
STAT 512: Statistical Inference Autumn 2022

Quiz Session 9: Final Review
Yikun Zhang December 7, 2022

This note intends to give a brief review on lecture materials and highlight those important concepts/results
in STAT 512. The review is by no means comprehensive and in order to excel at the final exam, a student
is expected to master those fundamentals in the course instead of simply memorizing the key formulae or
theorems.

Most parts of this note are selected from Professor Yen-Chi Chen’s1 and Professor Michael Perlman’s lecture
notes [Perlman, 2020].

1 Probability Distributions and Random Variables

Probability space: A probability space is written as (Ω,F ,P), where

1. Ω is the sample space;

2. F is a σ-algebra (also called σ-field);

3. P is a probability measure with P(Ω) = 1.

? Notes: You should be familiar with the definition of σ-algebra, properties of a probability measure (count-
able additivity, inclusion, complementation, monotone continuity, etc.).

Random variable: A random variable X : Ω→ R is a (measurable) function satisfying

X−1 ((−∞, c]) := {ω ∈ Ω : X(ω) ≤ c} ∈ F for all c ∈ R.

The probability that X takes on a value in a Borel set B ⊆ R is written as:

P(X ∈ B) = P ({ω ∈ Ω : X(ω) ∈ B}) .

Cumulative distribution function (CDF): The CDF F : R → [0, 1] of a random variable X is defined
as:

F (x) := P(X ≤ x) = P ({ω ∈ Ω : X(ω) ≤ x}) .

Probability mass function (PMF) and probability density function (PDF):

• If the range X ⊂ R of a random variable X is countable, it is called a discrete random variable, whose
distribution can be characterized by the PMF as:

P(X = x) = F (x)− lim
ε→0+

F (x− ε) for all x ∈ X .

• If the range X ⊆ R of a random variable X has an absolutely continuous CDF F , then we can describe
its distribution through the PDF as:

p(x) = F ′(x) =
d

dx
F (x).

In this case, F (x) = P(X ≤ x) =
∫ x
−∞ p(u) du.

1See http://faculty.washington.edu/yenchic/20A_stat512.html.

1

http://faculty.washington.edu/yenchic/20A_stat512.html
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? Notes: You are expected to know the PMF or PDF of all the common distributions in Statistics; see
Section 1.3 in Lecture 1 notes.

Conditional probability and distribution: For two events A,B ∈ F , the conditional probability of A
given B is given by

P(A|B) =
P(A ∩B)

P(B)
=

P(B|A) · P(A)

P(B)
,

where the second equality follows from Bayes formula. Similarly, when both X and Y are continuous/discrete
random variables, the conditional PDF/PMF of Y given X = x is

pY |X(y|x) =
pXY (x, y)

pX(x)
=
pX|Y (x|y) · pY (y)

pX(x)
,

where pX(x) =
∫∞
−∞ pXY (x, y) dy or pX(x) =

∑
y pXY (x, y) is the marginal PDF or PMF of X.

Independence and conditional independence: Two events A and B are independent if

P(A|B) = P(A) or equivalently, P(A ∩B) = P(A) · P(B).

For three events A,B,C, we say that A and B are conditionally independent given C if

P(A ∩B|C) = P(A|C) · P(B|C).

The independence and conditional independence can be analogously defined for random variables X,Y, Z as:

• We say that X and Y are independent (X ⊥ Y ) if

F (x, y) = P(X ≤ x, Y ≤ y) = P(X ≤ x) · P(Y ≤ y).

If X and Y have PDFs or PMFs, then the independence of X and Y can be equivalently defined as:

pXY (x, y) = pX(x) · pY (y),

where pX , pY are marginal PDFs or PMFs of X and Y .

• We say that X and Y are conditionally independent given Z (i.e., X ⊥ Y |Z) if

P(X ≤ x, Y ≤ y|Z) = P(X ≤ x|Z) · P(Y ≤ y|Z).

Recall Theorem 1.1 and subsequent discussions in Lecture 1 notes for equivalently definitions and key
properties of conditional independence.

2 Transforming continuous distributions

For a continuous random variable X with PDF pX(x) supported on [a, b], the PDF of a transformed random
variable Y = f(X) by a strictly increasing function f is

pY (y) =

{
pX(f−1(y))
f ′(f−1(y)) , f(a) ≤ y ≤ f(b),

0, otherwise.

For deriving the distribution U = f(X,Y ), which is a function of two (or more) random variables X,Y , one
can start from its CDF as:

FU (u) = P (f(X,Y ) ≤ u)

and determine the region {(X,Y ) ∈ X × Y ⊂ R2 : g(X,Y ) ≤ u}. Or, one can introduce a second variable
V = h(X,Y ), where the function h is chosen cleverly, so that it is relatively easy to find the joint distribution
of (U, V ) via the Jacobian method and then marginalize to find the distribution of U .
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3 Expectation and Basic Asymptotic Theories

Expectation, variance, and covariance: For random variables X,Y , we define

• expectation (or mean): E(X) =
∫∞
−∞ x · pX(x) dx or

∑
x∈X x · pX(x).

• variance: Var(X) = E
[
(X − E(X))2

]
.

• Covariance: Cov(X,Y ) = E [(X − E(X)) (Y − E(Y ))].

? Notes: You should be able to compute the expectations and variances of those common probability
distributions in Statistics.

Moment generating function (MGF): The MGF of a random variable X is defined as:

MX(t) = E(etX)

for some t ∈ R. MX may not exist for some or all t ∈ R. When MX exists in a neighborhood of 0, we have
that

E(Xj) = M
(j)
X (0) =

djMX(t)

dtj

∣∣∣
t=0

.

For two random variables X,Y , if their MGFs exist and MX(t) = MY (t) for all t in some neighborhood of
0, then they have the same distributions; see Theorem 2.3.11 in Casella and Berger [2002]. For a sequence
of random variables Xi, i = 1, 2, ..., if limi→∞MXi(t) = MX(t) around a neighborhood of 0, then

lim
i→∞

FXi(x) = FX(x)

for all x at which FX is continuous; see Theorem 2.3.12 in Casella and Berger [2002].

The multivariate MGF for a random vector X = (X1, ..., Xd) ∈ Rd is defined as:

MX(t) = E
(
et

TX
)

with t ∈ Rd. The MGF of a multivariate normal random vector X ∼ Nd(µ,Σ) can be utilized to derive that

Z = AX + b ∼ Nd
(
Aµ+ b, AΣAT

)
,

where A ∈ Rd×d and b ∈ Rd are deterministic.

Convergence of random variables: We discuss four different convergences of a sequence {Xn}∞n=1 of
random variables:

• Convergence in distribution: lim
n→∞

Fn(x) = F (x), where the CDF of F is continuous at x ∈ R and

{Fn}∞n=1 are CDFs of {Xn}∞n=1. We can write Xn
D→ X or Xn  X.

• Convergence in probability : For any ε > 0, lim
n→∞

P (|Xn −X| > ε) = 0 and we can write Xn
P→ X.

• Convergence in Lp-norm: lim
n→∞

E (|Xn −X|p) = 0, provided that the p-th absolute moments E|Xn|p

and E|X|p of {Xn}∞n=1 and X exist.

• Almost sure convergence: P
(
{ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)}

)
= 1 and we can write Xn

a.s.→ X.
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We prove the implications between the above convergences and provide counterexamples for which the
converse directions do not hold in Quiz Session 3.

Markov’s inequality: For a nonnegative random variables X, we have that

P(X > ε) ≤ E(X)

ε
for any ε > 0.

Chebyshev’s inequality: For a random variable X with finite variance, we have that

P (|X − E(X)| > ε) ≤ Var(X)

ε2
for any ε > 0.

Weak Law of Large Numbers: Let X1, ..., Xn be independent and identically distributed (IID) random
variables with µ = E|X1| <∞ and Var(X1) <∞. The sample average converges in probability to µ, i.e.,

X̄n =
1

n

n∑
i=1

Xi
P→ µ.

The strong law of large number strengthens the convergence in probability to the almost sure convergence.

Central Limit Theorem: Let X1, ..., Xn be IID random variables with µ = E|X1| < ∞ and σ2 =
Var(X1) <∞. We also denote the sample average by X̄n = 1

n

∑n
i=1Xi. Then,

√
n

(
X̄n − µ
σ

)
D→ Z,

where Z follows the standard normal distribution N(0, 1).

? Notes: You should be familiar with the proofs of weak law of large numbers and central limit theorem.

Continuous mapping theorem: Let g be a continuous function and {Xn}∞n=1 be a sequence of random
variables.

• If Xn
D→ X, then g(Xn)

D→ g(X);

• If Xn
P→ X, then g(Xn)

P→ g(X);

• If Xn
a.s.→ X, then g(Xn)

a.s.→ g(X).

Slutsky’s theorem: Let {Xn}∞n=1 and {Yn}∞n=1 be two sequences of random variables such that Xn
D→ X

and Yn
P→ c, where X is a random variable and c is a constant. Then,

Xn + Yn
D→ X + c, XnYn

D→ cX, and
Xn

Yn

D→ X

c
(when c 6= 0).

Hoeffding’s inequality: Let X1, ..., Xn ∈ [m,M ] be IID random variables with −∞ < m < M < ∞ and
X̄n be their sample average. Then, for any ε > 0,

P
(
|X̄n − E(X̄n)| ≥ ε

)
≤ 2 exp

(
− 2nε2

(M −m)2

)
.

It provides an improved concentration bound for X̄n than the one derived from Chebyshev’s inequality.

? Notes: You are encouraged to understand the proof and related examples about the concentration of mean
in Lecture 3 notes.
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4 Conditional Expectation

The conditional expectation of Y given X is the random variable E(Y |X) such that when X = x, its value
is E(Y |X = x) =

∫
y · p(y|x) dy or

∑
y y · p(y|x).

Law of total expectation: For any measurable function g(x, y), we have that E [E (g(X,Y )|X)] =
E [g(X,Y )]. It gives rise to several applications:

• For any measurable functions g(x), h(y), we have that E [g(X) · h(Y )] = E [g(X) · E (h(Y )|X)].

• For any measurable functions g(x), h(y), we have that Cov (g(X), h(Y )) = Cov (g(X),E [h(Y )|X]).

Law of total variance: Given a random variable Y , we have that Var(Y ) = E [Var(Y |X)] + Var [E(Y |X)].

? Notes: Both examples about missing data and survey sampling are instructive, and you are expected to
fully understand them.

5 Correlation, Prediction, and Regression

Pearson’s correlation coefficient: For two random variables X and Y , their (Pearson’s) correlation
coefficient is defined as:

ρXY = Cor(X,Y ) =
Cov(X,Y )√

Var(X) ·Var(Y )
,

where ρXY ∈ [−1, 1] by the Cauchy-Schwarz inequality; see Quiz Session 1 notes. It measures the linear
relation between two random variables.

Mean-square error prediction: The regression function (or best predictor) E(Y |X = x) := m(x) of Y

on X minimizes the mean square error R(g) = E
[
(Y − g(X))

2
]

among all possible functions for g.

? Notes: You should be able to derive those properties about the best predictor E(Y |X) and residual
Y − E(Y |X).

Linear prediction: The linear regression function that minimizes the mean square error R(α, β) =
E
[
(Y − α− βX)2

]
is given by

m∗(x) = E(Y ) +
Cov(X,Y )

Var(Y )
[x− E(X)]

= µY + ρXY
σY
σX

(x− µX),

where µX = E(X), µY = E(Y ), σ2
X = Var(X), σ2

Y = Var(Y ), and ρXY is the Pearson’s correlation co-
efficient. In practice, these population quantities µX , µY , σ

2
X , σ

2
Y , ρXY are estimated from a data sample

{(X1, Y1), ..., (Xn, Yn)} as:

µ̂X =
1

n

n∑
i=1

Xi := X̄n, σ̂2
X =

1

n− 1

n∑
i=1

(Xi − X̄n)2, µ̂Y =
1

n

n∑
i=1

Yi := Ȳn,

σ̂2
Y =

1

n− 1

n∑
i=1

(Yi − Ȳn)2, ρ̂XY =

∑n
i=1(Xi − X̄n)(Yi − Ȳn)√∑n

i=1(Xi − X̄n)2

√∑n
i=1(Yi − Ȳn)2

.

? Notes: You should be familiar with the generalization of the above results for the univariate linear regression
to the multivariate setting.
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Classification: Our goal is to find a classifier that minimizes the risk R(c) = E [L(c(X), Y )] for a given loss
function L. Under the 0-1 loss L(u, v) = 1{u6=v}, one can obtain the Bayes classifier as:

c∗(x) = arg max
y∈{0,1}

P(y|x) =

{
0, if P(0|x) ≥ P(1|x),

1, if P(1|x) > P(0|x).

Note that the Bayes classifier only depends on the distribution of (X,Y ) but not the class of classifiers (such
as k-Nearest Neighbors, decision trees, etc.).

6 Estimators

The central topic of this section is to estimate the parameter (vector) θ ∈ Θ ⊂ Rk from IID data X1, ..., Xn

that are sampled from the underlying (parametric) distribution p(x; θ).

Method of moment estimators: Let mj(θ) = E(Xj) for j = 1, 2, .... Then, the method of moment
estimator for θ = (θ1, ..., θk) is obtained by solving the system of equations

m1(θ) = 1
n

n∑
i=1

Xi,

m2(θ) = 1
n

n∑
i=1

X2
i ,

...

mk(θ) = 1
n

n∑
i=1

Xk
i .

Maximum likelihood estimator (MLE): The MLE is defined as:

θ̂MLE = arg max
θ∈Θ

n∑
i=1

log p(Xi; θ) := arg max
θ∈Θ

`n(θ),

where `n(θ) is the log-likelihood function. Under the conditions of (d) in Theorem 7 in Quiz Session 1, the
MLE solves the score equation, i.e.,

Sn(θ̂MLE) = 0,

where Sn(θ) =
n∑
i=1

∂
∂θ log p(Xi; θ). In addition, by the central limit theorem,

√
n
(
θ̂MLE − θ0

)
D→ Nk

(
0, I(θ0)−1

)
,

where I(θ) = E
[
∇θ log p(X; θ)∇θ log p(X; θ)T

]
= −E

[
∂2

∂θ∂θT
log p(X; θ)

]
is the Fisher’s information matrix.

Bayesian estimator: In the regime of Bayesian statistics, the parameter θ of interest is assumed to be
generated from a prior distribution π(θ) with θ ∈ Θ ⊂ Rk. The inference on θ is carried out through the
posterior distribution defined by the Bayes formula as:

f(θ|X1, ..., Xn) =
p(X1, ..., Xn|θ) · π(θ)

p(X1, ..., Xn)
∝ p(X1, ..., Xn|θ)︸ ︷︷ ︸

likelihood

×π(θ)︸︷︷︸
prior

.

The posterior distribution leads to (at least) two Bayesian estimators:

• posterior mean: θ̂p = E(θ|X1, ..., Xn) =
∫
θ · f(θ|X1, ..., Xn) dθ;
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• Maximum a posteriori (MAP): θ̂MAP = arg maxθ∈Θ f(θ|X1, ..., Xn).

Empirical risk minimization: Given a class of predictors F , we seek to find the predictor f∗ ∈ F that
minimizes the risk function given a loss function L, i.e.,

f∗ = arg min
f∈F

E [L(Y, f(X))] .

Such predictor f∗ has the best prediction performance among F under the loss function L. When the
distribution of (X,Y ) is unknown in practice, we pursue the estimator f̂ ∈ F that minimizes the empirical
risk function, i.e.,

f̂ = arg min
f∈F

1

n

n∑
i=1

L (Yi, f(Xi)) .

7 Multinomial Distribution

The PMF of a multinomial random vector X = (X1, ..., Xk) ∼ Multinomial(n; p1, ..., pk) is given by

P(X1 = x1, ..., Xk = xk) =
n!

x1! · · ·xk!
· px1

1 · · · p
xk

k .

Properties of the multinomial distribution:

• Additional trials: If (X1, ..., Xk) ∼ Multinomial(n; p1, ..., pk) and (Y1, ..., Yk) ∼ Multinomial(m; p1, ..., pk)
are independent, then

(X1 + Y1, ..., Xk + Yk) ∼ Multinomial(n+m; p1, ..., pk).

• Combining cells: If (X1, ..., X4) ∼ Multinomial(n; p1, ..., p4) and Y1 = X1 +X2, Y2 = X3 +X4, then

(Y1, Y2) ∼ Multinomial(n; p1 + p2, p3 + p4).

• Conditional distributions: If (X1, ..., X4) ∼ Multinomial(n; p1, ..., p4) and Y1 = X1 +X2, Y2 = X3 +X4,
then

(X1, X2) ⊥ (X3, X4)|(Y1, Y2)

and

(X1, X2)|X1 +X2 ∼ Multinomial

(
X1 +X2;

p1

p1 + p2
,

p2

p1 + p2

)
,

(X1, X2)|X3 +X4 ∼ Multinomial

(
n−X3 −X4;

p1

p1 + p2
,

p2

p1 + p2

)
,

(X3, X4)|X3 +X4 ∼ Multinomial

(
X3 +X4;

p3

p3 + p4
,

p4

p3 + p4

)
.

• Covariance between cells: If (X1, ..., Xk) ∼ Multinomial(n; p1, ..., pk), then for 1 ≤ i 6= j ≤ k,

Xi|Xj ∼ Binomial

(
n−Xj ,

pi
1− pj

)
so that Cov(Xi, Xj) = −npipj .
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Parameter estimation for a multinomial distribution: Given an observed random vector X =

(X1, ..., Xk) ∼ Multinomial(n; p1, ..., pk) with
k∑
j=1

pj = 1, we derive the MLE of its parameter (p1, ..., pk)

using the Lagrangian multiplier:

• Goal : maximize the log-likelihood function `n(p1, ..., pk|X) =
k∑
j=1

Xj log pj + Cn under the constraint

k∑
j=1

pj = 1, where Cn = log n!
X1!···Xk! is a quantity that is independent of (p1, ..., pk) and

k∑
j=1

Xk = n.

• The Lagrangian function is defined as:

F (p1, ..., pk, λ) =

k∑
j=1

Xj log pj + Cn + λ

1−
k∑
j=1

pj

 .

Differentiating this function with respect to p1, ..., pk, λ and setting them to 0 yield that

∂F

∂pj
=
Xj

pj
− λ = 0, j = 1, ..., k,

∂F

∂λ
= 1−

k∑
j=1

pj = 0. (1)

Since the log-likelihood `n(p1, ..., pk|X) is concave and the parameter set

{
(p1, ..., pk) ∈ [0, 1]k :

k∑
j=1

pj = 1

}
is convex, we know that the solution to (1) is indeed the MLE, i.e., (p̂1,MLE , ..., p̂k,MLE) =

(
X1

n , ...,
Xk

n

)
.

? Notes: You are expected to fully understand the examples presented during the lectures.

Dirichlet distribution: The PDF of a Dirichlet distribution is

p(u1, ..., uk;α1, ..., αk) =
1

B(α)

k∏
i=1

uαi−1
i with

k∑
i=1

ui = 1 and ui ≥ 0,

where B(α) =
∏k

i=1 Γ(αi)

Γ(
∑k

i=1 α)
and α1, ..., αk ≥ 0. It is generally used as a prior distribution for the multinomial

parameters p1, ..., pk, leading to the posterior distribution as:

f(p1, ..., pk|X) ∝ n!

X1! · · ·Xk!
· pX1

1 · · · p
Xk

k ×
1

B(α)
· pα1−1

1 · · · pαk−1
k

∝ pX1+α1−1
1 · · · pXk+αk−1

k

∼ Dirichlet(X1 + α1, ..., Xk + αk).

The posterior mean estimator for (p1, ..., pk) is

(p̂p,1, ..., p̂p,k) =

(
X1 + α1∑k

j=1 (Xj + αj)
, ...,

Xk + αk∑k
j=1 (Xj + αj)

)
,

and the MAP estimator for (p1, ..., pk) is

(p̂MAP,1, ..., p̂MAP,k) =

(
X1 + α1 − 1∑k

j=1 (Xj + αj)− k
, ...,

Xk + αk − 1∑k
j=1 (Xj + αj)− k

)
.

? Notes: You should be able to derive the MAP estimator for (p1, ..., pk) using the Lagrangian multiplier.
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8 Linear Models and the Multivariate Normal Distribution

Key concepts in linear algebra:

• Matrix multiplication: For two matrices A ∈ Rm×n, B ∈ Rn×p, AB is a m×p matrix, whose (i, j)-entry
is

[AB]ij =

n∑
k=1

AikBkj

for 1 ≤ i ≤ m and 1 ≤ j ≤ p. In particular, for a vector x ∈ Rn,

Ax =


A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

Am1 Am2 · · · Amn



x1

x2

...
xn

 =



n∑
i=1

A1ixi
n∑
i=1

A2ixi

...
n∑
i=1

Amixi


.

The matrix multiplication on Rn is linear, i.e., A(ax+ by) = aAx+ bAy for any x, y ∈ Rn and a, b ∈ R.

• Spectral decomposition: For a symmetric (square) matrix A ∈ Rn×n, i.e., A = AT , we can apply the
spectral decomposition to it as:

A = UΛUT =

n∑
i=1

λiuiu
T
i ,

where U = [u1, ..., un] ∈ Rn×n is an orthogonal matrix whose columns are eigenvectors of A.

• Positive definite matrix : A symmetric matrix A ∈ Rn×n is positive definite if xTAx > 0 for all x ∈ Rn
with x 6= 0. It is positive semi-definite if xTAx ≥ 0 for all x ∈ Rn.

• Inverse of a partitioned matrix and Schur complement: If A ∈ Rn×n is invertible (or nonsingular) and
we partition A into blocks as:

A =

(
S11 S12

S21 S22

)
,

where Sij ∈ Rni×nj with i, j = 1, 2 and n = n1 + n2, then the inverse of A can be calculated as:

A−1 =

(
S−1

11,2 −S−1
11 S12S22,1

−S−1
22 S21S

−1
11,2 S−1

22,1

)
,

where S11,2 = S11 − S12S
−1
22 S21 is called the Schur complement of S11 and S22,1 = S22 − S21S

−1
11 S12 is

called the Schur complement of S22.

? Notes: You should be familiar with the rank, inverse, transpose, trace, determinant, eigenvalues, and
eigenvector of a matrix. You are also expected to know the common types of matrices, such as identity,
triangular, orthogonal, projection matrices, etc.

Jacobian method: Suppose that there is a smooth one-to-one (or bijective) mapping T : X ⊂ Rn → Rn
with y = T (x) for all x ∈ X (such mapping is also known as diffeomorphism). We define the Jacobian matrix
as:

JT (x) ≡
(
∂y

∂x

)
=


∂y1
∂x1

∂y2
∂x1

· · · ∂yn
∂x1

∂y1
∂x2

∂y2
∂x2

· · · ∂yn
∂x2

...
...

. . .
...

∂y1
∂xn

∂y2
∂xn

· · · ∂yn
∂xn

 ∈ Rn×n,
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and the Jacobian is |det (JT (x))| =
∣∣∣( ∂y∂x)∣∣∣ =

∣∣∣ ∂y∂x ∣∣∣. Let A,B ⊂ Rn be two subsets such that B =

{T (x) : x ∈ A} and f be a real-valued integrable function on A. Then,∫
A

f(x) dx =

∫
B

f
(
T−1(y)

) ∣∣∣∣∂x∂y
∣∣∣∣ dy,

where
∣∣∣∂x∂y ∣∣∣ =

∣∣∣ ∂y∂x ∣∣∣−1

. Assume that X is a random variable with its PDF pX supported on A. Then, the

PDF of Y = T (X) is given by

pY (y) = pX
(
T−1(y)

)
·
∣∣∣∣∂x∂y

∣∣∣∣ · 1B .
Covariance matrix: For a random vector X ∈ Rn, its covariance matrix is defined as

Cov(X) = E
[
(X − E(X)) (X − E(X))

T
]

= E
(
XXT

)
− E(X)E(X)T .

Given a deterministic matrix A ∈ Rn×n and vector b ∈ Rn, we have that Cov(AX + b) = ACov(X)AT .

Multivariate normal distribution: The PDF of a multivariate normal random vector X ∼ Nn(µ,Σ) is
given by

p(x) =
1√

(2π)n det(Σ)
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
.

• Linearity : Y = AX + b ∼ Nm(Aµ + b, AΣAT ) with A ∈ Rm×n as a deterministic nonsingular matrix
and b ∈ Rm as a deterministic vector, where X ∼ Nn(µ,Σ).

• Equivalence of independence and uncorrelation: If X and Y are both multivariate normal random
variables/vectors, then X ⊥ Y ⇐⇒ Cov(X,Y ) = 0.

• Normality of marginal and conditional distributions: Given a multivariate normal random vector X ∼
Nn(µ,Σ), we partition it into X = (X1, X2)T ∈ Rn, where X1 ∈ Rn1 and X2 ∈ Rn2 with n = n1 + n2.
Then,

X1 ∼ Nn1(µ1,Σ11), X2 ∼ Nn1(µ2,Σ22), and X1|X2 ∼ Nn1

(
µ1 + Σ12Σ−1

22 (X2 − µ2),Σ11,2

)
,

where we partition µ and Σ as µ = (µ1, µ2)T ∈ Rn and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
∈ Rn×n. Here, Σ11,2 =

Σ11 − Σ12Σ−1
22 Σ21.

? Notes: The properties about multivariate normal distributions are very important.

Chi-square distribution: If Z1, ..., Zn are IID normal random variable N(0, 1), then Wn =
∑n
i=1 Z

2
i

follows a χ2-distribution with n degrees of freedom. We write Wn ∼ χ2
n.

• If X ∼ Nn(µ,Σ), then (X − µ)TΣ−1(X − µ) ∼ χ2
n.

• Let X ∼ Nn(µ, In) and P ∈ Rn×n be an orthogonal projection matrix (i.e., it is idempotent P 2 = P
and symmetric P = PT ) with rank(P ) = m < n. Then, (X − µ)TP (X − µ) ∼ χ2

m.

• Given some IID normal random variables X1, ..., Xn ∼ N(µ, σ2), we know that

– X̄n = 1
n

n∑
i=1

Xi and S2
n = 1

n−1

n∑
i=1

(Xi − X̄n)2 are independent.

– X̄n ∼ N
(
µ, σ

2

n

)
and

(n−1)S2
n

σ2 ∼ χ2
n−1.
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9 Order Statistics

Let X1, ..., Xn be IID random variables. The order statistics X(1) ≤ · · · ≤ X(n) are the ordered values of
X1, ..., Xn. The distribution (or PMF) of the order statistics when X1, ..., Xn are discrete random variables
can be derived by enumerating all possible configurations of X1, ..., Xn that leads to {X(1) = y1, ..., X(n) =
yn}.

Now, when X1, ..., Xn has PDF pX(x) and CDF FX(x),

• the PDF of X(j) is

pX(j)
(y) =

n!

(n− j)!(j − 1)!
· FX(y)j−1 [1− FX(y)]

n−j
pX(y);

• the joint PDF of (X(j), X(k)) with j < k is

pX(j),X(k)
(y, z) =

n!

(j − 1)!(k − j − 1)!(n− k)!
·FX(y)j−1 [FX(z)− FX(y)]

k−j−1
[1− FX(z)]

n−k
pX(y)·pX(z);

• the joint PDF of
(
X(1), ..., X(n)

)
is p(y1, ..., yn) = n! · pX(y1) · · · pX(yn).

Order statistics of Uniform[0, 1]: When X1, ..., Xn are IID uniform random variables on [0, 1], the j-th
order statistic follows the Beta(j, n− j + 1) distribution.

10 Statistical Functional and Bootstrap

Empirical CDF: Given a random sample {X1, ..., Xn}, the empirical CDF is defined as: F̂n(x) = 1
n

n∑
i=1

1{Xi≤x}.

We know that for any fixed x ∈ R,

E
[
F̂n(x)

]
= F (x), Var(F̂n(x)) =

F (x) [1− F (x)]

n
, F̂n(x)

P→ F (x),

and
√
n
(
F̂n(x)− F (x)

)
D→ N (0, F (x) [1− F (x)]).

Statistical functional2: When the functional T is smooth, the plug-in estimator T (F̂n) for the population

statistical functional T (F ) is consistent, i.e., T (F̂n)
P→ T (F ).

? Notes: You should be familiar with those examples related to statistical functionals discussed in the
lectures.

Delta Method: Let {Xn}∞n=1 be a sequence of random vectors in Rk such that
√
n(Yn−µ)

D→ Nk(0,Σ). If
a function f : Rk → R is differentiable at µ ∈ Rk, then

√
n [f(Xn)− f(µ)]

D→ N1

(
0,∇f(µ)TΣ∇f(µ)

)
.

Linear functional and influence function: Given a function ω : Rk → R, a linear functional can

be written as Tω(F ) =
∫
ω(x) dF (x), whose plug-in estimator is given by Tω(F̂n) = 1

n

n∑
i=1

ω(Xi), where

2The interested student can refer to Professor Jon Wellner’s note https://sites.stat.washington.edu/people/jaw/

COURSES/580s/581/LECTNOTES/ch7.pdf for further studies.

https://sites.stat.washington.edu/people/jaw/COURSES/580s/581/LECTNOTES/ch7.pdf
https://sites.stat.washington.edu/people/jaw/COURSES/580s/581/LECTNOTES/ch7.pdf
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X1, ..., Xn ∈ Rk are random observations from F . We define the influence function as LF (x) = ω(x)−Tω(F ).
By the central limit theorem,

√
n
(
Tω(F̂n)− Tω(F )

)
D→ N (0,Vω(F )) with Vω(F ) =

∫
L2
F (x) dF (x),

provided that
∫
ω(x)2dF (x) <∞.

Nonlinear functional: Given a point mass δx at point x ∈ Rk, the influence function of a general statistical
functional Ttarget is

LF (x) = lim
ε→0

Ttarget ((1− ε)F + εδx)− Ttarget(F )

ε
.

Nonparametric bootstrap: Given a random sample D = {X1, ..., Xn}, we sample with replacement from
D to obtain a bootstrap sample D∗ = {X∗1 , ..., X∗n}. Such bootstrap process is generally repeated for B times

to obtain B bootstrap samples D∗(b) =
{
X
∗(b)
1 , ..., X

∗(b)
n

}
, b = 1, ..., B. They can be utilized to quantify the

variance Var(S(D)) (or estimation error) of a statistic S(D) that is constructed on the original sample D as:

Var (S(D)) =
1

B − 1

B∑
b=1

[
S(D∗(b))− 1

B

B∑
b=1

S(D∗(b))

]2

.

The bootstrap method is particularly useful when Var(S(D)) has no analytical forms.
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