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Some parts of this notes are based on Section 3.4 in Casella and Berger [2002], Section 11.4 in Perlman
[2020], and the notes from Professor Peter Hoff1.

Definition 1 (Exponential family). A family of distributions is said to belong to an exponential family if
the probability density function (PDF) for continuous distributions or probability mass function (PMF) for
discrete distributions can be written as:

f(x|θ) = h(x)a(θ) exp

(
k∑
i=1

ηi(θ)Ti(x)

)
, (1)

where h(x) ≥ 0, Ti(x), i = 1, ..., k are real-valued functions of the observation x that do not depend on θ, and
a(θ), ηi(θ), i = 1, ..., n are real-valued functions of the possibly vector-valued parameter θ = (θ1, ..., θs)

T ∈
Θ ⊂ Rs that cannot depend on x. To make f(x|θ) identifiable, we also require that (T1(x), ..., Tk(x)) is a
k-dimensional statistic that does not satisfy any linear constraint2.

Sometimes, we reparameterize the distribution (1) of an exponential family as:

f(x|η) = h(x)a∗(η) exp

(
k∑
i=1

ηiTi(x)

)
, (2)

where h(x) and Ti(x) are the same functions as in the original parameterization (1). The set

H =

{
η = (η1, ..., ηk) :

∫ ∞
−∞

h(x) exp

(
k∑
i=1

ηiTi(x)

)
dx <∞

}

is called the natural parameter space for the family. (The integral is replaced by a sum over the values
of x for which h(x) > 0 if X is discrete.) Since the original f(x|θ) in (1) is a PDF or PMF, the set
{η = (η1(θ), ..., ηk(θ)) : θ ∈ Θ} must be a subset of the natural parameter space.

Remark 1. Another traditional definition of the exponential family is given by Brown [1986]: Let ν be a
nonnegative function (or a σ-finite measure on the Borel subsets) of Rd. Define the set

N = Nν =

{
θ ∈ Θ :

∫
X
eθ

T xν(x) dx <∞
}
,

where X ⊂ Rd. We let λ(θ) =
∫
X e

θT xν(x) dx and the set of probability densities defined by

f(x|θ) =
eθ

T xν(x)

λ(θ)
, x ∈ X and θ ∈ N

is an exponential family.

1See http://www2.stat.duke.edu/~pdh10/Teaching/581/LectureNotes/expofam.pdf.
2If (T1(x), ..., Tk(x)) does satisfy a linear constraint, the natural parameter space H will include points that correspond to

the same probability distribution

1
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Remark 2. The exponential family is also known as the Darmois-Koopman-Pitman family/type3 to credit
their contributions to the sufficient statistics on exponential statistics [Andersen, 1970]. One sufficiency
result related to exponential families is that, for a random sample X = {X1, ..., Xn} from f(x|θ) in (1),

T (X) =

 n∑
j=1

T1(Xj), ...,

n∑
j=1

Tk(Xj)


is a sufficient statistic for θ (see Theorem 6.2.10 in Casella and Berger 2002) and is also minimal sufficient
by Lehmann and Scheffé [1950] (see Theorem 6.2.13 in Casella and Berger 2002) provided that the parameter
space Θ ⊂ Rs affinely spans Rs. Furthermore, T (X) is a complete statistic if {(η1(θ), ..., ηk(θ)) : θ ∈ Θ}
contains an open set in Rk; see Theorem 6.2.25 in Casella and Berger [2002].

Remark 2 demonstrates that the concept of exponential families is very useful in deriving some statistical
properties of a statistic. However, what drives statisticians to study exponential families in such a deep level
is due to its ubiquity in probability distributions.

Problem 1 (Exercises 3.28 and 3.29 in Casella and Berger 2002). Show that each of the following families
is an exponential family and describe its natural parameter space:

(a) The normal distribution family N(µ, σ2) with either parameter µ or σ known or both unknown.

(b) The Gamma distribution family Gamma(α, β) with either parameter α or β known or both unknown.

(c) The Beta distribution family Beta(α, β) with either parameter α or β known or both unknown.

(d) The Poisson distribution family Poisson(λ) with parameter λ > 0 unknown.

(e) The negative binomial distribution family NegBinomial(r, p) with r known and parameter 0 < p < 1
unknown.

(f) The binomial distribution family Binomial(n, p) with the number of trials n fixed.

(g) The multinomial distribution family Multinomial(n; p1, ..., pm) with the number of trials n fixed.

Proof. (a) Note that the density of N(µ, σ2) is given by

f(x|µ, σ2) =
1√
2πσ

exp

[
− (x− µ)2

2σ2

]
=

1√
2πσ

exp

(
− µ2

2σ2
− x2

2σ2
+
µx

σ2

)
.

(i) When both µ and σ are unknown, we take

h(x) = 1, a(µ, σ) =
1√
2πσ

exp

(
− µ2

2σ2

)
, T1(x) = x2, and T2(x) = x

with the natural parameters as (η1, η2) = (η1(µ, σ), η2(µ, σ)) =
(
− 1

2σ2 ,
µ
σ2

)
in (1) so that they lie in the space

{(η1, η2) ∈ R2 : η1 < 0,−∞ < η2 <∞}.

(ii) When µ is known, we take

h(x) = 1, a(σ2) =
1√

2πσ2
· 1(0,∞)(σ

2), and T (x) = (x− µ)2

with the natural parameter η(σ2) = − 1
2σ2 in (1) so that it lies in the space {η ∈ R : η < 0}.

3See https://en.wikipedia.org/wiki/Exponential_family.

https://en.wikipedia.org/wiki/Exponential_family
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(iii) When σ2 is known, we take

h(x) =
1√
2πσ

exp

(
− x2

2σ2

)
, a(µ) = exp

(
− µ2

2σ2

)
, and T (x) =

x

2σ2

with the natural parameter η(µ) = µ in (1) so that it lies in the space R.

(b) Notice that the density of Gamma(α, β) is given by

f(x|α, β) =
βα

Γ(α)
xα−1e−βx · 1(0,∞)(x) =

βα

Γ(α)
exp [(α− 1) log x− βx] · 1(0,∞)(x),

where α, β > 0.

(i) When both α and β are unknown, we take

h(x) = 1(0,∞)(x), a(α, β) =
βα

Γ(α)
, T1(x) = log x, and T2(x) = x

with the natural parameters as (η1, η2) = (η1(α, β), η2(α, β)) = (α− 1,−β) in (1) so that they lie in the
space {(η1, η2) ∈ R2 : η1 > −1, η2 < 0}.

(ii) When α is known, we take

h(x) =
xα−1

Γ(α)
1(0,∞)(x), a(β) = βα, and T (x) = x

with the natural parameter η(β) = −β in (1) so that it lies in the space {η ∈ R : η < 0}.

(iii) When β is known, we take

h(x) = e−βx1(0,∞)(x), a(α) =
βα

Γ(α)
, and T (x) = log x

with the natural parameter η(α) = α− 1 in (1) so that it lies in the space {η ∈ R : η > −1}.

(c) Recall that the density of Beta(α, β) is given by

f(x|α, β) =
1

B(α, β)
xα−1(1− x)β−1

1(0,1)(x) =
1

B(α, β)
exp [(α− 1) log x+ (β − 1) log(1− x)]1(0,1)(x),

where B(α, β) = Γ(α)Γ(β)
Γ(α+β) and α, β > 0.

(i) When both α and β are unknown, we take

h(x) = 1(0,1)(x), a(α, β) =
1

B(α, β)
, T1(x) = log x, and T2(x) = log(1− x)

with the natural parameters as (η1, η2) = (η1(α, β), η2(α, β)) = (α− 1, β − 1) in (1) so that they lie in the
space {(η1, η2) ∈ R2 : η1 > −1, η2 > −1}.

(ii) When α is known, we take

h(x) = xα−1
1(0,1)(x), a(β) =

1

B(α, β)
, and T (x) = log(1− x)

with the natural parameter η(β) = β − 1 in (1) so that it lies in the space {η ∈ R : η > −1}.
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(iii) When β is known, we take

h(x) = (1− x)β−1
1(0,1)(x), a(α) =

1

B(α, β)
, and T (x) = log x

with the natural parameter η(α) = α− 1 in (1) so that it lies in the space {η ∈ R : η > −1}.

(d) The probability mass function of Poisson(λ) is

P (x|λ) =
λxe−λ

x!
· 1{0,1,2,...}(x) =

1

x!
exp [x log λ− λ] · 1{0,1,2,...}(x),

where λ > 0. We take

h(x) =
1

x!
· 1{0,1,2,...}(x), a(λ) = e−λ, and T (x) = x

with the natural parameter η(λ) = log λ in (1) so that it lies in the space R.

(e) The probability mass function of NegBinomial(r, p) with r known is given by

P (x|p) =

(
r + x− 1

x

)
pr(1− p)x · 1{0,1,2,...}(x) =

(
r + x− 1

x

)
pr exp [x log(1− p)] · 1{0,1,2,...}(x),

where 0 < p < 1. We take

h(x) =

(
r + x− 1

x

)
· 1{0,1,2,...}(x), a(p) = pr, and T (x) = x

with the natural parameter η(p) = log(1− p) in (1) so that it lies in the space {η ∈ R : η < 0}.

(f) The probability mass function of Binomial(n, p) is given by

P (x|p) =

(
n

p

)
px(1− p)n−x · 1{0,1,...,n}(x) =

(
n

p

)
(1− p)n exp

[
x log

(
p

1− p

)]
· 1{0,1,...,n}(x),

where 0 < p < 1. We take

h(x) =

(
n

x

)
· 1{0,1,...,n}(x), a(p) = (1− p)n, and T (x) = x

with the natural parameter η(p) = log
(

p
1−p

)
in (1) so that it lies in the space R.

(g) The probability mass function of Multinomial(n; p1, ..., pm) is given by

P (x1, ..., xm|p1, ..., pm)

=
n!

x1! · · ·xm!
· px1

1 · · · pxm
m · 1{∑m

i=1 xi=n} · 1{∑m
i=1 pi=1}

=
n!

x1! · · ·xm!
· exp (x1 log p1 + · · ·xm log pm) · 1{∑m

i=1 xi=n} · 1{∑m
i=1 pi=1}

=
n!

x1! · · ·xm!
· en log(1−p1−···pm−1) exp

[
x1 log

(
p1

1− p1 − · · · − pm−1

)
+ · · ·+ xm log

(
pm−1

1− p1 − · · · − pm−1

)]
.

Thus, we take

h(x) =
n!

x1! · · ·xm!
, a(p1, ..., pm) = en log(1−p1−···pm−1) = en log pm , and Ti(x) = xi for i = 1, ...,m− 1
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with the natural parameters η = (η1, ..., ηm−1) =
(

log
(

p1
1−p1−···−pm−1

)
, ..., log

(
pm−1

1−p1−···−pm−1

))
so that

they lie in the space Rm−1.

Definition 2. Within the exponential families, we can further classify them into two categories based on
the configuration of the (natural) parameter space as:

• Full exponential family : If the (natural) parameter space for the distribution family (1) contains an
k-dimensional open set, then it is called a full exponential family.

• Curved exponential family : If the (natural) parameter space for the distribution family (1) only contains
an s-dimensional open set with s < k, then it is called a curved exponential family.

All the distribution families in Problem 1 so far are full exponential families. We present some examples of
curved exponential families in Problem 2 below.

Problem 2. Show that each of the following families is a curved exponential family and describe the curve
on which the parameter vector θ lies.

(a) The normal distribution family N(µ, µ2) with µ > 0.

(b) The Gamma distribution family Gamma(α, α) with α > 0.

(c) The distribution of (X,Y ) with X ∼ Binomial(n, p), Y ∼ Binomial(m, p2) being independent, where
m,n are fixed and 0 < p < 1.

Proof. (a) The density of N(µ, µ2) is given by

f(x|µ, σ2) =
1√

2πµ2
exp

[
− (x− µ)2

2µ2

]
=

1√
2πµ2

exp

(
−1

2
− x2

2µ2
+
x

µ

)
,

where µ > 0. We take

h(x) = e−1/2, a(µ) =
1√

2πµ2
, T1(x) = x2, and T2(x) = x

with the natural parameters as (η1, η2) =
(
− 1

2µ2 ,
1
µ

)
in (1) so that they lie in the one-dimensional parabola{

(η1, η2) ∈ R2 : η1 = − 1
2η

2
2

}
.

(b) The density of Gamma(α, α) is given by

f(x|α) =
αα

Γ(α)
xα−1e−αx · 1(0,∞)(x) =

αα

Γ(α)
exp [(α− 1) log x− αx] · 1(0,∞)(x),

where α > 0. We take

h(x) = 1(0,∞)(x), a(α) =
αα

Γ(α)
, T1(x) = log x, and T2(x) = x

with the natural parameters as (η1, η2) = (α− 1,−α) in (1) so that they lie in the one-dimensional straight
line

{
(η1, η2) ∈ R2 : η1 = −η2 − 1

}
.
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Figure 1: The plot of the parameterized curve
{

(η1, η2) =
(

log
(

p
1−p

)
, log

(
p2

1−p2

))
∈ R2 : 0 < p < 1

}
on

R2.

(c) The probability mass function of (X,Y ) is given by

P (x, y|p) =

(
n

x

)
px(1− p)n−x ·

(
m

y

)
p2y(1− p2)m−y · 1{0,1,...,n}(x) · 1{0,1,...,m}(y)

=

(
n

x

)(
m

y

)
· (1− p)n(1− p2)m exp

[
x log

(
p

1− p

)
+ y log

(
p2

1− p2

)]
· 1{0,1,...,n}(x) · 1{0,1,...,m}(y),

where 0 < p < 1. We take

h(x) =

(
n

x

)(
m

y

)
·1{0,1,...,n}(x)·1{0,1,...,m}(y), a(p) = (1−p)n(1−p2)m, T1(x, y) = x, and T2(x, y) = y

with the natural parameters as (η1, η2) =
(

log
(

p
1−p

)
, log

(
p2

1−p2

))
in (1) so that they lie in the one-

dimensional parameterized curve
{

(η1, η2) =
(

log
(

p
1−p

)
, log

(
p2

1−p2

))
∈ R2 : 0 < p < 1

}
; see Figure 1 for

a graphical illustration.

While the exponential families are relatively common in Statistics, they by no means cover all the possible
distributions. Problem 3 below provides several counterexamples for exponential families.

Problem 3. Show that each of the following families is not an exponential family:

(a) The negative binomial distribution family NegBinomial(r, p) with both parameters r and 0 < p < 1
unknown.

(b) The set of probability density functions given by f(x|θ) = 1
θ exp

(
1− x

θ

)
with 0 < θ < x <∞.

Proof. (a) Note that when both parameters r and p in NegBinomial(r, p) are also unknown, NegBinomial(r, p)
no longer belongs to an exponential family, because the binomial coefficient

(
r+x−1
x

)
cannot be factored into
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the products of h(x) and a(r, p) in which the function h(x) does not depend on r, p while the function a(r, p)
is independent of the observation x.

(b) Notice that f(x|θ) = 1
θ exp

(
1− x

θ

)
· 1(θ,∞)(x). One can argue that f(x|θ) does not belong to an

exponential family because the indicator function 1(θ,∞)(x) cannot be factored into the products of h(x) and
a(r, p) as in (1).
Or, it can be seen from (1) that for any θ ∈ Θ with a(θ) > 0, we must have {x ∈ X : f(x|θ) > 0} = {x ∈
X : h(x) > 0} and this set does not depend on θ. However,

f(x|θ) =
1

θ
exp

(
1− x

θ

)
· 1(θ,∞)(x) > 0 ⇐⇒ x > θ,

which depends on the parameter θ. Hence, f(x|θ) is not an exponential family distribution.
(Notes: the distribution f(x|θ) here is an example of the one-dimensional truncation family; see Example
11.14 in Perlman 2020.)

In the following problem, we develop general formulae for calculating the mean and variance of a distribution
in exponential families. While the applications of these formulae in Problem 4 are of pedagogical purpose,
they are useful when we want to compute the means and variances in generalized linear models [Nelder and
Wedderburn, 1972].

Problem 4 (Exercises 3.31 and 3.32 in Casella and Berger 2002). We first assume that the PDF of a random
variable X is given by the exponential family form (1) as:

f(x|θ) = h(x)a(θ) exp

(
k∑
i=1

ηi(θ)Ti(x)

)
.

The similar arguments below apply to the PMF case.

(a) Starting from the equality∫
f(x|θ) dx =

∫
h(x)a(θ) exp

(
k∑
i=1

ηi(θ)Ti(x)

)
dx = 1,

differentiate both sides, and then rearrange terms to establish

E

[
k∑
i=1

∂ηi(θ)

∂θj
· Ti(X)

]
= − ∂

∂θj
log a(θ). (3)

(b) Differentiate the above equality a second time; then rearrange to establish

Var

[
k∑
i=1

∂ηi(θ)

∂θj
· Ti(X)

]
= − ∂2

∂θ2
j

log a(θ)− E

[
k∑
i=1

∂2ηi(θ)

∂θ2
j

· Ti(X)

]
. (4)

(c) Use (3) and (4) to derive the mean and variance of X ∼ Binomial(n, p).

In what follows, we assume that Y has its density function as in (2):

f(y|η) = h(y)a∗(η) exp

(
k∑
i=1

ηiTi(y)

)
.
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(d) Show that the identities (3) and (4) can be simplified to

E (Tj(Y )) = − ∂

∂ηj
log a∗(η) and Var (Tj(Y )) = − ∂2

∂η2
j

log a∗(η). (5)

(e) Use this identity to calculate the mean and variance of a Gamma(α, β) random variable.

Proof. (a) We assume that interchanging the order of differentiation and integration is valid.4 Then,

log f(x|θ) = log h(x) + log a(θ) +

k∑
i=1

ηi(θ)Ti(x),

∂ log f(x|θ)

∂θj
=

∂

∂θj
log a(θ) +

k∑
i=1

∂ηi(θ)

∂θj
Ti(x).

(6)

Therefore,

E

[
k∑
i=1

∂ηi(θ)

∂θj
Ti(X)

]
= E

[
∂ log f(X|θ)

∂θj

]
− ∂

∂θj
log a(θ)

=

∫ ∂
∂θj

f(x|θ)

f(x|θ)
· f(x|θ) dx− ∂

∂θj
log a(θ)

=
∂

∂θj

∫
f(x|θ) dx︸ ︷︷ ︸

=1

− ∂

∂θj
log a(θ)

= − ∂

∂θj
log a(θ).

(b) From (6), we know that

Var

[
k∑
i=1

∂ηi(θ)

∂θj
Ti(X)

]
= Var

[
∂ log f(x|θ)

∂θj

]

= E

[(
∂ log f(x|θ)

∂θj

)2
]
−
(
E
[
∂ log f(x|θ)

∂θj

])2

︸ ︷︷ ︸
=0

(by our calculation in (a))

= E

[(
∂ log f(x|θ)

∂θj

)2
]
.

(Indeed, one can show that

Cov

[
k∑
i=1

∂ηi(θ)

∂θj
Ti(X),

k∑
i=1

∂ηi(θ)

∂θm
Ti(X)

]
= E

[(
∂ log f(x|θ)

∂θj

)(
∂ log f(x|θ)

∂θm

)]
,

which is exactly the (i,m)-entry of the Fisher Information Matrix.) Now, notice the fact that

∂2

∂θ2
j

log f(x|θ) =
∂

∂θj

 ∂f(x|θ)
∂θj

f(x|θ)

 =

 ∂2f(x|θ)
∂θ2j

f(x|θ)

−
 ∂f(x|θ)

∂θj

f(x|θ)

2

4This is indeed guaranteed by the special form of the exponential family; see Theorem 18.2 in https://www.stat.purdue.

edu/~dasgupta/expfamily.pdf.

https://www.stat.purdue.edu/~dasgupta/expfamily.pdf
https://www.stat.purdue.edu/~dasgupta/expfamily.pdf
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=

 ∂2f(x|θ)
∂θ2j

f(x|θ)

− (∂ log f(x|θ)

∂θj

)2

.

Taking the expectation on both sides yields that

Var

[
k∑
i=1

∂ηi(θ)

∂θj
Ti(X)

]
= E

[(
∂ log f(x|θ)

∂θj

)2
]

= E

 ∂2f(x|θ)
∂θ2j

f(x|θ)

− E

[
∂2

∂θ2
j

log f(x|θ)

]

=

∫  ∂2f(x|θ)
∂θ2j

f(x|θ)

 f(x|θ) dx− E

[
∂2

∂θ2
j

log f(x|θ)

]

=

∫
∂2f(x|θ)

∂θ2
j

dx− E

[
∂2

∂θ2
j

log f(x|θ)

]

=
∂2

∂θ2
j

∫
f(x|θ) dx︸ ︷︷ ︸

=1

−E

[
∂2

∂θ2
j

log f(x|θ)

]

= −E

[
∂2

∂θ2
j

log f(x|θ)

]
.

Finally, by the form of f(x|θ) in (1), we obtain that

E

[
∂2

∂θ2
j

log f(x|θ)

]
=

∂2

∂θ2
j

log a(θ) + E

[
k∑
i=1

∂2ηi(θ)

∂θ2
j

· Ti(X)

]
.

The result thus follows.

(c) Recall from (f) of Problem 1 that a(p) = (1− p)n, T (X) = X, and η(p) = log
(

p
1−p

)
. By (3) and (4), we

know that

E
[
dη(p)

dp
· T (X)

]
= − d

dp
log a(p) ⇐⇒ E

[
X

p(1− p)

]
=

n

1− p
,

Var

[
dη(p)

dp
· T (X)

]
= − d2

dp2
log a(p)− E

[
d2η(p)

dp2
· T (X)

]
⇐⇒ Var

[
X

p(1− p)

]
=

n

(1− p)2
− E

[
(2p− 1)X

p2(1− p)2

]
.

Hence, E(X) = np and Var(X) = np(1− p).

(d) The results follow easily from (3) and (4) by noting that

∂ηi
∂ηj

= δij =

{
1, i = j,

0, i 6= j.

Indeed, one can even show that Cov (Ti(X), Tj(X)) = − ∂2

∂ηi∂ηj
log a∗(η).

(e) Recall from (b) in Problem 1 that the density of Gamma(α, β) is given by

f(x|α, β) =
βα

Γ(α)
xα−1e−βx · 1(0,∞)(x) =

βα

Γ(α)
exp [(α− 1) log x− βx] · 1(0,∞)(x),
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where

h(x) = 1(0,∞)(x), a(α, β) =
βα

Γ(α)
, T1(x) = log x, and T2(x) = x

with the natural parameters as (η1, η2) = (η1(α, β), η2(α, β)) = (α− 1,−β). Hence,

E(X) = E [T2(X)] = − ∂

∂η2
log

(
(−η2)η1+1

Γ(η1 + 1)

)
= −η1 + 1

η2
=
α

β

and

Var(X) = Var [T2(X)] = − ∂2

∂η2
2

log

(
(−η2)η1+1

Γ(η1 + 1)

)
=
η1 + 1

η2
2

=
α

β2
.

Our calculation in (a) and (b) of Problem 4 will also appear when we derive the Fisher Information matrix
and Cramér-Rao lower bound in STAT 513; see Section 13.1 in Perlman [2020] and 7.3.2 in Casella and
Berger [2002]. In addition, the exponential families have many interesting properties and connections to
other results in Statistics that are covered here. The interested readers can refer to https://www.stat.

purdue.edu/~dasgupta/expfamily.pdf for further reading.
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