Quiz Session 6: Multinomial Distribution and MLE for Simple Linear Regression

Problem 1 (Midterm problem in Autumn 2018, 2019). Suppose that a sample of size n is taken at random with replacement from the population of all UW students. Each student in the sample is recorded as either male (M) or female (F) and as either a Washington resident (R) or non-resident (N). The data are presented in a two-way contingency table as:

$$
\left.\begin{array}{c}
\\
M \\
F
\end{array} \begin{array}{cc}
R & N \\
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right) .
$$

That is, X_{11} is the number of students in the sample who are both M and R, X_{12} is the number of students in the sample who are both M and N, etc. Thus, $X_{11}+X_{12}+X_{21}+X_{22}=n$. Let
$\left.\begin{array}{c} \\ M \\ F\end{array} \begin{array}{cc}R & N \\ p_{11} & p_{12} \\ p_{21} & p_{22}\end{array}\right)$
denote the corresponding population proportions, that is, p_{11} is the proportion of students in the $U W$ population who are both M and R, p_{12} is the proportion of students in the population who are both M and N, etc. Hence, $p_{11}+p_{12}+p_{21}+p_{22}=1$.
(a) What is the distribution of $\left(X_{11}, X_{12}, X_{21}, X_{22}\right)$?
(b) What is the conditional distribution of $\left(X_{11}, X_{12}\right) \mid X_{11}+X_{12}$? What is the conditional correlation $\operatorname{Corr}\left(X_{11}, X_{12}\right) \mid X_{11}+X_{12} ?$
(c) Find $\operatorname{Corr}\left(X_{11}, X_{12}\right) \mid X_{11}+X_{12}+X_{21}$.
(d) What is the conditional distribution of $\left(X_{11}, X_{12}\right) \mid X_{11}+X_{21}$? What is the conditional correlation $\operatorname{Corr}\left(X_{11}, X_{12}\right) \mid X_{11}+X_{21} ?$

Solution. (a) Based on the "sampling with replacement" setting, we know that

$$
\left(X_{11}, X_{12}, X_{21}, X_{22}\right) \sim \operatorname{Multinomial}_{4}\left(n ; p_{11}, p_{12}, p_{21}, p_{22}\right)
$$

(b) According to the calculations and results in Section 7.2 of Lecture 7 notes (see also Chapter 7 in Perlman 2020a), we know that the conditional distribution of $\left(X_{11}, X_{12}\right) \mid X_{11}+X_{12}$ is

$$
\left(X_{11}, X_{12}\right) \left\lvert\, X_{11}+X_{12} \sim \operatorname{Multinomial}_{2}\left(X_{11}+X_{12} ; \frac{p_{11}}{p_{11}+p_{12}}, \frac{p_{12}}{p_{11}+p_{12}}\right)\right.
$$

Given $X_{11}+X_{12}, X_{11}$ and X_{12} is negatively linear correlated, so $\operatorname{Corr}\left(X_{11}, X_{12}\right) \mid X_{11}+X_{12}=-1$.
(c) Recall from Section 7.2 of Lecture 7 notes that for any multinomial random vector $\left(X_{1}, \ldots, X_{k}\right) \sim$ Multinomial $_{4}\left(n ; p_{1}, \ldots, p_{k}\right)$, the covariance between any two components X_{i}, X_{j} with $1 \leq i \neq j \leq k$ can be computed as:

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)=\frac{1}{2}\left[\operatorname{Var}\left(X_{i}+X_{j}\right)-\operatorname{Var}\left(X_{i}\right)-\operatorname{Var}\left(X_{j}\right)\right]
$$

$$
\begin{aligned}
& =\frac{1}{2}\left[n\left(p_{i}+p_{j}\right)\left(1-p_{i}-p_{j}\right)-n p_{i}\left(1-p_{i}\right)-n p_{j}\left(1-p_{j}\right)\right] \\
& =-n p_{i} p_{j}
\end{aligned}
$$

Hence, given that
$\left(X_{11}, X_{12}, X_{21}\right) \left\lvert\, X_{11}+X_{12}+X_{21} \sim \operatorname{Multinomial}_{3}\left(X_{11}+X_{12}+X_{21} ; \frac{p_{11}}{p_{11}+p_{12}+p_{21}}, \frac{p_{12}}{p_{11}+p_{12}+p_{21}}, \frac{p_{21}}{p_{11}+p_{12}+p_{21}}\right)\right.$,
we can obtain from the above results as:

$$
\operatorname{Cov}\left(X_{11}, X_{12}\right) \left\lvert\, X_{11}+X_{12}+X_{21}=-\left(X_{11}+X_{12}+X_{21}\right)\left(\frac{p_{11}}{p_{11}+p_{12}+p_{21}}\right)\left(\frac{p_{12}}{p_{11}+p_{12}+p_{21}}\right)\right.
$$

Additionally,

$$
\operatorname{Var}\left(X_{11} \mid X_{11}+X_{12}+X_{21}\right)=\left(X_{11}+X_{12}+X_{21}\right)\left(\frac{p_{11}}{p_{11}+p_{12}+p_{21}}\right)\left(\frac{p_{12}+p_{21}}{p_{11}+p_{12}+p_{21}}\right)
$$

and

$$
\operatorname{Var}\left(X_{12} \mid X_{11}+X_{12}+X_{21}\right)=\left(X_{11}+X_{12}+X_{21}\right)\left(\frac{p_{12}}{p_{11}+p_{12}+p_{21}}\right)\left(\frac{p_{11}+p_{21}}{p_{11}+p_{12}+p_{21}}\right)
$$

Therefore,

$$
\begin{aligned}
\operatorname{Corr}\left(X_{11}, X_{12}\right) \mid X_{11}+X_{12}+X_{21} & =\frac{\operatorname{Cov}\left(X_{11}, X_{12}\right) \mid X_{11}+X_{12}+X_{21}}{\sqrt{\operatorname{Var}\left(X_{11} \mid X_{11}+X_{12}+X_{21}\right) \cdot \operatorname{Var}\left(X_{12} \mid X_{11}+X_{12}+X_{21}\right)}} \\
& =-\sqrt{\frac{p_{11} p_{12}}{\left(p_{12}+p_{21}\right)\left(p_{11}+p_{21}\right)}}
\end{aligned}
$$

(d) Notice that the conditional distribution of $\left(X_{11}, X_{12}\right) \mid X_{11}+X_{21}$ is identical to the conditional distribution of $\left(X_{11}, X_{12}\right) \mid\left(X_{11}+X_{21}, X_{12}+X_{22}\right)$. By the results in Section 7.2 of Lecture notes, we know that X_{11} and X_{12} is conditionally independent given $\left(X_{11}+X_{21}, X_{12}+X_{22}\right)$. Thus, the conditional distribution of $\left(X_{11}, X_{12}\right) \mid X_{11}+X_{21}$ is the product of two independent binomial distributions as:

$$
\left(X_{11}, X_{12}\right) \left\lvert\, X_{11}+X_{21} \sim \operatorname{Binomial}\left(X_{11}+X_{12}, \frac{p_{11}}{p_{11}+p_{21}}\right) \otimes \operatorname{Binomial}\left(X_{12}+X_{22}, \frac{p_{12}}{p_{12}+p_{22}}\right)\right.
$$

where \otimes stands for the product of two independent distributions. Finally, the conditional correlation $\operatorname{Corr}\left(X_{11}, X_{12}\right) \mid X_{11}+X_{21}$ is zero.

Problem 2. Assume that we want to estimate θ from some data $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$, where $X_{i} \sim P_{\theta}$ are independent and identically distributed. An estimator $\hat{\theta}=T(\boldsymbol{X})$ has been constructed and we quantify its performance via the squared loss function $L(T(\boldsymbol{X}), \theta)=(T(\boldsymbol{X})-\theta)^{2}$, where T is some deterministic function. The risk function $R(T(\boldsymbol{X}), \theta)$ is defined as the expected value of the loss function as (see also Section 7.1 in Hogg et al. 2012):

$$
R(T(\boldsymbol{X}), \theta)=\mathbb{E}[L(T(\boldsymbol{X}), \theta)]=\mathbb{E}\left[(T(\boldsymbol{X})-\theta)^{2}\right]
$$

Show that $R(T(\boldsymbol{X}), \theta)=\operatorname{Bias}^{2}(T(\boldsymbol{X}))+\operatorname{Var}(T(\boldsymbol{X}))$ where Bias $(T(\boldsymbol{X}))=\mathbb{E}[T(\boldsymbol{X})]-\theta$.

Proof. By direct calculations,

$$
(T(\boldsymbol{X})-\theta)^{2}=(T(\boldsymbol{X})-\mathbb{E}[T(\boldsymbol{X})]+\mathbb{E}[T(\boldsymbol{X})]-\theta)^{2}
$$

$$
=(T(\boldsymbol{X})-\mathbb{E}[T(\boldsymbol{X})])^{2}+(\mathbb{E}[T(\boldsymbol{X})]-\theta)^{2}+2(T(\boldsymbol{X})-\mathbb{E}[T(\boldsymbol{X})])(\mathbb{E}[T(\boldsymbol{X})]-\theta)
$$

Now, taking the expectation yields that

$$
\begin{aligned}
R(T(\boldsymbol{X}), \theta) & =\mathbb{E}\left[(T(\boldsymbol{X})-\theta)^{2}\right] \\
& =\mathbb{E}\left[(T(\boldsymbol{X})-\mathbb{E}[T(\boldsymbol{X})])^{2}\right]+\mathbb{E}\left[(\mathbb{E}[T(\boldsymbol{X})]-\theta)^{2}\right]+\mathbb{E}[2(T(\boldsymbol{X})-\mathbb{E}[T(\boldsymbol{X})])(\mathbb{E}[T(\boldsymbol{X})]-\theta)] \\
& =\operatorname{Var}(T(\boldsymbol{X}))+(\mathbb{E}[T(\boldsymbol{X})]-\theta)^{2}+2(\mathbb{E}[T(\boldsymbol{X})]-\theta) \cdot \underbrace{\mathbb{E}[T(\boldsymbol{X})-\mathbb{E}[T(\boldsymbol{X})]]}_{=0} \\
& =\operatorname{Var}(T(\boldsymbol{X}))+(\mathbb{E}[T(\boldsymbol{X})]-\theta)^{2} \\
& =\operatorname{Var}(T(\boldsymbol{X}))+\operatorname{Bias}^{2}(T(\boldsymbol{X}))
\end{aligned}
$$

The result follows.

Problem 3 (MLE of simple linear regression; Exercises 7.19-7.21 in Casella and Berger 2002). Suppose that the random variables Y_{1}, \ldots, Y_{n} satisfy

$$
Y_{i}=\beta x_{i}+\epsilon_{i}, \quad i=1, \ldots, n
$$

where x_{1}, \ldots, x_{n} are fixed constants and $\epsilon_{1}, \ldots, \epsilon_{n} \stackrel{i . i . d .}{\sim} N\left(0, \sigma^{2}\right), \sigma^{2}>0$ is unknown.
(a) Find the maximum likelihood estimators (MLEs) of β and σ^{2}. Show that the MLE $\hat{\beta}_{M L E}$ of β is unbiased. What is its variance?
(b) Show that $\sum_{i=1}^{n} Y_{i} / \sum_{i=1}^{n} x_{i}$ is also an unbiased estimator of β. What is its variance? Show that it is larger than the variance in (a).
(c) Show that $\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i} / x_{i}\right)$ is also an unbiased estimator of β. What is its variance? Compare it to the variances in (a) and (b).

Solution. (a) The log-likelihood is given by

$$
\begin{aligned}
\log L\left(\beta, \sigma^{2} \mid \boldsymbol{Y}\right) & =\sum_{i=1}^{n} \log p\left(Y_{i} \mid \beta, \sigma^{2}\right) \\
& =\sum_{i=1}^{n}\left[-\frac{1}{2} \log (2 \pi)-\frac{1}{2} \log \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}}\left(Y_{i}-\beta x_{i}\right)^{2}\right] \\
& =-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\beta x_{i}\right)^{2} \\
& =-\frac{n}{2} \log (2 \pi)+\frac{n}{2} \log (\lambda)-\frac{\lambda}{2} \sum_{i=1}^{n}\left(Y_{i}-\beta x_{i}\right)^{2}
\end{aligned}
$$

where $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{T}$ and we take $\lambda=\frac{1}{\sigma^{2}}$. Taking the partial derivatives with respect to β and λ (or equivalently, σ^{2}) yields that

$$
\begin{aligned}
\frac{\partial}{\partial \beta} \log L\left(\beta, \sigma^{2} \mid \boldsymbol{Y}\right) & =\frac{1}{\sigma^{2}} \sum_{i=1}^{n} x_{i}\left(Y_{i}-\beta x_{i}\right) \\
\frac{\partial}{\partial \lambda} \log L\left(\beta, \sigma^{2} \mid \boldsymbol{Y}\right) & =\frac{n}{2 \lambda}-\frac{1}{2} \sum_{i=1}^{n}\left(Y_{i}-\beta x_{i}\right)^{2}
\end{aligned}
$$

Given that $\frac{\partial^{2}}{\partial \beta^{2}} \log L\left(\beta, \sigma^{2} \mid \boldsymbol{Y}\right)=-\frac{1}{\sigma^{2}} \sum_{i=1}^{n} x_{i}^{2}<0$, the \log-likelihood $\log L\left(\beta, \sigma^{2} \mid \boldsymbol{Y}\right)$ is strictly concave with respect to β for any fixed $\sigma^{2}>0$. Hence, the solution $\beta^{*}=\frac{\sum_{i=1}^{n} x_{i} Y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}$ to the equation $\frac{\partial}{\partial \beta} \log L\left(\beta, \sigma^{2} \mid \boldsymbol{Y}\right)=0$ did maximize the \log-likelihood $\frac{\partial}{\partial \beta} \log L\left(\beta, \sigma^{2} \mid \boldsymbol{Y}\right)$ for any fixed $\sigma^{2}>0$. The partial maximum is

$$
\max _{\beta} \log L\left(\beta, \sigma^{2} \mid \boldsymbol{Y}\right)=-\frac{n}{2} \log (2 \pi)+\frac{n}{2} \log (\lambda)-\frac{\lambda}{2} \sum_{i=1}^{n}\left(Y_{i}-\beta^{*} x_{i}\right)^{2}
$$

and $\frac{\partial^{2}}{\partial \lambda^{2}} \log L\left(\beta, \sigma^{2} \mid \boldsymbol{Y}\right)=-\frac{n}{2 \lambda^{2}}<0$. It implies that $\max _{\beta} \log L\left(\beta, \sigma^{2} \mid \boldsymbol{Y}\right)=\log L\left(\beta^{*}, \left.\frac{1}{\lambda} \right\rvert\, \boldsymbol{Y}\right)$ is strictly concave with respect to λ and has its unique maximum at $\hat{\lambda}=\frac{n}{\sum_{i=1}^{n}\left(Y_{i}-\beta^{*} x_{i}\right)^{2}}$ by solving $\frac{\partial}{\partial \lambda} \log L\left(\beta^{*}, \left.\frac{1}{\lambda} \right\rvert\, \boldsymbol{Y}\right)=0$. Therefore, $\left(\beta^{*}, \hat{\lambda}\right)$ jointly maximizes the \log-likelihood $\log L\left(\beta, \sigma^{2} \mid \boldsymbol{Y}\right)$, so it leads to the MLEs as:

$$
\hat{\beta}_{M L E}=\beta^{*}=\frac{\sum_{i=1}^{n} x_{i} Y_{i}}{\sum_{i=1}^{n} x_{i}^{2}} \quad \text { and } \quad \hat{\sigma}_{M L E}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\beta^{*} x_{i}\right)^{2}=\frac{\left(\sum_{i=1}^{n} x_{i}^{2}\right)\left(\sum_{i=1}^{n} Y_{i}^{2}\right)-\left(\sum_{i=1}^{n} x_{i} Y_{i}\right)^{2}}{n\left(\sum_{i=1}^{n} x_{i}^{2}\right)}
$$

Finally, the expectation and variance of $\hat{\beta}_{M L E}$ are given by

$$
\begin{aligned}
\mathbb{E}\left(\hat{\beta}_{\text {MLE }}\right) & =\mathbb{E}\left(\frac{\sum_{i=1} Y_{i} x_{i}}{\sum_{i=1}^{n} x_{i}^{2}}\right) \\
& =\frac{1}{\sum_{i=1}^{n} x_{i}^{2}} \sum_{i=1}^{n} x_{i} \mathbb{E}\left(Y_{i}\right) \\
& =\frac{1}{\sum_{i=1}^{n} x_{i}^{2}} \sum_{i=1}^{n} \beta x_{i}^{2} \\
& =\beta
\end{aligned}
$$

showing that $\hat{\beta}_{M L E}$ is an unbiased estimator of β, and

$$
\begin{aligned}
\operatorname{Var}\left(\hat{\beta}_{\text {MLE }}\right) & =\operatorname{Var}\left(\frac{\sum_{i=1} Y_{i} x_{i}}{\sum_{i=1}^{n} x_{i}^{2}}\right) \\
& =\frac{1}{\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{2}} \sum_{i=1}^{n} x_{i}^{2} \operatorname{Var}\left(Y_{i}\right) \\
& =\frac{\sigma^{2}}{\sum_{i=1}^{n} x_{i}^{2}}
\end{aligned}
$$

Notes: Indeed, the distribution of $\hat{\beta}_{M L E}$ is $N\left(\beta, \frac{\sigma^{2}}{\sum_{i=1}^{n} x_{i}^{2}}\right)$.
(b) By direct calculation, we have that

$$
\begin{aligned}
\mathbb{E}\left(\frac{\sum_{i=1}^{n} Y_{i}}{\sum_{i=1}^{n} x_{i}}\right) & =\frac{1}{\sum_{i=1}^{n} x_{i}} \sum_{i=1}^{n} \mathbb{E}\left(Y_{i}\right) \\
& =\frac{1}{\sum_{i=1}^{n} x_{i}} \sum_{i=1}^{n} \beta x_{i} \\
& =\beta
\end{aligned}
$$

showing that $\frac{\sum_{i=1}^{n} Y_{i}}{\sum_{i=1}^{n} x_{i}}$ is also an unbiased estimator of β, and

$$
\operatorname{Var}\left(\frac{\sum_{i=1}^{n} Y_{i}}{\sum_{i=1}^{n} x_{i}}\right)=\frac{1}{\left(\sum_{i=1}^{n} x_{i}\right)^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(Y_{i}\right)
$$

$$
=\frac{\sigma^{2}}{\left(\sum_{i=1}^{n} x_{i}\right)^{2} / n}
$$

The denominator here is $\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}=n\left(\bar{x}_{n}\right)^{2}$ where $\bar{x}_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$. Given that

$$
0 \leq \sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2}=\sum_{i=1}^{n} x_{i}^{2}-n\left(\bar{x}_{n}\right)^{2}
$$

it implies that

$$
\sum_{i=1}^{n} x_{i}^{2} \geq n\left(\bar{x}_{n}\right)^{2}
$$

and thus, $\operatorname{Var}\left(\hat{\beta}_{\mathrm{MLE}}\right) \leq \operatorname{Var}\left(\frac{\sum_{i=1}^{n} Y_{i}}{\sum_{i=1}^{n} x_{i}}\right)$. Here, the equality holds only when $x_{1}=\cdots=x_{n}$.
(c) By direct calculations, we have that

$$
\begin{aligned}
\mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n} \frac{Y_{i}}{x_{i}}\right) & =\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(\frac{Y_{i}}{x_{i}}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \frac{\beta x_{i}}{x_{i}} \\
& =\beta
\end{aligned}
$$

showing that $\frac{1}{n} \sum_{i=1}^{n} \frac{Y_{i}}{x_{i}}$ is also an unbiased estimator of β, and

$$
\begin{aligned}
\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} \frac{Y_{i}}{x_{i}}\right) & =\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(\frac{Y_{i}}{x_{i}}\right) \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} \frac{1}{x_{i}^{2}} \operatorname{Var}\left(Y_{i}\right) \\
& =\frac{\sigma^{2}}{n^{2}} \sum_{i=1}^{n} \frac{1}{x_{i}^{2}}
\end{aligned}
$$

By the Cauchy-Schwarz inequality, we know that

$$
\left(\sum_{i=1}^{n} \frac{1}{x_{i}^{2}}\right)\left(\sum_{i=1}^{n} x_{i}^{2}\right) \geq\left(\sum_{i=1}^{n} x_{i} \cdot \frac{1}{x_{i}}\right)^{2}=n^{2}
$$

and thus,

$$
\frac{\sigma^{2}}{n^{2}}\left(\sum_{i=1}^{n} \frac{1}{x_{i}^{2}}\right) \geq \frac{\sigma^{2}}{\sum_{i=1}^{n} x_{i}^{2}}
$$

i.e., $\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} \frac{Y_{i}}{x_{i}}\right) \geq \operatorname{Var}\left(\hat{\beta}_{M L E}\right)$.

Notice, however, that the variances of estimators in (b) and (c) are not comparable. That is, we cannot conclude whether $\frac{n \sigma^{2}}{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}$ or $\frac{\sigma^{2}}{n^{2}} \sum_{i=1}^{n} \frac{1}{x_{i}^{2}}$ is bigger without further information on $x_{i}, i=1, \ldots, n$. Consider the following two cases:

- Case 1: Take $x_{i}=\frac{(-1)^{i}}{\sqrt{n}}$ for $i=1, \ldots, n$ so that $\left|\sum_{i=1}^{n} x_{i}\right| \leq \frac{1}{\sqrt{n}} \rightarrow 0$ as $n \rightarrow \infty$. It implies that

$$
\operatorname{Var}\left(\frac{\sum_{i=1}^{n} Y_{i}}{\sum_{i=1}^{n} x_{i}}\right)=\frac{n \sigma^{2}}{\left(\sum_{i=1}^{n} x_{i}\right)^{2}} \geq n^{3} \sigma^{2} \rightarrow \infty \quad \text { as } n \rightarrow \infty
$$

while

$$
\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} \frac{Y_{i}}{x_{i}}\right)=\frac{\sigma^{2}}{n^{2}} \sum_{i=1}^{n} \frac{1}{x_{i}^{2}}=\sigma^{2}<\infty
$$

In this case,

$$
\operatorname{Var}\left(\frac{\sum_{i=1}^{n} Y_{i}}{\sum_{i=1}^{n} x_{i}}\right)=\frac{n \sigma^{2}}{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}>\frac{\sigma^{2}}{n^{2}} \sum_{i=1}^{n} \frac{1}{x_{i}^{2}}=\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} \frac{Y_{i}}{x_{i}}\right)
$$

- Case 2: When $x_{i}, i=1, \ldots, n$ are all positive and not identical, we can apply the Jensen's inequality to the convex function $f(u)=\frac{1}{u^{2}}$ for $u>0$ to obtain that

$$
\frac{1}{\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2}} \leq \frac{1}{n} \sum_{i=1}^{n}\left(\frac{1}{x_{i}^{2}}\right)
$$

which in turn shows that $\frac{n \sigma^{2}}{\left(\sum_{i=1}^{n} x_{i}\right)^{2}} \leq \frac{\sigma^{2}}{n^{2}} \sum_{i=1}^{n} \frac{1}{x_{i}^{2}}$. Thus, in this case, $\operatorname{Var}\left(\sum_{i=1}^{n} Y_{i} \sum_{i=1}^{n} x_{i}\right) \leq \operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} \frac{Y_{i}}{x_{i}}\right)$ and the equality does not hold when $x_{i}, i=1, \ldots, n$ are not the same.

Notes: It is WRONG to apply the Jensen's equality to the function $f(u)=\frac{1}{u^{2}}$ without restricting to \mathbb{R}^{+}, because $f(u)$ is not convex in \mathbb{R}; see Figure 1 below.

Figure 1: Plot of $\frac{1}{x^{2}}$ on $x \in[-10,10]$.
Remark 1. There are two different arguments about why $\hat{\beta}_{M L E}$ must attain the minimum variance among all the unbiased estimators:

- On the one hand, by maximizing the log-likelihood under Gaussian and homoscedastic assumptions on the errors $\epsilon_{i}, i=1, \ldots, n, \hat{\beta}_{M L E}$ coincides with the ordinary least square solution. According to GaussMarkov theorem ${ }^{1}$, $\hat{\beta}_{M L E}$ is the best linear unbiased estimator (BLUP) of β under the mean square error criterion (see Problem 2).
- On the other hand, $\hat{\beta}_{M L E}$ is a function of the two-dimensional complete and sufficient statistic for $\left(\beta, \sigma^{2}\right)$ as:

$$
\left(\sum_{i=1}^{n} Y_{i}^{2}, \sum_{i=1}^{n} x_{i} Y_{i}\right)
$$

[^0]so it is also the uniformly minimum-variance unbiased estimator (UMVUE); see Section 12.3 in Perlman [2020b].

A statistic $T(\boldsymbol{X})$ is called sufficient for θ if the conditional distribution of the sample \boldsymbol{X} given the value of $T(\boldsymbol{X})$ does not depend on θ; see Definition 6.2.1 in Casella and Berger [2002]. Also, $T(\boldsymbol{X})$ is called complete if $\mathbb{E}_{\theta} g(T)=0$ for all θ implies $\mathbb{P}_{\theta}(g(T)=0)=1$ for all θ, where \mathbb{E}_{θ} and \mathbb{P}_{θ} are taken with respect to the distribution of $T(\boldsymbol{X})$; see Definition 6.2.21 in Casella and Berger [2002]. These concepts will be discussed in detail during STAT 513.

References

G. Casella and R. Berger. Statistical Inference. Duxbury advanced series. Thomson Learning, 2nd ed. edition, 2002.
R. Hogg, J. McKean, and A. Craig. Introduction to Mathematical Statistics. Pearson Education, 7th edition, 2012.
M. Perlman. Probability and Mathematical Statistics I (STAT 512 Lecture Notes), 2020a. URL https: //sites.stat.washington.edu/people/mdperlma/STAT $\% 20512 \% 20 \mathrm{MDP} \% 20 \mathrm{Notes}$. pdf.
M. Perlman. Probability and Mathematical Statistics II (STAT 513 Lecture Notes), 2020b. URL https: //sites.stat.washington.edu/people/mdperlma/STAT\ 513\ MDP\ Notes.pdf.

[^0]: ${ }^{1}$ See https://en.wikipedia.org/wiki/Gauss-Markov_theorem

