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Problem 1 (Midterm problem in Autumn 2018, 2019). Suppose that a sample of size n is taken at random
with replacement from the population of all UW students. Each student in the sample is recorded as either
male (M) or female (F) and as either a Washington resident (R) or non-resident (N). The data are presented
in a two-way contingency table as:

R N( )
M X11 X12

F X21 X22

.

That is, X11 is the number of students in the sample who are both M and R, X12 is the number of students
in the sample who are both M and N , etc. Thus, X11 +X12 +X21 +X22 = n. Let

R N( )
M p11 p12
F p21 p22

denote the corresponding population proportions, that is, p11 is the proportion of students in the UW popu-
lation who are both M and R, p12 is the proportion of students in the population who are both M and N ,
etc. Hence, p11 + p12 + p21 + p22 = 1.

(a) What is the distribution of (X11, X12, X21, X22)?

(b) What is the conditional distribution of (X11, X12)|X11 + X12? What is the conditional correlation
Corr(X11, X12)|X11 +X12?

(c) Find Corr(X11, X12)|X11 +X12 +X21.

(d) What is the conditional distribution of (X11, X12)|X11 + X21? What is the conditional correlation
Corr(X11, X12)|X11 +X21?

Solution. (a) Based on the “sampling with replacement” setting, we know that

(X11, X12, X21, X22) ∼ Multinomial4(n; p11, p12, p21, p22).

(b) According to the calculations and results in Section 7.2 of Lecture 7 notes (see also Chapter 7 in Perlman
2020a), we know that the conditional distribution of (X11, X12)|X11 +X12 is

(X11, X12)|X11 +X12 ∼ Multinomial2

(
X11 +X12;

p11
p11 + p12

,
p12

p11 + p12

)
.

Given X11 +X12, X11 and X12 is negatively linear correlated, so Corr(X11, X12)|X11 +X12 = −1.

(c) Recall from Section 7.2 of Lecture 7 notes that for any multinomial random vector (X1, ..., Xk) ∼
Multinomial4(n; p1, ..., pk), the covariance between any two components Xi, Xj with 1 ≤ i 6= j ≤ k can be
computed as:

Cov(Xi, Xj) =
1

2
[Var(Xi +Xj)−Var(Xi)−Var(Xj)]

1
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=
1

2
[n(pi + pj)(1− pi − pj)− npi(1− pi)− npj(1− pj)]

= −npipj .

Hence, given that

(X11, X12, X21)|X11+X12+X21 ∼ Multinomial3

(
X11 +X12 +X21;

p11
p11 + p12 + p21

,
p12

p11 + p12 + p21
,

p21
p11 + p12 + p21

)
,

we can obtain from the above results as:

Cov(X11, X12)|X11 +X12 +X21 = −(X11 +X12 +X21)

(
p11

p11 + p12 + p21

)(
p12

p11 + p12 + p21

)
.

Additionally,

Var(X11|X11 +X12 +X21) = (X11 +X12 +X21)

(
p11

p11 + p12 + p21

)(
p12 + p21

p11 + p12 + p21

)
and

Var(X12|X11 +X12 +X21) = (X11 +X12 +X21)

(
p12

p11 + p12 + p21

)(
p11 + p21

p11 + p12 + p21

)
.

Therefore,

Corr(X11, X12)|X11 +X12 +X21 =
Cov(X11, X12)|X11 +X12 +X21√

Var(X11|X11 +X12 +X21) ·Var(X12|X11 +X12 +X21)

= −
√

p11p12
(p12 + p21)(p11 + p21)

.

(d) Notice that the conditional distribution of (X11, X12)|X11+X21 is identical to the conditional distribution
of (X11, X12)|(X11 + X21, X12 + X22). By the results in Section 7.2 of Lecture notes, we know that X11

and X12 is conditionally independent given (X11 + X21, X12 + X22). Thus, the conditional distribution of
(X11, X12)|X11 +X21 is the product of two independent binomial distributions as:

(X11, X12)|X11 +X21 ∼ Binomial

(
X11 +X12,

p11
p11 + p21

)
⊗ Binomial

(
X12 +X22,

p12
p12 + p22

)
,

where ⊗ stands for the product of two independent distributions. Finally, the conditional correlation
Corr(X11, X12)|X11 +X21 is zero.

Problem 2. Assume that we want to estimate θ from some data X = (X1, . . . , Xn), where Xi ∼ Pθ are

independent and identically distributed. An estimator θ̂ = T (X) has been constructed and we quantify

its performance via the squared loss function L (T (X), θ) = (T (X)− θ)2, where T is some deterministic
function. The risk function R (T (X), θ) is defined as the expected value of the loss function as (see also
Section 7.1 in Hogg et al. 2012):

R (T (X), θ) = E [L (T (X), θ)] = E
[
(T (X)− θ)2

]
Show that R (T (X), θ) = Bias2 (T (X)) + Var (T (X)) where Bias (T (X)) = E [T (X)]− θ.

Proof. By direct calculations,

(T (X)− θ)2 = (T (X)− E[T (X)] + E[T (X)]− θ)2
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= (T (X)− E[T (X)])
2

+ (E[T (X)]− θ)2 + 2 (T (X)− E[T (X)]) (E[T (X)]− θ) .

Now, taking the expectation yields that

R (T (X), θ) = E
[
(T (X)− θ)2

]
= E

[
(T (X)− E[T (X)])

2
]

+ E
[
(E[T (X)]− θ)2

]
+ E [2 (T (X)− E[T (X)]) (E[T (X)]− θ)]

= Var(T (X)) + (E[T (X)]− θ)2 + 2 (E[T (X)]− θ) · E [T (X)− E[T (X)]]︸ ︷︷ ︸
=0

= Var(T (X)) + (E [T (X)]− θ)2

= Var(T (X)) + Bias2(T (X))

The result follows.

Problem 3 (MLE of simple linear regression; Exercises 7.19–7.21 in Casella and Berger 2002). Suppose that
the random variables Y1, ..., Yn satisfy

Yi = βxi + εi, i = 1, . . . , n

where x1, . . . , xn are fixed constants and ε1, . . . , εn
i.i.d.∼ N(0, σ2), σ2 > 0 is unknown.

(a) Find the maximum likelihood estimators (MLEs) of β and σ2. Show that the MLE β̂MLE of β is
unbiased. What is its variance?

(b) Show that
∑n
i=1 Yi/

∑n
i=1 xi is also an unbiased estimator of β. What is its variance? Show that it is

larger than the variance in (a).

(c) Show that 1
n

∑n
i=1(Yi/xi) is also an unbiased estimator of β. What is its variance? Compare it to the

variances in (a) and (b).

Solution. (a) The log-likelihood is given by

logL(β, σ2|Y ) =

n∑
i=1

log p(Yi|β, σ2)

=
n∑
i=1

[
−1

2
log(2π)− 1

2
log(σ2)− 1

2σ2
(Yi − βxi)2

]

= −n
2

log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

(Yi − βxi)2

= −n
2

log(2π) +
n

2
log(λ)− λ

2

n∑
i=1

(Yi − βxi)2,

where Y = (Y1, ..., Yn)T and we take λ = 1
σ2 . Taking the partial derivatives with respect to β and λ (or

equivalently, σ2) yields that

∂

∂β
logL(β, σ2|Y ) =

1

σ2

n∑
i=1

xi(Yi − βxi),

∂

∂λ
logL(β, σ2|Y ) =

n

2λ
− 1

2

n∑
i=1

(Yi − βxi)2.
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Given that ∂2

∂β2 logL(β, σ2|Y ) = − 1
σ2

∑n
i=1 x

2
i < 0, the log-likelihood logL(β, σ2|Y ) is strictly concave with

respect to β for any fixed σ2 > 0. Hence, the solution β∗ =
∑n

i=1 xiYi∑n
i=1 x

2
i

to the equation ∂
∂β logL(β, σ2|Y ) = 0

did maximize the log-likelihood ∂
∂β logL(β, σ2|Y ) for any fixed σ2 > 0. The partial maximum is

max
β

logL(β, σ2|Y ) = −n
2

log(2π) +
n

2
log(λ)− λ

2

n∑
i=1

(Yi − β∗xi)2,

and ∂2

∂λ2 logL(β, σ2|Y ) = − n
2λ2 < 0. It implies that maxβ logL(β, σ2|Y ) = logL

(
β∗, 1

λ |Y
)

is strictly concave

with respect to λ and has its unique maximum at λ̂ = n∑n
i=1(Yi−β∗xi)2

by solving ∂
∂λ logL

(
β∗, 1

λ |Y
)

= 0.

Therefore, (β∗, λ̂) jointly maximizes the log-likelihood logL(β, σ2|Y ), so it leads to the MLEs as:

β̂MLE = β∗ =

∑n
i=1 xiYi∑n
i=1 x

2
i

and σ̂2
MLE =

1

n

n∑
i=1

(Yi − β∗xi)2 =

(∑n
i=1 x

2
i

) (∑n
i=1 Y

2
i

)
− (
∑n
i=1 xiYi)

2

n (
∑n
i=1 x

2
i )

.

Finally, the expectation and variance of β̂MLE are given by

E
(
β̂MLE

)
= E

(∑
i=1 Yixi∑n
i=1 x

2
i

)
=

1∑n
i=1 x

2
i

n∑
i=1

xiE(Yi)

=
1∑n
i=1 x

2
i

n∑
i=1

βx2i

= β,

showing that β̂MLE is an unbiased estimator of β, and

Var
(
β̂MLE

)
= Var

(∑
i=1 Yixi∑n
i=1 x

2
i

)
=

1

(
∑n
i=1 x

2
i )

2

n∑
i=1

x2iVar(Yi)

=
σ2∑n
i=1 x

2
i

.

Notes: Indeed, the distribution of β̂MLE is N
(
β, σ2∑n

i=1 x
2
i

)
.

(b) By direct calculation, we have that

E
(∑n

i=1 Yi∑n
i=1 xi

)
=

1∑n
i=1 xi

n∑
i=1

E(Yi)

=
1∑n
i=1 xi

n∑
i=1

βxi

= β

showing that
∑n

i=1 Yi∑n
i=1 xi

is also an unbiased estimator of β, and

Var

(∑n
i=1 Yi∑n
i=1 xi

)
=

1

(
∑n
i=1 xi)

2

n∑
i=1

Var(Yi)
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=
σ2

(
∑n
i=1 xi)

2
/n

The denominator here is
(
∑n

i=1 xi)
2

n = n(xn)2 where xn = 1
n

∑n
i=1 xi. Given that

0 ≤
n∑
i=1

(xi − xn)2 =

n∑
i=1

x2i − n(xn)2,

it implies that
n∑
i=1

x2i ≥ n(xn)2

and thus, Var(β̂MLE) ≤ Var
(∑n

i=1 Yi∑n
i=1 xi

)
. Here, the equality holds only when x1 = · · · = xn.

(c) By direct calculations, we have that

E

(
1

n

n∑
i=1

Yi
xi

)
=

1

n

n∑
i=1

E
(
Yi
xi

)

=
1

n

n∑
i=1

βxi
xi

= β

showing that 1
n

∑n
i=1

Yi

xi
is also an unbiased estimator of β, and

Var

(
1

n

n∑
i=1

Yi
xi

)
=

1

n2

n∑
i=1

Var

(
Yi
xi

)

=
1

n2

n∑
i=1

1

x2i
Var(Yi)

=
σ2

n2

n∑
i=1

1

x2i

By the Cauchy-Schwarz inequality, we know that(
n∑
i=1

1

x2i

)(
n∑
i=1

x2i

)
≥

(
n∑
i=1

xi ·
1

xi

)2

= n2,

and thus,

σ2

n2

(
n∑
i=1

1

x2i

)
≥ σ2∑n

i=1 x
2
i

,

i.e., Var
(

1
n

∑n
i=1

Yi

xi

)
≥ Var(β̂MLE).

Notice, however, that the variances of estimators in (b) and (c) are not comparable. That is, we cannot

conclude whether nσ2

(
∑n

i=1 xi)
2 or σ2

n2

∑n
i=1

1
x2
i

is bigger without further information on xi, i = 1, ..., n. Consider

the following two cases:

• Case 1 : Take xi = (−1)i√
n

for i = 1, ..., n so that |
∑n
i=1 xi| ≤

1√
n
→ 0 as n→∞. It implies that

Var

(∑n
i=1 Yi∑n
i=1 xi

)
=

nσ2

(
∑n
i=1 xi)

2 ≥ n
3σ2 →∞ as n→∞,
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while

Var

(
1

n

n∑
i=1

Yi
xi

)
=
σ2

n2

n∑
i=1

1

x2i
= σ2 <∞.

In this case,

Var

(∑n
i=1 Yi∑n
i=1 xi

)
=

nσ2

(
∑n
i=1 xi)

2 >
σ2

n2

n∑
i=1

1

x2i
= Var

(
1

n

n∑
i=1

Yi
xi

)
.

• Case 2 : When xi, i = 1, ..., n are all positive and not identical, we can apply the Jensen’s inequality
to the convex function f(u) = 1

u2 for u > 0 to obtain that

1(
1
n

∑n
i=1 xi

)2 ≤ 1

n

n∑
i=1

(
1

x2i

)
,

which in turn shows that nσ2

(
∑n

i=1 xi)
2 ≤ σ2

n2

∑n
i=1

1
x2
i
. Thus, in this case, Var

(∑n
i=1 Yi∑n
i=1 xi

)
≤ Var

(
1
n

∑n
i=1

Yi

xi

)
and the equality does not hold when xi, i = 1, ..., n are not the same.

Notes: It is WRONG to apply the Jensen’s equality to the function f(u) = 1
u2 without restricting to R+,

because f(u) is not convex in R; see Figure 1 below.
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Figure 1: Plot of 1
x2 on x ∈ [−10, 10].

Remark 1. There are two different arguments about why β̂MLE must attain the minimum variance among
all the unbiased estimators:

• On the one hand, by maximizing the log-likelihood under Gaussian and homoscedastic assumptions on
the errors εi, i = 1, ..., n, β̂MLE coincides with the ordinary least square solution. According to Gauss-
Markov theorem1, β̂MLE is the best linear unbiased estimator (BLUP) of β under the mean square
error criterion (see Problem 2).

• On the other hand, β̂MLE is a function of the two-dimensional complete and sufficient statistic for
(β, σ2) as: (

n∑
i=1

Y 2
i ,

n∑
i=1

xiYi

)
,

1See https://en.wikipedia.org/wiki/Gauss-Markov_theorem.

https://en.wikipedia.org/wiki/Gauss-Markov_theorem
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so it is also the uniformly minimum-variance unbiased estimator (UMVUE); see Section 12.3 in Perl-
man [2020b].

A statistic T (X) is called sufficient for θ if the conditional distribution of the sample X given the value of
T (X) does not depend on θ; see Definition 6.2.1 in Casella and Berger [2002]. Also, T (X) is called complete
if Eθg(T ) = 0 for all θ implies Pθ (g(T ) = 0) = 1 for all θ, where Eθ and Pθ are taken with respect to the
distribution of T (X); see Definition 6.2.21 in Casella and Berger [2002]. These concepts will be discussed
in detail during STAT 513.
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