Quiz Session 7: Exponential Families

Yikun Zhang
November 23, 2022

Some parts of this notes are based on Section 3.4 in Casella and Berger [2002], Section 11.4 in Perlman [2020], and the notes from Professor Peter Hoff ${ }^{1}$.

Definition 1 (Exponential family). A family of distributions is said to belong to an exponential family if the probability density function (PDF) for continuous distributions or probability mass function (PMF) for discrete distributions can be written as:

$$
\begin{equation*}
f(x \mid \boldsymbol{\theta})=h(x) a(\boldsymbol{\theta}) \exp \left(\sum_{i=1}^{k} \eta_{i}(\boldsymbol{\theta}) T_{i}(x)\right) \tag{1}
\end{equation*}
$$

where $h(x) \geq 0, T_{i}(x), i=1, \ldots, k$ are real-valued functions of the observation x that do not depend on $\boldsymbol{\theta}$, and $a(\boldsymbol{\theta}), \eta_{i}(\boldsymbol{\theta}), i=1, \ldots, n$ are real-valued functions of the possibly vector-valued parameter $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{s}\right)^{T} \in$ $\Theta \subset \mathbb{R}^{s}$ that cannot depend on x. To make $f(x \mid \boldsymbol{\theta})$ identifiable, we also require that $\left(T_{1}(x), \ldots, T_{k}(x)\right)$ is a k-dimensional statistic that does not satisfy any linear constraint ${ }^{2}$.

Sometimes, we reparameterize the distribution (1) of an exponential family as:

$$
\begin{equation*}
f(x \mid \boldsymbol{\eta})=h(x) a^{*}(\boldsymbol{\eta}) \exp \left(\sum_{i=1}^{k} \eta_{i} T_{i}(x)\right) \tag{2}
\end{equation*}
$$

where $h(x)$ and $T_{i}(x)$ are the same functions as in the original parameterization (1). The set

$$
\mathcal{H}=\left\{\boldsymbol{\eta}=\left(\eta_{1}, \ldots, \eta_{k}\right): \int_{-\infty}^{\infty} h(x) \exp \left(\sum_{i=1}^{k} \eta_{i} T_{i}(x)\right) d x<\infty\right\}
$$

is called the natural parameter space for the family. (The integral is replaced by a sum over the values of x for which $h(x)>0$ if X is discrete.) Since the original $f(x \mid \boldsymbol{\theta})$ in (1) is a PDF or PMF, the set $\left\{\eta=\left(\eta_{1}(\boldsymbol{\theta}), \ldots, \eta_{k}(\boldsymbol{\theta})\right): \boldsymbol{\theta} \in \Theta\right\}$ must be a subset of the natural parameter space.

Remark 1. Another traditional definition of the exponential family is given by Brown [1986]: Let ν be a nonnegative function (or a σ-finite measure on the Borel subsets) of \mathbb{R}^{d}. Define the set

$$
\mathcal{N}=\mathcal{N}_{\nu}=\left\{\boldsymbol{\theta} \in \Theta: \int_{\mathcal{X}} e^{\boldsymbol{\theta}^{T} x} \nu(x) d x<\infty\right\}
$$

where $\mathcal{X} \subset \mathbb{R}^{d}$. We let $\lambda(\boldsymbol{\theta})=\int_{\mathcal{X}} e^{\boldsymbol{\theta}^{T} x} \nu(x) d x$ and the set of probability densities defined by

$$
f(x \mid \boldsymbol{\theta})=\frac{e^{\boldsymbol{\theta}^{T} x} \nu(x)}{\lambda(\theta)}, \quad x \in \mathcal{X} \text { and } \theta \in \mathcal{N}
$$

is an exponential family.

[^0]Remark 2. The exponential family is also known as the Darmois-Koopman-Pitman family/type ${ }^{3}$ to credit their contributions to the sufficient statistics on exponential statistics [Andersen, 1970]. One sufficiency result related to exponential families is that, for a random sample $\boldsymbol{X}=\left\{X_{1}, \ldots, X_{n}\right\}$ from $f(x \mid \boldsymbol{\theta})$ in (1),

$$
T(\boldsymbol{X})=\left(\sum_{j=1}^{n} T_{1}\left(X_{j}\right), \ldots, \sum_{j=1}^{n} T_{k}\left(X_{j}\right)\right)
$$

is a sufficient statistic for $\boldsymbol{\theta}$ (see Theorem 6.2.10 in Casella and Berger 2002) and is also minimal sufficient by Lehmann and Scheffé [1950] (see Theorem 6.2.13 in Casella and Berger 2002) provided that the parameter space $\Theta \subset \mathbb{R}^{s}$ affinely spans \mathbb{R}^{s}. Furthermore, $T(\boldsymbol{X})$ is a complete statistic if $\left\{\left(\eta_{1}(\boldsymbol{\theta}), \ldots, \eta_{k}(\boldsymbol{\theta})\right): \boldsymbol{\theta} \in \Theta\right\}$ contains an open set in \mathbb{R}^{k}; see Theorem 6.2.25 in Casella and Berger [2002].

Remark 2 demonstrates that the concept of exponential families is very useful in deriving some statistical properties of a statistic. However, what drives statisticians to study exponential families in such a deep level is due to its ubiquity in probability distributions.

Problem 1 (Exercises 3.28 and 3.29 in Casella and Berger 2002). Show that each of the following families is an exponential family and describe its natural parameter space:
(a) The normal distribution family $N\left(\mu, \sigma^{2}\right)$ with either parameter μ or σ known or both unknown.
(b) The Gamma distribution family $\operatorname{Gamma}(\alpha, \beta)$ with either parameter α or β known or both unknown.
(c) The Beta distribution family $\operatorname{Beta}(\alpha, \beta)$ with either parameter α or β known or both unknown.
(d) The Poisson distribution family Poisson (λ) with parameter $\lambda>0$ unknown.
(e) The negative binomial distribution family $\operatorname{NegBinomial}(r, p)$ with r known and parameter $0<p<1$ unknown.
(f) The binomial distribution family $\operatorname{Binomial}(n, p)$ with the number of trials n fixed.
(g) The multinomial distribution family $\operatorname{Multinomial}\left(n ; p_{1}, \ldots, p_{m}\right)$ with the number of trials n fixed.

Proof. (a) Note that the density of $N\left(\mu, \sigma^{2}\right)$ is given by

$$
f\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right]=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\mu^{2}}{2 \sigma^{2}}-\frac{x^{2}}{2 \sigma^{2}}+\frac{\mu x}{\sigma^{2}}\right)
$$

(i) When both μ and σ are unknown, we take

$$
h(x)=1, \quad a(\mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\mu^{2}}{2 \sigma^{2}}\right), \quad T_{1}(x)=x^{2}, \quad \text { and } \quad T_{2}(x)=x
$$

with the natural parameters as $\left(\eta_{1}, \eta_{2}\right)=\left(\eta_{1}(\mu, \sigma), \eta_{2}(\mu, \sigma)\right)=\left(-\frac{1}{2 \sigma^{2}}, \frac{\mu}{\sigma^{2}}\right)$ in (1) so that they lie in the space $\left\{\left(\eta_{1}, \eta_{2}\right) \in \mathbb{R}^{2}: \eta_{1}<0,-\infty<\eta_{2}<\infty\right\}$.
(ii) When μ is known, we take

$$
h(x)=1, \quad a\left(\sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot \mathbb{1}_{(0, \infty)}\left(\sigma^{2}\right), \quad \text { and } \quad T(x)=(x-\mu)^{2}
$$

with the natural parameter $\eta\left(\sigma^{2}\right)=-\frac{1}{2 \sigma^{2}}$ in (1) so that it lies in the space $\{\eta \in \mathbb{R}: \eta<0\}$.

[^1](iii) When σ^{2} is known, we take
$$
h(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right), \quad a(\mu)=\exp \left(-\frac{\mu^{2}}{2 \sigma^{2}}\right), \quad \text { and } \quad T(x)=\frac{x}{2 \sigma^{2}}
$$
with the natural parameter $\eta(\mu)=\mu$ in (1) so that it lies in the space \mathbb{R}.
(b) Notice that the density of $\operatorname{Gamma}(\alpha, \beta)$ is given by
$$
f(x \mid \alpha, \beta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} \cdot \mathbb{1}_{(0, \infty)}(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \exp [(\alpha-1) \log x-\beta x] \cdot \mathbb{1}_{(0, \infty)}(x)
$$
where $\alpha, \beta>0$.
(i) When both α and β are unknown, we take
$$
h(x)=\mathbb{1}_{(0, \infty)}(x), \quad a(\alpha, \beta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)}, \quad T_{1}(x)=\log x, \quad \text { and } \quad T_{2}(x)=x
$$
with the natural parameters as $\left(\eta_{1}, \eta_{2}\right)=\left(\eta_{1}(\alpha, \beta), \eta_{2}(\alpha, \beta)\right)=(\alpha-1,-\beta)$ in (1) so that they lie in the space $\left\{\left(\eta_{1}, \eta_{2}\right) \in \mathbb{R}^{2}: \eta_{1}>-1, \eta_{2}<0\right\}$.
(ii) When α is known, we take
$$
h(x)=\frac{x^{\alpha-1}}{\Gamma(\alpha)} \mathbb{1}_{(0, \infty)}(x), \quad a(\beta)=\beta^{\alpha}, \quad \text { and } \quad T(x)=x
$$
with the natural parameter $\eta(\beta)=-\beta$ in (1) so that it lies in the space $\{\eta \in \mathbb{R}: \eta<0\}$.
(iii) When β is known, we take
$$
h(x)=e^{-\beta x} \mathbb{1}_{(0, \infty)}(x), \quad a(\alpha)=\frac{\beta^{\alpha}}{\Gamma(\alpha)}, \quad \text { and } \quad T(x)=\log x
$$
with the natural parameter $\eta(\alpha)=\alpha-1$ in (1) so that it lies in the space $\{\eta \in \mathbb{R}: \eta>-1\}$.
(c) Recall that the density of $\operatorname{Beta}(\alpha, \beta)$ is given by
$$
f(x \mid \alpha, \beta)=\frac{1}{B(\alpha, \beta)} x^{\alpha-1}(1-x)^{\beta-1} \mathbb{1}_{(0,1)}(x)=\frac{1}{B(\alpha, \beta)} \exp [(\alpha-1) \log x+(\beta-1) \log (1-x)] \mathbb{1}_{(0,1)}(x)
$$
where $B(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}$ and $\alpha, \beta>0$.
(i) When both α and β are unknown, we take
$$
h(x)=\mathbb{1}_{(0,1)}(x), \quad a(\alpha, \beta)=\frac{1}{B(\alpha, \beta)}, \quad T_{1}(x)=\log x, \quad \text { and } \quad T_{2}(x)=\log (1-x)
$$
with the natural parameters as $\left(\eta_{1}, \eta_{2}\right)=\left(\eta_{1}(\alpha, \beta), \eta_{2}(\alpha, \beta)\right)=(\alpha-1, \beta-1)$ in (1) so that they lie in the space $\left\{\left(\eta_{1}, \eta_{2}\right) \in \mathbb{R}^{2}: \eta_{1}>-1, \eta_{2}>-1\right\}$.
(ii) When α is known, we take
$$
h(x)=x^{\alpha-1} \mathbb{1}_{(0,1)}(x), \quad a(\beta)=\frac{1}{B(\alpha, \beta)}, \quad \text { and } \quad T(x)=\log (1-x)
$$
with the natural parameter $\eta(\beta)=\beta-1$ in (1) so that it lies in the space $\{\eta \in \mathbb{R}: \eta>-1\}$.
(iii) When β is known, we take
$$
h(x)=(1-x)^{\beta-1} \mathbb{1}_{(0,1)}(x), \quad a(\alpha)=\frac{1}{B(\alpha, \beta)}, \quad \text { and } \quad T(x)=\log x
$$
with the natural parameter $\eta(\alpha)=\alpha-1$ in (1) so that it lies in the space $\{\eta \in \mathbb{R}: \eta>-1\}$.
(d) The probability mass function of $\operatorname{Poisson}(\lambda)$ is
$$
P(x \mid \lambda)=\frac{\lambda^{x} e^{-\lambda}}{x!} \cdot \mathbb{1}_{\{0,1,2, \ldots\}}(x)=\frac{1}{x!} \exp [x \log \lambda-\lambda] \cdot \mathbb{1}_{\{0,1,2, \ldots\}}(x),
$$
where $\lambda>0$. We take
$$
h(x)=\frac{1}{x!} \cdot \mathbb{1}_{\{0,1,2, \ldots\}}(x), \quad a(\lambda)=e^{-\lambda}, \quad \text { and } \quad T(x)=x
$$
with the natural parameter $\eta(\lambda)=\log \lambda$ in (1) so that it lies in the space \mathbb{R}.
(e) The probability mass function of $\operatorname{NegBinomial}(r, p)$ with r known is given by
$$
P(x \mid p)=\binom{r+x-1}{x} p^{r}(1-p)^{x} \cdot \mathbb{1}_{\{0,1,2, \ldots\}}(x)=\binom{r+x-1}{x} p^{r} \exp [x \log (1-p)] \cdot \mathbb{1}_{\{0,1,2, \ldots\}}(x)
$$
where $0<p<1$. We take
$$
h(x)=\binom{r+x-1}{x} \cdot \mathbb{1}_{\{0,1,2, \ldots\}}(x), \quad a(p)=p^{r}, \quad \text { and } \quad T(x)=x
$$
with the natural parameter $\eta(p)=\log (1-p)$ in (1) so that it lies in the space $\{\eta \in \mathbb{R}: \eta<0\}$.
(f) The probability mass function of $\operatorname{Binomial}(n, p)$ is given by
$$
P(x \mid p)=\binom{n}{p} p^{x}(1-p)^{n-x} \cdot \mathbb{1}_{\{0,1, \ldots, n\}}(x)=\binom{n}{p}(1-p)^{n} \exp \left[x \log \left(\frac{p}{1-p}\right)\right] \cdot \mathbb{1}_{\{0,1, \ldots, n\}}(x),
$$
where $0<p<1$. We take
$$
h(x)=\binom{n}{x} \cdot \mathbb{1}_{\{0,1, \ldots, n\}}(x), \quad a(p)=(1-p)^{n}, \quad \text { and } \quad T(x)=x
$$
with the natural parameter $\eta(p)=\log \left(\frac{p}{1-p}\right)$ in (1) so that it lies in the space \mathbb{R}.
(g) The probability mass function of $\operatorname{Multinomial}\left(n ; p_{1}, \ldots, p_{m}\right)$ is given by
\[

$$
\begin{aligned}
& P\left(x_{1}, \ldots, x_{m} \mid p_{1}, \ldots, p_{m}\right) \\
& =\frac{n!}{x_{1}!\cdots x_{m}!} \cdot p_{1}^{x_{1}} \cdots p_{m}^{x_{m}} \cdot \mathbb{1}_{\left\{\sum_{i=1}^{m} x_{i}=n\right\}} \cdot \mathbb{1}_{\left\{\sum_{i=1}^{m} p_{i}=1\right\}} \\
& =\frac{n!}{x_{1}!\cdots x_{m}!} \cdot \exp \left(x_{1} \log p_{1}+\cdots x_{m} \log p_{m}\right) \cdot \mathbb{1}_{\left\{\sum_{i=1}^{m} x_{i}=n\right\}} \cdot \mathbb{1}_{\left\{\sum_{i=1}^{m} p_{i}=1\right\}} \\
& =\frac{n!}{x_{1}!\cdots x_{m}!} \cdot e^{n \log \left(1-p_{1}-\cdots p_{m-1}\right)} \exp \left[x_{1} \log \left(\frac{p_{1}}{1-p_{1}-\cdots-p_{m-1}}\right)+\cdots+x_{m} \log \left(\frac{p_{m-1}}{1-p_{1}-\cdots-p_{m-1}}\right)\right]
\end{aligned}
$$
\]

Thus, we take

$$
h(x)=\frac{n!}{x_{1}!\cdots x_{m}!}, \quad a\left(p_{1}, \ldots, p_{m}\right)=e^{n \log \left(1-p_{1}-\cdots p_{m-1}\right)}=e^{n \log p_{m}}, \quad \text { and } \quad T_{i}(x)=x_{i} \text { for } i=1, \ldots, m-1
$$

with the natural parameters $\boldsymbol{\eta}=\left(\eta_{1}, \ldots, \eta_{m-1}\right)=\left(\log \left(\frac{p_{1}}{1-p_{1}-\cdots-p_{m-1}}\right), \ldots, \log \left(\frac{p_{m-1}}{1-p_{1}-\cdots-p_{m-1}}\right)\right)$ so that they lie in the space \mathbb{R}^{m-1}.

Definition 2. Within the exponential families, we can further classify them into two categories based on the configuration of the (natural) parameter space as:

- Full exponential family: If the (natural) parameter space for the distribution family (1) contains an k-dimensional open set, then it is called a full exponential family.
- Curved exponential family: If the (natural) parameter space for the distribution family (1) only contains an s-dimensional open set with $s<k$, then it is called a curved exponential family.

All the distribution families in Problem 1 so far are full exponential families. We present some examples of curved exponential families in Problem 2 below.

Problem 2. Show that each of the following families is a curved exponential family and describe the curve on which the parameter vector $\boldsymbol{\theta}$ lies.
(a) The normal distribution family $N\left(\mu, \mu^{2}\right)$ with $\mu>0$.
(b) The Gamma distribution family $\operatorname{Gamma}(\alpha, \alpha)$ with $\alpha>0$.
(c) The distribution of (X, Y) with $X \sim \operatorname{Binomial}(n, p), Y \sim \operatorname{Binomial}\left(m, p^{2}\right)$ being independent, where m, n are fixed and $0<p<1$.

Proof. (a) The density of $N\left(\mu, \mu^{2}\right)$ is given by

$$
f\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \mu^{2}}} \exp \left[-\frac{(x-\mu)^{2}}{2 \mu^{2}}\right]=\frac{1}{\sqrt{2 \pi \mu^{2}}} \exp \left(-\frac{1}{2}-\frac{x^{2}}{2 \mu^{2}}+\frac{x}{\mu}\right)
$$

where $\mu>0$. We take

$$
h(x)=e^{-1 / 2}, \quad a(\mu)=\frac{1}{\sqrt{2 \pi \mu^{2}}}, \quad T_{1}(x)=x^{2}, \quad \text { and } \quad T_{2}(x)=x
$$

with the natural parameters as $\left(\eta_{1}, \eta_{2}\right)=\left(-\frac{1}{2 \mu^{2}}, \frac{1}{\mu}\right)$ in (1) so that they lie in the one-dimensional parabola $\left\{\left(\eta_{1}, \eta_{2}\right) \in \mathbb{R}^{2}: \eta_{1}=-\frac{1}{2} \eta_{2}^{2}\right\}$.
(b) The density of $\operatorname{Gamma}(\alpha, \alpha)$ is given by

$$
f(x \mid \alpha)=\frac{\alpha^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\alpha x} \cdot \mathbb{1}_{(0, \infty)}(x)=\frac{\alpha^{\alpha}}{\Gamma(\alpha)} \exp [(\alpha-1) \log x-\alpha x] \cdot \mathbb{1}_{(0, \infty)}(x)
$$

where $\alpha>0$. We take

$$
h(x)=\mathbb{1}_{(0, \infty)}(x), \quad a(\alpha)=\frac{\alpha^{\alpha}}{\Gamma(\alpha)}, \quad T_{1}(x)=\log x, \quad \text { and } \quad T_{2}(x)=x
$$

with the natural parameters as $\left(\eta_{1}, \eta_{2}\right)=(\alpha-1,-\alpha)$ in (1) so that they lie in the one-dimensional straight line $\left\{\left(\eta_{1}, \eta_{2}\right) \in \mathbb{R}^{2}: \eta_{1}=-\eta_{2}-1\right\}$.

Figure 1: The plot of the parameterized curve $\left\{\left(\eta_{1}, \eta_{2}\right)=\left(\log \left(\frac{p}{1-p}\right), \log \left(\frac{p^{2}}{1-p^{2}}\right)\right) \in \mathbb{R}^{2}: 0<p<1\right\}$ on \mathbb{R}^{2}.
(c) The probability mass function of (X, Y) is given by

$$
\begin{aligned}
P(x, y \mid p) & =\binom{n}{x} p^{x}(1-p)^{n-x} \cdot\binom{m}{y} p^{2 y}\left(1-p^{2}\right)^{m-y} \cdot \mathbb{1}_{\{0,1, \ldots, n\}}(x) \cdot \mathbb{1}_{\{0,1, \ldots, m\}}(y) \\
& =\binom{n}{x}\binom{m}{y} \cdot(1-p)^{n}\left(1-p^{2}\right)^{m} \exp \left[x \log \left(\frac{p}{1-p}\right)+y \log \left(\frac{p^{2}}{1-p^{2}}\right)\right] \cdot \mathbb{1}_{\{0,1, \ldots, n\}}(x) \cdot \mathbb{1}_{\{0,1, \ldots, m\}}(y),
\end{aligned}
$$

where $0<p<1$. We take
$h(x)=\binom{n}{x}\binom{m}{y} \cdot \mathbb{1}_{\{0,1, \ldots, n\}}(x) \cdot \mathbb{1}_{\{0,1, \ldots, m\}}(y), \quad a(p)=(1-p)^{n}\left(1-p^{2}\right)^{m}, \quad T_{1}(x, y)=x, \quad$ and $\quad T_{2}(x, y)=y$ with the natural parameters as $\left(\eta_{1}, \eta_{2}\right)=\left(\log \left(\frac{p}{1-p}\right), \log \left(\frac{p^{2}}{1-p^{2}}\right)\right)$ in (1) so that they lie in the onedimensional parameterized curve $\left\{\left(\eta_{1}, \eta_{2}\right)=\left(\log \left(\frac{p}{1-p}\right), \log \left(\frac{p^{2}}{1-p^{2}}\right)\right) \in \mathbb{R}^{2}: 0<p<1\right\}$; see Figure 1 for a graphical illustration.

While the exponential families are relatively common in Statistics, they by no means cover all the possible distributions. Problem 3 below provides several counterexamples for exponential families.

Problem 3. Show that each of the following families is not an exponential family:
(a) The negative binomial distribution family $\operatorname{NegBinomial}(r, p)$ with both parameters r and $0<p<1$ unknown.
(b) The set of probability density functions given by $f(x \mid \theta)=\frac{1}{\theta} \exp \left(1-\frac{x}{\theta}\right)$ with $0<\theta<x<\infty$.

Proof. (a) Note that when both parameters r and p in $\operatorname{NegBinomial}(r, p)$ are also unknown, $\operatorname{NegBinomial}(r, p)$ no longer belongs to an exponential family, because the binomial coefficient $\binom{r+x-1}{x}$ cannot be factored into
the products of $h(x)$ and $a(r, p)$ in which the function $h(x)$ does not depend on r, p while the function $a(r, p)$ is independent of the observation x.
(b) Notice that $f(x \mid \theta)=\frac{1}{\theta} \exp \left(1-\frac{x}{\theta}\right) \cdot \mathbb{1}_{(\theta, \infty)}(x)$. One can argue that $f(x \mid \theta)$ does not belong to an exponential family because the indicator function $\mathbb{1}_{(\theta, \infty)}(x)$ cannot be factored into the products of $h(x)$ and $a(r, p)$ as in (1).
Or, it can be seen from (1) that for any $\boldsymbol{\theta} \in \Theta$ with $a(\boldsymbol{\theta})>0$, we must have $\{x \in \mathcal{X}: f(x \mid \boldsymbol{\theta})>0\}=\{x \in$ $\mathcal{X}: h(x)>0\}$ and this set does not depend on $\boldsymbol{\theta}$. However,

$$
f(x \mid \theta)=\frac{1}{\theta} \exp \left(1-\frac{x}{\theta}\right) \cdot \mathbb{1}_{(\theta, \infty)}(x)>0 \Longleftrightarrow x>\theta
$$

which depends on the parameter θ. Hence, $f(x \mid \theta)$ is not an exponential family distribution.
(Notes: the distribution $f(x \mid \theta)$ here is an example of the one-dimensional truncation family; see Example 11.14 in Perlman 2020.)

In the following problem, we develop general formulae for calculating the mean and variance of a distribution in exponential families. While the applications of these formulae in Problem 4 are of pedagogical purpose, they are useful when we want to compute the means and variances in generalized linear models [Nelder and Wedderburn, 1972].

Problem 4 (Exercises 3.31 and 3.32 in Casella and Berger 2002). We first assume that the PDF of a random variable X is given by the exponential family form (1) as:

$$
f(x \mid \boldsymbol{\theta})=h(x) a(\boldsymbol{\theta}) \exp \left(\sum_{i=1}^{k} \eta_{i}(\boldsymbol{\theta}) T_{i}(x)\right) .
$$

The similar arguments below apply to the PMF case.
(a) Starting from the equality

$$
\int f(x \mid \boldsymbol{\theta}) d x=\int h(x) a(\boldsymbol{\theta}) \exp \left(\sum_{i=1}^{k} \eta_{i}(\boldsymbol{\theta}) T_{i}(x)\right) d x=1
$$

differentiate both sides, and then rearrange terms to establish

$$
\begin{equation*}
\mathbb{E}\left[\sum_{i=1}^{k} \frac{\partial \eta_{i}(\boldsymbol{\theta})}{\partial \theta_{j}} \cdot T_{i}(X)\right]=-\frac{\partial}{\partial \theta_{j}} \log a(\boldsymbol{\theta}) \tag{3}
\end{equation*}
$$

(b) Differentiate the above equality a second time; then rearrange to establish

$$
\begin{equation*}
\operatorname{Var}\left[\sum_{i=1}^{k} \frac{\partial \eta_{i}(\boldsymbol{\theta})}{\partial \theta_{j}} \cdot T_{i}(X)\right]=-\frac{\partial^{2}}{\partial \theta_{j}^{2}} \log a(\boldsymbol{\theta})-\mathbb{E}\left[\sum_{i=1}^{k} \frac{\partial^{2} \eta_{i}(\boldsymbol{\theta})}{\partial \theta_{j}^{2}} \cdot T_{i}(X)\right] \tag{4}
\end{equation*}
$$

(c) Use (3) and (4) to derive the mean and variance of $X \sim \operatorname{Binomial}(n, p)$.

In what follows, we assume that Y has its density function as in (2):

$$
f(y \mid \boldsymbol{\eta})=h(y) a^{*}(\boldsymbol{\eta}) \exp \left(\sum_{i=1}^{k} \eta_{i} T_{i}(y)\right) .
$$

(d) Show that the identities (3) and (4) can be simplified to

$$
\begin{equation*}
\mathbb{E}\left(T_{j}(Y)\right)=-\frac{\partial}{\partial \eta_{j}} \log a^{*}(\boldsymbol{\eta}) \quad \text { and } \quad \operatorname{Var}\left(T_{j}(Y)\right)=-\frac{\partial^{2}}{\partial \eta_{j}^{2}} \log a^{*}(\boldsymbol{\eta}) \tag{5}
\end{equation*}
$$

(e) Use this identity to calculate the mean and variance of $a \operatorname{Gamma}(\alpha, \beta)$ random variable.

Proof. (a) We assume that interchanging the order of differentiation and integration is valid. ${ }^{4}$ Then,

$$
\begin{align*}
\log f(x \mid \boldsymbol{\theta}) & =\log h(x)+\log a(\boldsymbol{\theta})+\sum_{i=1}^{k} \eta_{i}(\boldsymbol{\theta}) T_{i}(x), \\
\frac{\partial \log f(x \mid \boldsymbol{\theta})}{\partial \theta_{j}} & =\frac{\partial}{\partial \theta_{j}} \log a(\boldsymbol{\theta})+\sum_{i=1}^{k} \frac{\partial \eta_{i}(\boldsymbol{\theta})}{\partial \theta_{j}} T_{i}(x) . \tag{6}
\end{align*}
$$

Therefore,

$$
\begin{aligned}
\mathbb{E}\left[\sum_{i=1}^{k} \frac{\partial \eta_{i}(\boldsymbol{\theta})}{\partial \theta_{j}} T_{i}(X)\right] & =\mathbb{E}\left[\frac{\partial \log f(X \mid \boldsymbol{\theta})}{\partial \theta_{j}}\right]-\frac{\partial}{\partial \theta_{j}} \log a(\boldsymbol{\theta}) \\
& =\int \frac{\frac{\partial}{\partial \theta_{j}} f(x \mid \boldsymbol{\theta})}{f(x \mid \boldsymbol{\theta})} \cdot f(x \mid \boldsymbol{\theta}) d x-\frac{\partial}{\partial \theta_{j}} \log a(\boldsymbol{\theta}) \\
& =\frac{\partial}{\partial \theta_{j}} \underbrace{\int f(x \mid \boldsymbol{\theta}) d x}_{=1}-\frac{\partial}{\partial \theta_{j}} \log a(\boldsymbol{\theta}) \\
& =-\frac{\partial}{\partial \theta_{j}} \log a(\boldsymbol{\theta})
\end{aligned}
$$

(b) From (6), we know that

$$
\begin{aligned}
\operatorname{Var}\left[\sum_{i=1}^{k} \frac{\partial \eta_{i}(\boldsymbol{\theta})}{\partial \theta_{j}} T_{i}(X)\right] & =\operatorname{Var}\left[\frac{\partial \log f(x \mid \boldsymbol{\theta})}{\partial \theta_{j}}\right] \\
& =\mathbb{E}\left[\left(\frac{\partial \log f(x \mid \boldsymbol{\theta})}{\partial \theta_{j}}\right)^{2}\right]-\underbrace{\left(\mathbb{E}\left[\frac{\partial \log f(x \mid \boldsymbol{\theta})}{\partial \theta_{j}}\right]\right)^{2}}_{=0} \quad \text { (by our calculation in (a)) } \\
& =\mathbb{E}\left[\left(\frac{\partial \log f(x \mid \boldsymbol{\theta})}{\partial \theta_{j}}\right)^{2}\right]
\end{aligned}
$$

(Indeed, one can show that

$$
\operatorname{Cov}\left[\sum_{i=1}^{k} \frac{\partial \eta_{i}(\boldsymbol{\theta})}{\partial \theta_{j}} T_{i}(X), \sum_{i=1}^{k} \frac{\partial \eta_{i}(\boldsymbol{\theta})}{\partial \theta_{m}} T_{i}(X)\right]=\mathbb{E}\left[\left(\frac{\partial \log f(x \mid \boldsymbol{\theta})}{\partial \theta_{j}}\right)\left(\frac{\partial \log f(x \mid \boldsymbol{\theta})}{\partial \theta_{m}}\right)\right]
$$

which is exactly the (i, m)-entry of the Fisher Information Matrix.) Now, notice the fact that

$$
\frac{\partial^{2}}{\partial \theta_{j}^{2}} \log f(x \mid \boldsymbol{\theta})=\frac{\partial}{\partial \theta_{j}}\left(\frac{\frac{\partial f(x \mid \boldsymbol{\theta})}{\partial \theta_{j}}}{f(x \mid \boldsymbol{\theta})}\right)=\left(\frac{\frac{\partial^{2} f(x \mid \boldsymbol{\theta})}{\partial \theta_{j}^{2}}}{f(x \mid \boldsymbol{\theta})}\right)-\left(\frac{\frac{\partial f(x \mid \boldsymbol{\theta})}{\partial \theta_{j}}}{f(x \mid \boldsymbol{\theta})}\right)^{2}
$$

[^2]$$
=\left(\frac{\frac{\partial^{2} f(x \mid \boldsymbol{\theta})}{\partial \theta_{j}^{2}}}{f(x \mid \boldsymbol{\theta})}\right)-\left(\frac{\partial \log f(x \mid \boldsymbol{\theta})}{\partial \theta_{j}}\right)^{2} .
$$

Taking the expectation on both sides yields that

$$
\begin{aligned}
\operatorname{Var}\left[\sum_{i=1}^{k} \frac{\partial \eta_{i}(\boldsymbol{\theta})}{\partial \theta_{j}} T_{i}(X)\right]=\mathbb{E}\left[\left(\frac{\partial \log f(x \mid \boldsymbol{\theta})}{\partial \theta_{j}}\right)^{2}\right] & =\mathbb{E}\left[\left(\frac{\frac{\partial^{2} f(x \mid \boldsymbol{\theta})}{\partial \theta_{j}^{2}}}{f(x \mid \boldsymbol{\theta})}\right)\right]-\mathbb{E}\left[\frac{\partial^{2}}{\partial \theta_{j}^{2}} \log f(x \mid \boldsymbol{\theta})\right] \\
& =\int\left(\frac{\frac{\partial^{2} f(x \mid \boldsymbol{\theta})}{\partial \theta_{j}^{2}}}{f(x \mid \boldsymbol{\theta})}\right) f(x \mid \boldsymbol{\theta}) d x-\mathbb{E}\left[\frac{\partial^{2}}{\partial \theta_{j}^{2}} \log f(x \mid \boldsymbol{\theta})\right] \\
& =\int \frac{\partial^{2} f(x \mid \boldsymbol{\theta})}{\partial \theta_{j}^{2}} d x-\mathbb{E}\left[\frac{\partial^{2}}{\partial \theta_{j}^{2}} \log f(x \mid \boldsymbol{\theta})\right] \\
& =\frac{\partial^{2}}{\partial \theta_{j}^{2}} \underbrace{\int f(x \mid \boldsymbol{\theta}) d x}_{=1}-\mathbb{E}\left[\frac{\partial^{2}}{\partial \theta_{j}^{2}} \log f(x \mid \boldsymbol{\theta})\right] \\
& =-\mathbb{E}\left[\frac{\partial^{2}}{\partial \theta_{j}^{2}} \log f(x \mid \boldsymbol{\theta})\right]
\end{aligned}
$$

Finally, by the form of $f(x \mid \boldsymbol{\theta})$ in (1), we obtain that

$$
\mathbb{E}\left[\frac{\partial^{2}}{\partial \theta_{j}^{2}} \log f(x \mid \boldsymbol{\theta})\right]=\frac{\partial^{2}}{\partial \theta_{j}^{2}} \log a(\boldsymbol{\theta})+\mathbb{E}\left[\sum_{i=1}^{k} \frac{\partial^{2} \eta_{i}(\boldsymbol{\theta})}{\partial \theta_{j}^{2}} \cdot T_{i}(X)\right]
$$

The result thus follows.
(c) Recall from (f) of Problem 1 that $a(p)=(1-p)^{n}, T(X)=X$, and $\eta(p)=\log \left(\frac{p}{1-p}\right)$. By (3) and (4), we know that

$$
\mathbb{E}\left[\frac{d \eta(p)}{d p} \cdot T(X)\right]=-\frac{d}{d p} \log a(p) \Longleftrightarrow \mathbb{E}\left[\frac{X}{p(1-p)}\right]=\frac{n}{1-p}
$$

$\operatorname{Var}\left[\frac{d \eta(p)}{d p} \cdot T(X)\right]=-\frac{d^{2}}{d p^{2}} \log a(p)-\mathbb{E}\left[\frac{d^{2} \eta(p)}{d p^{2}} \cdot T(X)\right] \Longleftrightarrow \operatorname{Var}\left[\frac{X}{p(1-p)}\right]=\frac{n}{(1-p)^{2}}-\mathbb{E}\left[\frac{(2 p-1) X}{p^{2}(1-p)^{2}}\right]$.
Hence, $\mathbb{E}(X)=n p$ and $\operatorname{Var}(X)=n p(1-p)$.
(d) The results follow easily from (3) and (4) by noting that

$$
\frac{\partial \eta_{i}}{\partial \eta_{j}}=\delta_{i j}= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}
$$

Indeed, one can even show that $\operatorname{Cov}\left(T_{i}(X), T_{j}(X)\right)=-\frac{\partial^{2}}{\partial \eta_{i} \partial \eta_{j}} \log a^{*}(\boldsymbol{\eta})$.
(e) Recall from (b) in Problem 1 that the density of $\operatorname{Gamma}(\alpha, \beta)$ is given by

$$
f(x \mid \alpha, \beta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} \cdot \mathbb{1}_{(0, \infty)}(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \exp [(\alpha-1) \log x-\beta x] \cdot \mathbb{1}_{(0, \infty)}(x)
$$

where

$$
h(x)=\mathbb{1}_{(0, \infty)}(x), \quad a(\alpha, \beta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)}, \quad T_{1}(x)=\log x, \quad \text { and } \quad T_{2}(x)=x
$$

with the natural parameters as $\left(\eta_{1}, \eta_{2}\right)=\left(\eta_{1}(\alpha, \beta), \eta_{2}(\alpha, \beta)\right)=(\alpha-1,-\beta)$. Hence,

$$
\mathbb{E}(X)=\mathbb{E}\left[T_{2}(X)\right]=-\frac{\partial}{\partial \eta_{2}} \log \left(\frac{\left(-\eta_{2}\right)^{\eta_{1}+1}}{\Gamma\left(\eta_{1}+1\right)}\right)=-\frac{\eta_{1}+1}{\eta_{2}}=\frac{\alpha}{\beta}
$$

and

$$
\operatorname{Var}(X)=\operatorname{Var}\left[T_{2}(X)\right]=-\frac{\partial^{2}}{\partial \eta_{2}^{2}} \log \left(\frac{\left(-\eta_{2}\right)^{\eta_{1}+1}}{\Gamma\left(\eta_{1}+1\right)}\right)=\frac{\eta_{1}+1}{\eta_{2}^{2}}=\frac{\alpha}{\beta^{2}}
$$

Our calculation in (a) and (b) of Problem 4 will also appear when we derive the Fisher Information matrix and Cramér-Rao lower bound in STAT 513; see Section 13.1 in Perlman [2020] and 7.3.2 in Casella and Berger [2002]. In addition, the exponential families have many interesting properties and connections to other results in Statistics that are covered here. The interested readers can refer to https://www.stat. purdue.edu/~dasgupta/expfamily.pdf for further reading.

References

E. B. Andersen. Sufficiency and exponential families for discrete sample spaces. Journal of the American Statistical Association, 65(331):1248-1255, 1970.
L. Brown. Fundamentals of Statistical Exponential Families: With Applications in Statistical Decision Theory. IMS Lecture Notes. Institute of Mathematical Statistics, 1986.
G. Casella and R. Berger. Statistical Inference. Duxbury advanced series. Thomson Learning, 2nd ed. edition, 2002.
E. L. Lehmann and H. Scheffé. Completeness, similar regions, and unbiased estimation: Part i. Sankhyāa: The Indian Journal of Statistics (1933-1960), 10(4):305-340, 1950.
J. A. Nelder and R. W. Wedderburn. Generalized linear models. Journal of the Royal Statistical Society: Series A (General), 135(3):370-384, 1972.
M. Perlman. Probability and Mathematical Statistics II (STAT 513 Lecture Notes), 2020. URL https: //sites.stat.washington.edu/people/mdperlma/STAT\ 513\ MDP\ Notes.pdf.

[^0]: ${ }^{1}$ See http://www2.stat.duke.edu/~pdh10/Teaching/581/LectureNotes/expofam.pdf.
 ${ }^{2}$ If $\left(T_{1}(x), \ldots, T_{k}(x)\right)$ does satisfy a linear constraint, the natural parameter space \mathcal{H} will include points that correspond to the same probability distribution

[^1]: ${ }^{3}$ See https://en.wikipedia.org/wiki/Exponential_family.

[^2]: ${ }^{4}$ This is indeed guaranteed by the special form of the exponential family; see Theorem 18.2 in https://www.stat.purdue. edu/~dasgupta/expfamily.pdf.

