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Alternative derivation for the distribution of a order statistic: Let X1, ..., Xn be some independent
and identically distributed (i.i.d.) random variables.

• If X1, ..., Xn come from a discrete distribution with probability mass function P(X = x) = Px, x ∈ X
and X being countable, then the joint distribution of the ordered statistics (Y1, ..., Yn) =

(
X(1), ..., X(n)

)
is given by

P(Y1 = y1, ..., Yn = yn) = n! ·
n∏

i=1

P(X = yi) = n! ·
n∏

i=1

Pyi
.

Further, the distribution of a single order statistic Yj = X(j) becomes

P(Yj = yj) =

(
n

j − 1

)∑
x<yj

Px

j−1

Pyj

(
n− j + 1

n− j

)∑
x≥yj

Px

n−j

=
n!

(j − 1)!(n− j)!

∑
x≤yj

Px

j−1

Pyj

∑
x≥yj

Px

n−j

.

• If X1, ..., Xn come from a continuous distribution with probability density function fX(x) and cumu-
lative distribution function (CDF) FX(x), then the joint CDF of the ordered statistics (Y1, ..., Yn) =(
X(1), ..., X(n)

)
is given by

FY1,...,Yn(y1, ..., yn) = n! · FX(y1) · · ·FX(yn)

so that the joint density becomes

fY1,...,YN
(y1, ..., yn) =

∂n

∂y1 · · · ∂yn
FY1,...,Yn(y1, ..., yn) = n! · fX(y1) · · · fX(yn).

In addition, we derive the CDF of a single order statistic Yj = X(j) as:

FYj (yj) = P
(
X(j) ≤ yj

)
= P ({At least j of {X1, ..., Xn} are less than yj})

=

n∑
k=j

(
n

k

)
[FX(yj)]

k
[1− FX(yj)]

n−k
.

Thus, the PDF of Yj = X(j) becomes

fYj (yj) =
d

dyj
FYj (yj)

=

n∑
k=j

n!

(n− k)!(k − 1)!
[FX(yj)]

k−1
[1− FX(yj)]

n−k
fX(yj)

−
n−1∑
k=j

n!

(n− k − 1)!k!
[FX(yj)]

k
[1− FX(yj)]

n−k−1
fX(yj)

1
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=

n∑
k=j

n!

(n− k)!(k − 1)!
[FX(yj)]

k−1
[1− FX(yj)]

n−k
fX(yj)

−
n∑

k=j+1

n!

(n− k)!(k − 1)!
[FX(yj)]

k−1
[1− FX(yj)]

n−k
fX(yj)

=
n!

(n− j)!(j − 1)!
[FX(yj)]

j−1
[1− FX(yj)]

n−j
fX(yj).

It gives an alternative derivation for the distribution of a order statistic Yj = X(j).

Application of Order Statistics in Economics: In real-world auctions, there are generally one or more
items to be sold with several bidders expressing their interests in buying the item(s). Each bidder has
his/her private valuation V on the item(s) and his/her associated bidding strategy follows truthfully from
the distribution of V . The bidder that places the highest bid will get the item(s). However, the actual price
paid by the winning bidder could be different, depending on how the auction is designed. We will study the
expected revenue of the seller under different auction scenarios in the following problem.

Problem 1 (Revenue-Maximizing Single-Item Auction). We consider the simplest but most common sce-
nario in auction theory, where there are only a single item to be sold. In the following questions, the private
valuation of each bidder is a positive random variable, and no bidder knows the bid of any other participant
( i.e., sealed-bid auction).

(a) (Single-Item, One-Bidder Auction) Suppose that the private valuation V of the bidder follows the
uniform distribution on [0, 1] and the posted price for the item to be sold is a number p ∈ (0, 1). What
is the expected revenue of the seller? (Consider also the general case where V has a support [0,M ] with
a generic CDF F for some M > 0.)

(b) (Single-Item, Two-Bidders, First-Price Auction) Now, we consider the situation where there are two
bidders bidding on a single item. The valuations V1, V2 of two bidders are independent and follow the
uniform distribution on [0, 1], respectively. The bidder that places a higher bid will win the item and
pay the seller as his/her bid. What is the expected revenue of the seller? (Consider also the general
case where V1, V2 are i.i.d. with their CDFs as F supporting on [0,M ] for some M > 0.)

(c) (Single-Item, Two-Bidders, Second-Price Auction) Again, we consider the situation where there are
two bidders bidding on a single item. The valuations V1, V2 of two bidders are independent and follow
the uniform distribution on [0, 1], respectively. The bidder that places a higher bid will still win the
item but he/she will pay the a price equal to the second-highest bid. What is the expected revenue of
the seller? (Consider also the general case where V1, V2 are i.i.d. with their CDFs as F supporting on
[0,M ] for some M > 0.)

(d) (Single-Item, Two-Bidders, Second-Price Auction with a reserve price) Again, we consider the situa-
tion where there are two bidders bidding on a single item. The valuations V1, V2 of two bidders are
independent and follow the uniform distribution on [0, 1], respectively. In the second-price auction with
reserve price r ∈ (0, 1), the allocation rule awards the item to the highest bidder, unless all bids are
less than r, in which case no one gets the item. The corresponding payment rule charges the winner
(if any) the second-highest bid or r, whichever is larger. What is the expected revenue of the seller?

(e) (Single-Item, Multiple-Bidders Auction) Now, we generalize (b) and (c) to the situation where there
are n bidders showing their interests in buying an item. Assume that the valuations V1, ..., Vn of n
bidders are i.i.d. uniform on [0, 1]. What is the expected revenue of the seller in the first-price and
second-price auction, respectively?



STAT 512 Quiz 8: Revenue Maximizing Auction 3

(f) Assume that the valuation distribution F for each bidder has a bounded support on [0,M ]. Let Ra, Rb

be the revenues of the seller under conditions in (a) and (b), respectively. Prove that

E(Rb) ≥ max
p∈[0,M ]

E(Ra),

i.e., the expected revenue from a single-item, two-bidders auction is always higher than the expected
revenue from a single-item, single-bidder auction.

(g*) Assume that the valuation distribution F for each bidder has a bounded support on [0,M ] with a non-
degenerate density f and the function g(x) ≡ x[1− F (x)] is concave within [0,M ]. Let Ra, Rb, Rc, Rd

be the revenues of the seller under conditions in (a), (b), (c), (d), respectively. Prove that

E(Rb) ≥ max
r∈[0,M ]

E(Rd) ≥ E(Rc) ≥ max
p∈[0,M ]

E(Ra),

where maxr∈[0,M ] E(Rd) is the maximal expected revenue under the single-item, two-bidders, second-
price auction with respect to the reserve price r, and maxp∈[0,M ] E(Ra) is the maximal expected avenue
under the single-item, one-bidder auction with respect to the posted price p.

Remark 1. We emphasize that the concavity assumption on g(x) ≡ x[1− F (x)] is indeed a mild condition.
This is because g′′(x) = −2f(x) − xf ′(x) when the density f is differentiable. As long as the density f is
non-decreasing or |xf ′(x)| ≤ 2f(x) for any x ∈ [0,M ], the assumption holds.

Solution.

(a) We consider the general case where V has a generic CDF F on [0,∞). The revenue Ra of the seller
follows

Ra =

{
p, if V ≥ p,
0, otherwise.

Hence, E(Ra) =
∫M

p
p dF (v) = p [1− F (p)]. When F is Uniform[0, 1], E(Ra) = p(1 − p), whose maximum

value is 1
4 at p = 1

2 .

(b) When both the valuation V1, V2 have their CDFs as F on [0,∞) and are independent, the revenue Rb of
the seller is

Rb =

{
V1, if V1 ≥ V2,
V2, otherwise.

Therefore,

E(Rb) =

∫
{(v1,v2)∈[0,M ]2:v1≥v2}

v1 dF (v1)dF (v2) +

∫
{(v1,v2)∈[0,M ]2:v1<v2}

v2 dF (v1)dF (v2)

= 2

∫ M

0

xF (x) dF (x).

When F is Uniform[0, 1], E(Rb) = 2
∫ 1

0
x2 dx = 2

3 .

(c) Under the second-price auction, the revenue Rc of the seller becomes

Rc =

{
V2, if V1 ≥ V2,
V1, if V1 < V2.



STAT 512 Quiz 8: Revenue Maximizing Auction 4

Then,

E(Rc) =

∫
v1≥v2

v2 dF (v1)dF (v2) +

∫
v1<v2

v1 dF (v1)dF (v2)

= 2

∫ M

0

x [1− F (x)] dF (x).

When F is Uniform[0, 1], E(Rc) = 2
∫ 1

0
x(1− x)dx = 1

3 .

(d) If the seller introduces a reserve price into the second auction, his/her revenue Rd becomes

Rd =


max(V2, r), if V1 ≥ V2 and V1 ≥ r,
max(V1, r), if V1 < V2 and V2 ≥ r,
0 otherwise.

Then,

E(Rd) =

∫ M

r

∫ v1

0

max(v2, r) dF (v2)dF (v1) +

∫ M

r

∫ v2

0

max(v1, r) dF (v1)dF (v2)

= 2

∫ M

r

∫ v1

0

max(v2, r) dF (v2)dF (v1).

When F is Uniform[0, 1] and r ∈ (0, 1),

E(Rd) = 2

∫ 1

r

∫ v1

0

max(v2, r) dv2dv1

= 2

∫ 1

r

∫ v1

r

v2 dv2dv1 + 2

∫ 1

r

∫ r

0

r dv2dv1

=

∫ 1

r

(v21 − r2) dv1 +

∫ 1

r

2r2 dv1

= −4r3

3
+ r2 +

1

3
,

which is maximized at r = 1
2 with maximum value as maxr∈(0,1) E(Rd) = 5

12 ; see also Figure 1.
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Figure 1: Plot of − 4r3

3 + r2 + 1
3 on r ∈ [0, 1].

(e) Under the i.i.d. Uniform[0, 1] assumption on V1, ..., Vn, we denote their order statistics by V(1) ≤ V(2) ≤
· · · ≤ V(n). By the notes in Lecture 9, we know that Yi = V(i) has the density function as:

fYi
(y) =

n!

(i− 1)!(n− i)!
· yi−1(1− y)n−i, 0 < y < 1,



STAT 512 Quiz 8: Revenue Maximizing Auction 5

which is a Beta distribution Beta(i, n − i + 1). The revenue Re of the seller is Re = Y(n) for the first-
price auction and Re = Y(n−1) for the second-price auction. Hence, based on the properties of the beta
distribution,

E(Re) =

{
n

n+1 for the first-price auction,

n−1
n+1 for the second-price auction.

Indeed, we can also compute the variance or other moments of the revenue Re, given that its distribution
has an analytic solution.

(f) Based on (a) and (b), we know that

E(Rb)− max
p∈[0,M ]

E(Ra) = 2

∫ M

0

xF (x)dF (x)− max
p∈[0,M ]

p [1− F (p)]

=

∫ M

0

x d [F (x)]
2 − p∗ [1− F (p∗)]

= x [F (x)]
2 ∣∣M

0
−
∫ M

0

F (x)2dx− p∗ [1− F (p∗)]

≥M −
∫ M

0

F (x) dx− p∗ [1− F (p∗)] since 0 ≤ F (x) ≤ 1

= M −
∫ p∗

0

F (x) dx−
∫ M

p∗
F (x) dx− p∗[1− F (p∗)]

≥M −
∫ p∗

0

F (p∗) dx−
∫ M

p∗
dx− p∗[1− F (p∗)]

= 0,

where p∗ is a maximum point of p[1− F (p)] over [0, 1] (not necessarily unique). The result follows.

(h) We first show that E(Rb) ≥ max
r∈[0,M ]

E(Rd). Recall from (b) and (d) that

E(Rb)− max
r∈[0,M ]

E(Rd) = 2

∫ M

0

∫ v1

0

v1 dF (v2)dF (v1)− 2

∫ M

r∗

∫ v1

0

max(v2, r
∗) dF (v2)dF (v1)

≥ 2

∫ M

r∗

∫ v1

0

v1 dF (v2)dF (v1)− 2

∫ M

r∗

∫ v1

0

max(v2, r
∗) dF (v2)dF (v1)

= 2

∫ M

r∗

∫ v1

0

[v1 −max(v2, r)] dF (v2)dF (v1)

≥ 0,

where r∗ = arg max
r∈[0,M ]

E(Rd) (not necessarily unique). Hence, we obtain that E(Rb) ≥ maxr∈[0,M ] E(Rd).

Now, we consider proving max
r∈[0,M ]

E(Rd) ≥ E(Rc). It suffices to show that there exists some r ∈ [0,M ] such

that this inequality holds. From (c) and (d), we obtain that

h(r) ≡ E(Rd)− E(Rc)

= 2

∫ M

r

∫ v1

0

max(v2, r) dF (v2)dF (v1)− 2

∫ M

0

∫ v1

0

v2 dF (v2)dF (v1)

= 2

∫ M

r

∫ r

0

r dF (v2)dF (v1) + 2

∫ M

r

∫ v1

r

v2 dF (v2)dF (v1)− 2

∫ M

0

∫ v1

0

v2 dF (v2)dF (v1)
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= 2rF (r) [1− F (r)] + 2

∫ M

r

g(v1, r) dF (v1)− 2

∫ M

0

∫ v1

0

v2 dF (v2)dF (v1),

where g(v1, r) =
∫ v1
r
v2 dF (v2) =

∫ v1
r
v2f(v2) dv2. Since h(0) = 0, we only need to show that h(r) is (strictly)

increasing in [0, δ] for some δ > 0. Then, after optimizing E(Rd) with respect to r ∈ [0,M ], its value is
guaranteed to be greater than E(Rc). As F has its density f , we differentiate h(r) as

h′(r) = [2F (r) + 2rf(r)] [1− F (r)]− 2rF (r)f(r)− 2g(r, r) · f(r) + 2

∫ M

r

∂

∂r
g(v1, r) dF (v1)

= [2F (r) + 2rf(r)] [1− F (r)]− 2rF (r)f(r)− 2

∫ M

r

rf(r) dF (v1)

= [2F (r) + 2rf(r)] [1− F (r)]− 2rF (r)f(r)− 2rf(r) [1− F (r)]

= 2F (r) [1− F (r)− rf(r)] .

Notice that F (r) =
∫ r

0
f(x) dx ∈ [0, 1] is integrable, so lim

r→0
rf(r) = 0 (recall the ratio test). Given that the

density f is non-degenerate, we can always find some δ > 0 such that F (δ) > 0 and 1−F (δ) > δf(δ), which
in turn shows that h′(δ) > 0. Hence, h(δ) > 0 for some δ > 0 and the result follows.

Lastly, we will prove that E(Rc) ≥ max
p∈[0,M ]

E(Ra). Under the concavity assumption on g(x) ≡ x[1− F (x)],

g(αp∗) ≥ αg(p∗) + (1− α)g(0) and g (αp∗ + (1− α)M) ≥ αg(p∗) + (1− α)g(M)

for any α ∈ [0, 1], where p∗ is a maximum point of p[1−F (p)] over [0, 1] (not necessarily unique). It indicates
that the shape of g(x) ≡ x[1−F (x)] has its area larger than the triangle with vertices (0, 0), (p∗, g(p∗)), and
(M, 0). Therefore,

E(Rc)− max
p∈[0,M ]

E(Ra) = 2

∫ M

0

x [1− F (x)] dF (x)− max
p∈[0,M ]

p[1− F (p)]

≥ 2 · 1

2
· p∗[1− F (p∗)] · [F (M)− F (0)]− p∗[1− F (p∗)]

= 0.

The results follow.

Remark 2. The above problem reveals several interesting insights into the auction process. First, for the
single-item auction, the revenue increases as more bidders enter the bidding process. In other words, the
competition between bidders creates more revenue for the seller. Second, the first-price auction generally
yields more revenue than the second-price auction, but it is more difficult for the seller to predict the bidding
outcome and control this process [Roughgarden, 2016]. More importantly, some advanced bidders can leverage
the bid shading1 to lower their bids and hunt for a higher payoff after multiple rounds of the first-price bidding.
It leads to a malicious trading environment for both the seller and other less experienced bidders (especially
under the online advertising scenario). On the other hand, in the second-price (or Vickrey) auction, the
actual payment for the winning bidders is equal to the second highest bid, which is generally unknown to
all the bidders. Further, the second-price auction embraces many compelling properties (see Chapter 2 in
Roughgarden 2016):

• Every bidder has a dominant strategy2: set the bid equal to his/her private valuation.

• Every truthful bidder is guaranteed nonnegative utility.

1See https://en.wikipedia.org/wiki/Bid_shading.
2A dominant strategy is defined as a strategy (i.e., a bid) that is guaranteed to maximize a bidder’s utility, no matter what

the other bidders do.

https://en.wikipedia.org/wiki/Bid_shading
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Due to these two properties, the single-item, second-price auction is dominant-strategy incentive compatible
(DSIC). The second-price auction and its generalized version is widely used in the digital/online advertising
industry.
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