\theta \in \Theta \subset \mathbb{R}^{k}$ from IID data X_{1}, \ldots, X_{n} that are sampled from the underlying (parametric) distribution $p(x ; \theta)$.

Method of moment estimators: Let $m_{j}(\theta)=\mathbb{E}\left(X^{j}\right)$ for $j=1,2, \ldots$. Then, the method of moment estimator for $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right)$ is obtained by solving the system of equations

$$
\left\{\begin{aligned}
m_{1}(\theta) & =\frac{1}{n} \sum_{i=1}^{n} X_{i} \\
m_{2}(\theta) & =\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \\
& \vdots \\
m_{k}(\theta) & =\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}
\end{aligned}\right.
$$

Maximum likelihood estimator (MLE): The MLE is defined as:

$$
\widehat{\theta}_{M L E}=\underset{\theta \in \Theta}{\arg \max } \sum_{i=1}^{n} \log p\left(X_{i} ; \theta\right):=\underset{\theta \in \Theta}{\arg \max } \ell_{n}(\theta),
$$

where $\ell_{n}(\theta)$ is the log-likelihood function. Under the conditions of (d) in Theorem 7 in Quiz Session 1, the MLE solves the score equation, i.e.,

$$
S_{n}\left(\widehat{\theta}_{M L E}\right)=0
$$

where $S_{n}(\theta)=\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log p\left(X_{i} ; \theta\right)$. In addition, by the central limit theorem,

$$
\sqrt{n}\left(\widehat{\theta}_{M L E}-\theta_{0}\right) \xrightarrow{D} N_{k}\left(0, I\left(\theta_{0}\right)^{-1}\right),
$$

where $I(\theta)=\mathbb{E}\left[\nabla_{\theta} \log p(X ; \theta) \nabla_{\theta} \log p(X ; \theta)^{T}\right]=-\mathbb{E}\left[\frac{\partial^{2}}{\partial \theta \partial \theta^{T}} \log p(X ; \theta)\right]$ is the Fisher's information matrix.
Bayesian estimator: In the regime of Bayesian statistics, the parameter θ of interest is assumed to be generated from a prior distribution $\pi(\theta)$ with $\theta \in \Theta \subset \mathbb{R}^{k}$. The inference on θ is carried out through the posterior distribution defined by the Bayes formula as:

$$
f\left(\theta \mid X_{1}, \ldots, X_{n}\right)=\frac{p\left(X_{1}, \ldots, X_{n} \mid \theta\right) \cdot \pi(\theta)}{p\left(X_{1}, \ldots, X_{n}\right)} \propto \underbrace{p\left(X_{1}, \ldots, X_{n} \mid \theta\right)}_{\text {likelihood }} \times \underbrace{\pi(\theta)}_{\text {prior }} .
$$

The posterior distribution leads to (at least) two Bayesian estimators:

- posterior mean: $\widehat{\theta}_{p}=\mathbb{E}\left(\theta \mid X_{1}, \ldots, X_{n}\right)=\int \theta \cdot f\left(\theta \mid X_{1}, \ldots, X_{n}\right) d \theta$;
- Maximum a posteriori $(M A P): \widehat{\theta}_{M A P}=\arg \max _{\theta \in \Theta} f\left(\theta \mid X_{1}, \ldots, X_{n}\right)$.

Empirical risk minimization: Given a class of predictors \mathcal{F}, we seek to find the predictor $f^{*} \in \mathcal{F}$ that minimizes the risk function given a loss function L, i.e.,

$$
f^{*}=\underset{f \in \mathcal{F}}{\arg \min } \mathbb{E}[L(Y, f(X))]
$$

Such predictor f^{*} has the best prediction performance among \mathcal{F} under the loss function L. When the distribution of (X, Y) is unknown in practice, we pursue the estimator $\widehat{f} \in \mathcal{F}$ that minimizes the empirical risk function, i.e.,

$$
\widehat{f}=\underset{f \in \mathcal{F}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n} L\left(Y_{i}, f\left(X_{i}\right)\right)
$$

7 Multinomial Distribution

The PMF of a multinomial random vector $X=\left(X_{1}, \ldots, X_{k}\right) \sim \operatorname{Multinomial}\left(n ; p_{1}, \ldots, p_{k}\right)$ is given by

$$
\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{k}=x_{k}\right)=\frac{n!}{x_{1}!\cdots x_{k}!} \cdot p_{1}^{x_{1}} \cdots p_{k}^{x_{k}}
$$

Properties of the multinomial distribution:

- Additional trials: If $\left(X_{1}, \ldots, X_{k}\right) \sim \operatorname{Multinomial}\left(n ; p_{1}, \ldots, p_{k}\right)$ and $\left(Y_{1}, \ldots, Y_{k}\right) \sim \operatorname{Multinomial}\left(m ; p_{1}, \ldots, p_{k}\right)$ are independent, then

$$
\left(X_{1}+Y_{1}, \ldots, X_{k}+Y_{k}\right) \sim \operatorname{Multinomial}\left(n+m ; p_{1}, \ldots, p_{k}\right)
$$

- Combining cells: If $\left(X_{1}, \ldots, X_{4}\right) \sim \operatorname{Multinomial}\left(n ; p_{1}, \ldots, p_{4}\right)$ and $Y_{1}=X_{1}+X_{2}, Y_{2}=X_{3}+X_{4}$, then

$$
\left(Y_{1}, Y_{2}\right) \sim \operatorname{Multinomial}\left(n ; p_{1}+p_{2}, p_{3}+p_{4}\right)
$$

- Conditional distributions: If $\left(X_{1}, \ldots, X_{4}\right) \sim \operatorname{Multinomial}\left(n ; p_{1}, \ldots, p_{4}\right)$ and $Y_{1}=X_{1}+X_{2}, Y_{2}=X_{3}+X_{4}$, then

$$
\left(X_{1}, X_{2}\right) \perp\left(X_{3}, X_{4}\right) \mid\left(Y_{1}, Y_{2}\right)
$$

and

$$
\begin{aligned}
& \left(X_{1}, X_{2}\right) \mid X_{1}+X_{2} \sim \text { Multinomial }\left(X_{1}+X_{2} ; \frac{p_{1}}{p_{1}+p_{2}}, \frac{p_{2}}{p_{1}+p_{2}}\right) \\
& \left(X_{1}, X_{2}\right) \left\lvert\, X_{3}+X_{4} \sim \operatorname{Multinomial}\left(n-X_{3}-X_{4} ; \frac{p_{1}}{p_{1}+p_{2}}, \frac{p_{2}}{p_{1}+p_{2}}\right)\right. \\
& \left(X_{3}, X_{4}\right) \left\lvert\, X_{3}+X_{4} \sim \operatorname{Multinomial}\left(X_{3}+X_{4} ; \frac{p_{3}}{p_{3}+p_{4}}, \frac{p_{4}}{p_{3}+p_{4}}\right)\right.
\end{aligned}
$$

- Covariance between cells: If $\left(X_{1}, \ldots, X_{k}\right) \sim \operatorname{Multinomial}\left(n ; p_{1}, \ldots, p_{k}\right)$, then for $1 \leq i \neq j \leq k$,

$$
X_{i} \left\lvert\, X_{j} \sim \operatorname{Binomial}\left(n-X_{j}, \frac{p_{i}}{1-p_{j}}\right)\right.
$$

so that $\operatorname{Cov}\left(X_{i}, X_{j}\right)=-n p_{i} p_{j}$.

Parameter estimation for a multinomial distribution: Given an observed random vector $X=$ $\left(X_{1}, \ldots, X_{k}\right) \sim \operatorname{Multinomial}\left(n ; p_{1}, \ldots, p_{k}\right)$ with $\sum_{j=1}^{k} p_{j}=1$, we derive the MLE of its parameter $\left(p_{1}, \ldots, p_{k}\right)$ using the Lagrangian multiplier:

- Goal: maximize the log-likelihood function $\ell_{n}\left(p_{1}, \ldots, p_{k} \mid X\right)=\sum_{j=1}^{k} X_{j} \log p_{j}+C_{n}$ under the constraint $\sum_{j=1}^{k} p_{j}=1$, where $C_{n}=\log \frac{n!}{X_{1}!\cdots X_{k}!}$ is a quantity that is independent of $\left(p_{1}, \ldots, p_{k}\right)$ and $\sum_{j=1}^{k} X_{k}=n$.
- The Lagrangian function is defined as:

$$
F\left(p_{1}, \ldots, p_{k}, \lambda\right)=\sum_{j=1}^{k} X_{j} \log p_{j}+C_{n}+\lambda\left(1-\sum_{j=1}^{k} p_{j}\right)
$$

Differentiating this function with respect to $p_{1}, \ldots, p_{k}, \lambda$ and setting them to 0 yield that

$$
\begin{equation*}
\frac{\partial F}{\partial p_{j}}=\frac{X_{j}}{p_{j}}-\lambda=0, j=1, \ldots, k, \quad \frac{\partial F}{\partial \lambda}=1-\sum_{j=1}^{k} p_{j}=0 \tag{1}
\end{equation*}
$$

Since the log-likelihood $\ell_{n}\left(p_{1}, \ldots, p_{k} \mid X\right)$ is concave and the parameter set $\left\{\left(p_{1}, \ldots, p_{k}\right) \in[0,1]^{k}: \sum_{j=1}^{k} p_{j}=1\right\}$ is convex, we know that the solution to (1) is indeed the MLE, i.e., $\left(\widehat{p}_{1, M L E}, \ldots, \widehat{p}_{k, M L E}\right)=\left(\frac{X_{1}}{n}, \ldots, \frac{X_{k}}{n}\right)$.
\star Notes: You are expected to fully understand the examples presented during the lectures.
Dirichlet distribution: The PDF of a Dirichlet distribution is

$$
p\left(u_{1}, \ldots, u_{k} ; \alpha_{1}, \ldots, \alpha_{k}\right)=\frac{1}{B(\alpha)} \prod_{i=1}^{k} u_{i}^{\alpha_{i}-1} \quad \text { with } \sum_{i=1}^{k} u_{i}=1 \text { and } u_{i} \geq 0
$$

where $B(\alpha)=\frac{\prod_{i=1}^{k} \Gamma\left(\alpha_{i}\right)}{\Gamma\left(\sum_{i=1}^{k} \alpha\right)}$ and $\alpha_{1}, \ldots, \alpha_{k} \geq 0$. It is generally used as a prior distribution for the multinomial parameters p_{1}, \ldots, p_{k}, leading to the posterior distribution as:

$$
\begin{aligned}
f\left(p_{1}, \ldots, p_{k} \mid X\right) & \propto \frac{n!}{X_{1}!\cdots X_{k}!} \cdot p_{1}^{X_{1}} \cdots p_{k}^{X_{k}} \times \frac{1}{B(\alpha)} \cdot p_{1}^{\alpha_{1}-1} \cdots p_{k}^{\alpha_{k}-1} \\
& \propto p_{1}^{X_{1}+\alpha_{1}-1} \cdots p_{k}^{X_{k}+\alpha_{k}-1} \\
& \sim \operatorname{Dirichlet}\left(X_{1}+\alpha_{1}, \ldots, X_{k}+\alpha_{k}\right)
\end{aligned}
$$

The posterior mean estimator for $\left(p_{1}, \ldots, p_{k}\right)$ is

$$
\left(\widehat{p}_{p, 1}, \ldots, \widehat{p}_{p, k}\right)=\left(\frac{X_{1}+\alpha_{1}}{\sum_{j=1}^{k}\left(X_{j}+\alpha_{j}\right)}, \ldots, \frac{X_{k}+\alpha_{k}}{\sum_{j=1}^{k}\left(X_{j}+\alpha_{j}\right)}\right)
$$

and the MAP estimator for $\left(p_{1}, \ldots, p_{k}\right)$ is

$$
\left(\widehat{p}_{M A P, 1}, \ldots, \widehat{p}_{M A P, k}\right)=\left(\frac{X_{1}+\alpha_{1}-1}{\sum_{j=1}^{k}\left(X_{j}+\alpha_{j}\right)-k}, \ldots, \frac{X_{k}+\alpha_{k}-1}{\sum_{j=1}^{k}\left(X_{j}+\alpha_{j}\right)-k}\right)
$$

\star Notes: You should be able to derive the MAP estimator for $\left(p_{1}, \ldots, p_{k}\right)$ using the Lagrangian multiplier.

8 Linear Models and the Multivariate Normal Distribution

Key concepts in linear algebra:

- Matrix multiplication: For two matrices $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}, A B$ is a $m \times p$ matrix, whose (i, j)-entry is

$$
[A B]_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}
$$

for $1 \leq i \leq m$ and $1 \leq j \leq p$. In particular, for a vector $x \in \mathbb{R}^{n}$,

$$
A x=\left(\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 n} \\
A_{21} & A_{22} & \cdots & A_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{m 1} & A_{m 2} & \cdots & A_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
\sum_{i=1}^{n} A_{1 i} x_{i} \\
\sum_{i=1}^{n} A_{2 i} x_{i} \\
\vdots \\
\sum_{i=1}^{n} A_{m i} x_{i}
\end{array}\right) .
$$

The matrix multiplication on \mathbb{R}^{n} is linear, i.e., $A(a x+b y)=a A x+b A y$ for any $x, y \in \mathbb{R}^{n}$ and $a, b \in \mathbb{R}$.

- Spectral decomposition: For a symmetric (square) matrix $A \in \mathbb{R}^{n \times n}$, i.e., $A=A^{T}$, we can apply the spectral decomposition to it as:

$$
A=U \Lambda U^{T}=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{T}
$$

where $U=\left[u_{1}, \ldots, u_{n}\right] \in \mathbb{R}^{n \times n}$ is an orthogonal matrix whose columns are eigenvectors of A.

- Positive definite matrix: A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive definite if $x^{T} A x>0$ for all $x \in \mathbb{R}^{n}$ with $x \neq 0$. It is positive semi-definite if $x^{T} A x \geq 0$ for all $x \in \mathbb{R}^{n}$.
- Inverse of a partitioned matrix and Schur complement: If $A \in \mathbb{R}^{n \times n}$ is invertible (or nonsingular) and we partition A into blocks as:

$$
A=\left(\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right)
$$

where $S_{i j} \in \mathbb{R}^{n_{i} \times n_{j}}$ with $i, j=1,2$ and $n=n_{1}+n_{2}$, then the inverse of A can be calculated as:

$$
A^{-1}=\left(\begin{array}{cc}
S_{11,2}^{-1} & -S_{11}^{-1} S_{12} S_{22,1} \\
-S_{22}^{-1} S_{21} S_{11,2}^{-1} & S_{22,1}^{-1}
\end{array}\right)
$$

where $S_{11,2}=S_{11}-S_{12} S_{22}^{-1} S_{21}$ is called the Schur complement of S_{11} and $S_{22,1}=S_{22}-S_{21} S_{11}^{-1} S_{12}$ is called the Schur complement of S_{22}.

* Notes: You should be familiar with the rank, inverse, transpose, trace, determinant, eigenvalues, and eigenvector of a matrix. You are also expected to know the common types of matrices, such as identity, triangular, orthogonal, projection matrices, etc.

Jacobian method: Suppose that there is a smooth one-to-one (or bijective) mapping $T: \mathcal{X} \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with $y=T(x)$ for all $x \in \mathcal{X}$ (such mapping is also known as diffeomorphism). We define the Jacobian matrix as:

$$
J_{T}(x) \equiv\left(\frac{\partial y}{\partial x}\right)=\left(\begin{array}{cccc}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{1}} & \cdots & \frac{\partial y_{n}}{\partial x_{1}} \\
\frac{\partial y_{1}}{\partial x_{2}} & \frac{\partial y_{2}}{\partial x_{2}} & \cdots & \frac{\partial y_{n}}{\partial x_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial y_{1}}{\partial x_{n}} & \frac{\partial y_{2}}{\partial x_{n}} & \cdots & \frac{\partial y_{n}}{\partial x_{n}}
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

and the Jacobian is $\left|\operatorname{det}\left(J_{T}(x)\right)\right|=\left|\left(\frac{\partial y}{\partial x}\right)\right|=\left|\frac{\partial y}{\partial x}\right|$. Let $A, B \subset \mathbb{R}^{n}$ be two subsets such that $B=$ $\{T(x): x \in A\}$ and f be a real-valued integrable function on A. Then,

$$
\int_{A} f(x) d x=\int_{B} f\left(T^{-1}(y)\right)\left|\frac{\partial x}{\partial y}\right| d y
$$

where $\left|\frac{\partial x}{\partial y}\right|=\left|\frac{\partial y}{\partial x}\right|^{-1}$. Assume that X is a random variable with its PDF p_{X} supported on A. Then, the PDF of $Y=T(X)$ is given by

$$
p_{Y}(y)=p_{X}\left(T^{-1}(y)\right) \cdot\left|\frac{\partial x}{\partial y}\right| \cdot \mathbb{1}_{B}
$$

Covariance matrix: For a random vector $X \in \mathbb{R}^{n}$, its covariance matrix is defined as

$$
\operatorname{Cov}(X)=\mathbb{E}\left[(X-\mathbb{E}(X))(X-\mathbb{E}(X))^{T}\right]=\mathbb{E}\left(X X^{T}\right)-\mathbb{E}(X) \mathbb{E}(X)^{T}
$$

Given a deterministic matrix $A \in \mathbb{R}^{n \times n}$ and vector $b \in \mathbb{R}^{n}$, we have that $\operatorname{Cov}(A X+b)=A \operatorname{Cov}(X) A^{T}$.
Multivariate normal distribution: The PDF of a multivariate normal random vector $X \sim N_{n}(\mu, \Sigma)$ is given by

$$
p(x)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\Sigma)}} \exp \left[-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right]
$$

- Linearity: $Y=A X+b \sim N_{m}\left(A \mu+b, A \Sigma A^{T}\right)$ with $A \in \mathbb{R}^{m \times n}$ as a deterministic nonsingular matrix and $b \in \mathbb{R}^{m}$ as a deterministic vector, where $X \sim N_{n}(\mu, \Sigma)$.
- Equivalence of independence and uncorrelation: If X and Y are both multivariate normal random variables/vectors, then $X \perp Y \Longleftrightarrow \operatorname{Cov}(X, Y)=0$.
- Normality of marginal and conditional distributions: Given a multivariate normal random vector $X \sim$ $N_{n}(\mu, \Sigma)$, we partition it into $X=\left(X_{1}, X_{2}\right)^{T} \in \mathbb{R}^{n}$, where $X_{1} \in \mathbb{R}^{n_{1}}$ and $X_{2} \in \mathbb{R}^{n_{2}}$ with $n=n_{1}+n_{2}$. Then,

$$
X_{1} \sim N_{n_{1}}\left(\mu_{1}, \Sigma_{11}\right), \quad X_{2} \sim N_{n_{1}}\left(\mu_{2}, \Sigma_{22}\right), \quad \text { and } \quad X_{1} \mid X_{2} \sim N_{n_{1}}\left(\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(X_{2}-\mu_{2}\right), \Sigma_{11,2}\right)
$$

where we partition μ and Σ as $\mu=\left(\mu_{1}, \mu_{2}\right)^{T} \in \mathbb{R}^{n}$ and $\Sigma=\left(\begin{array}{ll}\Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22}\end{array}\right) \in \mathbb{R}^{n \times n}$. Here, $\Sigma_{11,2}=$ $\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$.

* Notes: The properties about multivariate normal distributions are very important.

Chi-square distribution: If Z_{1}, \ldots, Z_{n} are IID normal random variable $N(0,1)$, then $W_{n}=\sum_{i=1}^{n} Z_{i}^{2}$ follows a χ^{2}-distribution with n degrees of freedom. We write $W_{n} \sim \chi_{n}^{2}$.

- If $X \sim N_{n}(\mu, \Sigma)$, then $(X-\mu)^{T} \Sigma^{-1}(X-\mu) \sim \chi_{n}^{2}$.
- Let $X \sim N_{n}\left(\mu, \boldsymbol{I}_{n}\right)$ and $P \in \mathbb{R}^{n \times n}$ be an orthogonal projection matrix (i.e., it is idempotent $P^{2}=P$ and symmetric $P=P^{T}$) with $\operatorname{rank}(P)=m<n$. Then, $(X-\mu)^{T} P(X-\mu) \sim \chi_{m}^{2}$.
- Given some IID normal random variables $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$, we know that

$$
\begin{aligned}
& -\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \text { and } S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2} \text { are independent. } \\
& -\bar{X}_{n} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right) \text { and } \frac{(n-1) S_{n}^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
\end{aligned}
$$

9 Order Statistics

Let X_{1}, \ldots, X_{n} be IID random variables. The order statistics $X_{(1)} \leq \cdots \leq X_{(n)}$ are the ordered values of X_{1}, \ldots, X_{n}. The distribution (or PMF) of the order statistics when X_{1}, \ldots, X_{n} are discrete random variables can be derived by enumerating all possible configurations of X_{1}, \ldots, X_{n} that leads to $\left\{X_{(1)}=y_{1}, \ldots, X_{(n)}=\right.$ $\left.y_{n}\right\}$.

Now, when X_{1}, \ldots, X_{n} has PDF $p_{X}(x)$ and CDF $F_{X}(x)$,

- the PDF of $X_{(j)}$ is

$$
p_{X_{(j)}}(y)=\frac{n!}{(n-j)!(j-1)!} \cdot F_{X}(y)^{j-1}\left[1-F_{X}(y)\right]^{n-j} p_{X}(y)
$$

- the joint PDF of $\left(X_{(j)}, X_{(k)}\right)$ with $j<k$ is

$$
p_{X_{(j)}, X}(y)=\frac{n!}{(j-1)!(k-j-1)!(n-k)!} \cdot F_{X}(y)^{j-1}\left[F_{X}(z)-F_{X}(y)\right]^{k-j-1}\left[1-F_{X}(z)\right]^{n-k} p_{X}(y) \cdot p_{X}(z)
$$

- the joint PDF of $\left(X_{(1)}, \ldots, X_{(n)}\right)$ is $p\left(y_{1}, \ldots, y_{n}\right)=n!\cdot p_{X}\left(y_{1}\right) \cdots p_{X}\left(y_{n}\right)$.

Order statistics of Uniform $[0,1]$: When X_{1}, \ldots, X_{n} are IID uniform random variables on $[0,1]$, the j-th order statistic follows the $\operatorname{Beta}(j, n-j+1)$ distribution.

10 Statistical Functional and Bootstrap

Empirical CDF: Given a random sample $\left\{X_{1}, \ldots, X_{n}\right\}$, the empirical CDF is defined as: $\widehat{F}_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\left\{X_{i} \leq x\right\}}$. We know that for any fixed $x \in \mathbb{R}$,

$$
\mathbb{E}\left[\widehat{F}_{n}(x)\right]=F(x), \quad \operatorname{Var}\left(\widehat{F}_{n}(x)\right)=\frac{F(x)[1-F(x)]}{n}, \quad \widehat{F}_{n}(x) \xrightarrow{P} F(x),
$$

and $\sqrt{n}\left(\widehat{F}_{n}(x)-F(x)\right) \xrightarrow{D} N(0, F(x)[1-F(x)])$.
Statistical functional ${ }^{2}$: When the functional T is smooth, the plug-in estimator $T\left(\widehat{F}_{n}\right)$ for the population statistical functional $T(F)$ is consistent, i.e., $T\left(\widehat{F}_{n}\right) \xrightarrow{P} T(F)$.

* Notes: You should be familiar with those examples related to statistical functionals discussed in the lectures.

Delta Method: Let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be a sequence of random vectors in \mathbb{R}^{k} such that $\sqrt{n}\left(Y_{n}-\mu\right) \xrightarrow{D} N_{k}(0, \Sigma)$. If a function $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is differentiable at $\mu \in \mathbb{R}^{k}$, then

$$
\sqrt{n}\left[f\left(X_{n}\right)-f(\mu)\right] \xrightarrow{D} N_{1}\left(0, \nabla f(\mu)^{T} \Sigma \nabla f(\mu)\right)
$$

Linear functional and influence function: Given a function $\omega: \mathbb{R}^{k} \rightarrow \mathbb{R}$, a linear functional can be written as $T_{\omega}(F)=\int \omega(x) d F(x)$, whose plug-in estimator is given by $T_{\omega}\left(\widehat{F}_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \omega\left(X_{i}\right)$, where

[^1]$X_{1}, \ldots, X_{n} \in \mathbb{R}^{k}$ are random observations from F. We define the influence function as $L_{F}(x)=\omega(x)-T_{\omega}(F)$. By the central limit theorem,
$$
\sqrt{n}\left(T_{\omega}\left(\widehat{F}_{n}\right)-T_{\omega}(F)\right) \xrightarrow{D} N\left(0, \mathbb{V}_{\omega}(F)\right) \quad \text { with } \quad \mathbb{V}_{\omega}(F)=\int L_{F}^{2}(x) d F(x)
$$
provided that $\int \omega(x)^{2} d F(x)<\infty$.
Nonlinear functional: Given a point mass δ_{x} at point $x \in \mathbb{R}^{k}$, the influence function of a general statistical functional $T_{\text {target }}$ is
$$
L_{F}(x)=\lim _{\epsilon \rightarrow 0} \frac{T_{\text {target }}\left((1-\epsilon) F+\epsilon \delta_{x}\right)-T_{\text {target }}(F)}{\epsilon} .
$$

Nonparametric bootstrap: Given a random sample $\mathcal{D}=\left\{X_{1}, \ldots, X_{n}\right\}$, we sample with replacement from \mathcal{D} to obtain a bootstrap sample $\mathcal{D}^{*}=\left\{X_{1}^{*}, \ldots, X_{n}^{*}\right\}$. Such bootstrap process is generally repeated for B times to obtain B bootstrap samples $\mathcal{D}^{*(b)}=\left\{X_{1}^{*(b)}, \ldots, X_{n}^{*(b)}\right\}, b=1, \ldots, B$. They can be utilized to quantify the variance $\operatorname{Var}(S(\mathcal{D}))$ (or estimation error) of a statistic $S(\mathcal{D})$ that is constructed on the original sample \mathcal{D} as:

$$
\operatorname{Var}(S(\mathcal{D}))=\frac{1}{B-1} \sum_{b=1}^{B}\left[S\left(\mathcal{D}^{*(b)}\right)-\frac{1}{B} \sum_{b=1}^{B} S\left(\mathcal{D}^{*(b)}\right)\right]^{2}
$$

The bootstrap method is particularly useful when $\operatorname{Var}(S(\mathcal{D}))$ has no analytical forms.

References

G. Casella and R. Berger. Statistical Inference. Duxbury advanced series. Thomson Learning, 2nd ed. edition, 2002.
M. Perlman. Probability and Mathematical Statistics I (STAT 512 Lecture Notes), 2020. URL https: //sites.stat.washington.edu/people/mdperlma/STAT $\% 20512 \% 20 \mathrm{MDP} \% 20$ Notes.pdf.

[^0]: ${ }^{1}$ See http://faculty.washington.edu/yenchic/20A_stat512.html.

[^1]: ${ }^{2}$ The interested student can refer to Professor Jon Wellner's note https://sites.stat.washington.edu/people/jaw/ COURSES/580s/581/LECTNOTES/ch7.pdf for further studies.

