
STAT 512: Statistical Inference Autumn 2022

Quiz Session 5: Thinning Properties
Yikun Zhang November 2, 2022

Some parts of this notes are inspired by Professor Daniela Witten’s talk with the title “Double dipping:
problems and solutions, with application to single-cell RNA-sequencing data”.

The Poisson distribution is interconnected with the binomial distribution from various aspects. One of the
most well-known connections between these two types of discrete distributions is that the Poisson distribution
can be derived as the limiting case of the binomial distribution as the number of trials goes to infinity while
the expected number of successes remains fixed. See also Example 2.3.13 in Casella and Berger [2002] and
Application 3.3.5 in Perlman [2020].

Problem 1 (Law of Rare Events). Let Xn ∼ Binomial(n, pn), where pn = λ
n for some fixed λ ∈ (0,∞).

Show that as n → ∞, Xn converges to Poisson(λ) in distribution.

Proof. Recall from Lecture 3 Notes that the moment generating function (MGF) of Xn is

MXn(t) =
[
pne

t + (1− pn)
]n

=

[
1 +

(
λ

n

)
(et − 1)

]n
→ eλ(e

t−1)

as n → ∞ and for any t ∈ (−∞,∞), where we use the fact that lim
n→∞

(
1 + 1

n

)n
= e in the limit. As

MX∞ = eλ(e
t−1) is the MGF of Poisson(λ), we conclude by Theorem 2.3.12 in Casella and Berger [2002]

that Xn converges to Poisson(λ) in distribution.

Remark 1. One can also prove the result in Problem 1 by working directly with the probability mass function
of Xn as:

P(Xn = k) =

(
n

k

)
pkn(1− pn)

n−k

=
n(n− 1) · · · (n− k + 1)

nk
· 1(

1− λ
n

)k · λ
k

k!

(
1− λ

n

)n

→ λk

k!
e−λ

as n → ∞.

Another connection between Poisson and binomial distributions is that a Poisson random variable conditional
on its sum with another independent Poisson random variable will follow a binomial distribution. Recall
from Homework 2 that if we have two random variables

X ∼ Poisson(pλ), Y ∼ Poisson ((1− p)λ)

with p ∈ (0, 1) and X,Y are independent, then we know that X + Y ∼ Poisson(λ) and the conditional
distribution of X given X + Y = n satisfies that

X|X + Y = n ∼ Binomial(n, p).

1

https://stat.uw.edu/seminars/double-dipping-problems-and-solutions-application-single-cell-rna-sequencing-data
https://stat.uw.edu/seminars/double-dipping-problems-and-solutions-application-single-cell-rna-sequencing-data
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In Problem 2 below, we will prove that the converse of the above statement also holds, i.e.,

N ∼ Poisson(λ) and X|N = n ∼ Binomial(n, p) =⇒ X ∼ Poisson(pλ) and N−X ∼ Poisson ((1− p)λ) .

This result is known as the thinning property of Poisson variables or processes; see Section 3.7.2 in Durrett
[2019] or Section 5.1 in Stoyan et al. [2013].

Problem 2 (Poisson Thinning). Suppose that a random variable N follows the Poisson distribution with
mean λ. Let Y1, Y2, ... be an i.i.d. binary sequence with P(Yi = 1) = p. Consider X = |{m ≤ N : Ym = 1}| =∑N

m=1 Ym.

(a) Show that X follows a Poisson distribution with mean λp.

(b) Show that X and N −X are independent.

(c) Calculate the (Pearson’s) correlation Cor(X,N).

More generally, we consider an i.i.d. sequence Y1, Y2, ... with P(Yi = j) = pj for j = 1, ..., k, i.e., Yi follows
a discrete distribution on {1, ..., k}. Let Nj = |{m ≤ N : Ym = j}|.

(d) Show that N1, ..., Nk are independent and Nj has a Poisson distribution with mean λpj for j = 1, ..., k.

Proof. (a) There are multiple ways to prove the thinning property, among which we only present two different
approaches.

Method A (Direct Approach): Notice that X|N = n ∼ Binomial(n, p). The probability mass function
of X is given by

P(X = x) =

∞∑
n=x

P (X = x,N = n) (Think about why the summation starts from n = x)

=

∞∑
n=x

P (X = x|N = n) · P(N = n)

=

∞∑
n=x

(
n

x

)
px(1− p)n−x · λ

n

n!
e−λ

=

∞∑
n=x

n!

(n− x)!x!
· px [(1− p)λ]

n−x · λ
x

n!
· e−λ(1−p) · e−λp

=
(λp)x

x!
· e−λp

∞∑
n=x

[(1− p)λ]
n−x

(n− x)!
· e−λ(1−p)

=
(λp)x

x!
· e−λp

∞∑
y=0

[(1− p)λ]
y

y!
· e−λ(1−p) let y = n− x

=
(λp)x

x!
· e−λp

for any integer x, showing that the marginal distribution of X is Poisson(λp).

Method B (MGF Approach): By law of total expectation, the MGF of X is given by

E exp(tX) = E
[
E
(
etX |N

)]
= E

[
(pet + 1− p)N

]
recall the MGF of Binomial(N, p)
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=

∞∑
n=0

(
pet + 1− p

)n · λ
n

n!
e−λ

= exp
[
λpet + λ(1− p)

]
· e−λ

= exp
[
λp(et − 1)

]
,

which is the MGF of Poisson(λp). The result follows.

(b) By symmetry, one can easily show that N −X follows a Poisson (λ(1− p)) distribution. Thus, for any
integers x, y, we have that

P(X = x,N −X = y) = P(X = x,N = x+ y)

= P(X = x|N = x+ y) · P(N = x+ y)

=
(x+ y)!

x! · y!
px(1− p)y · λx+y

(x+ y)!
· e−λ

=

[
(λp)x

x!
e−λp

]
·
[
(λ(1− p))y

y!
e−λ(1−p)

]
= P(X = x) · P(N −X = y).

Hence, X and N −X are independent.

(c) By direct calculations, we have that

Cov(X,N) = E(XN)− E(X) · E(N)

= E [N · E(X|N)]− λp · λ
= E(N2p)− pλ2

= p(λ+ λ2)− pλ2

= pλ.

Hence, the correlation between X and N is

Cor(X,N) =
Cov(X,N)√

Var(X) ·Var(N)

=
pλ√
pλ · λ

=
√
p.

(d) Notice that Nj |N = n ∼ Binomial(n, pj), because Nj =
∑N

m=1 1{Ym=j}. One can follow the derivations
in (a) to show that Nj ∼ Poisson(λpj) for j = 1, ..., k. To prove that N1, ..., Nk are independent, we again
exploit the joint probability mass function of (N1, ..., Nk) and argue that

P(N1 = n1, ..., Nk = nk)

= P

(
N1 = n1, ..., Nk = nk

∣∣N =

k∑
i=1

ni

)
· P

(
N =

k∑
i=1

ni

)

= P

(
N1 = n1, ..., Nk−1 = nk−1

∣∣N =

k∑
i=1

ni, Nk = nk

)
· P

(
Nk = nk

∣∣N =

k∑
i=1

ni

)
· P

(
N =

k∑
i=1

ni

)

=

k−1∏
j=1

P

(
Nj = nj

∣∣N =

k∑
i=1

ni, Nk = nk, ..., Nj+1 = nj+1

)
· P

(
Nk = nk

∣∣N =

k∑
i=1

ni

)
· P

(
N =

k∑
i=1

ni

)
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=
λ

k∑
i=1

ni(
k∑

i=1

ni

)
!

· e−λ ·
( k∑

i=1

ni

nk

)
pnk

k (1− pk)

k−1∑
i=1

ni

·
k−1∏
j=1

( j∑
i=1

ni

nj

) pj

1−
k∑

i=j+1

pi


nj
1− pj

1−
k∑

i=j+1

pi


∑j−1

i=1 ni

=

k∏
j=1

(λpj)
nj

nj !
e−λpj

=

k∏
j=1

P(Nj = nj),

where we note that P
(
N1 = n1

∣∣N =
∑k

i=1 ni, Nk = nk, ..., N2 = n2

)
= 1 in the third equality and use the

conditional distribution of multinomials (see Lecture 7 notes) to obtain that

Nj

∣∣∣(N =

k∑
i=1

ni, Nk = nk, ..., Nj+1 = nj+1

)
∼ Binomial

(
j∑

i=1

ni,
pj

1−
∑k

i=j+1 pi

)
in the fourth equality. The result follows.

Remark 2. The thinning property of Poisson distributions is particular useful when we analyze the count
data. For instance, in the analysis of single-cell RNA sequencing data, we have a mapping data matrix
X ∈ Rn×p for the reads from n cells to p genes, where each entry Xij ∈ N of X is the number of reads
from ith cell that is mapped to the jth gene [Neufeld et al., 2022]. To split the matrix X ∈ Rn×p with count
data entries into two independent matrices Xtrain,Xtest ∈ Rn×p under the Poisson assumption on Xij for
all i = 1, ..., n, j = 1, ..., p, one can leverage the thinning property and implement the following “counting
splitting” procedures for all i = 1, ..., n, j = 1, ..., p:

1. Draw Xtrain
ij |Xij

ind.∼ Binomial(Xij , ϵ);

2. Take Xtest
ij = Xij −Xtrain

ij .

Here, ϵ ∈ (0, 1) is some tuning parameter controlling the sample size of Xtrain and its correlation with
the original data matrix X, which is

√
ϵ (recall Problem 2 (c)). By our results in Problem 2, Xtrain

ij ∼
Poisson(ϵΓij), Xij ∼ Poisson ((1− ϵ)Γij) and they are independent when Xij ∼ Poisson(Γij) for all i =
1, ..., n, j = 1, ..., p. This procedure is particularly useful when only one data matrix X ∈ Rn×p is available
for the tasks of both model estimation and hypothesis testing (or sometimes called post-selection inference
[Berk et al., 2013]). While using the same data X for model selection and hypothesis testing (also known
as “double dipping” [Kriegeskorte et al., 2009]) fails to control the Type-I error in the inference step, the
independence between Xtrain and Xtest enables researchers to fit the model (or estimate the parameters) on
Xtrain and carry out hypothesis testing on Xtest, leading to a valid p-value. More details can be found in
Neufeld et al. [2022].

However, Poisson distribution is not the only probability distribution that embraces the thinning property.
In the sequel, we will study a similar thinning property for negative binomial (or Pascal) distribution1. Recall
from Homework 3 (Exercise 2.38 in Casella and Berger 2002) that Y ∼ NegBinomial(r, p) has its probability
mass function as:

P(Y = y) =

(
r + y − 1

y

)
pr(1− p)y

for y = 0, 1, ..., where 0 < p < 1 and r is a positive integer. It characterizes the number of observed failures Y
before encountering the rth success of a sequence of binary trials with the probability of success as p. Notice
that the geometric distribution is a special case of the negative binomial distribution as NegBinomial(1, p).

1See https://en.wikipedia.org/wiki/Negative_binomial_distribution

https://en.wikipedia.org/wiki/Negative_binomial_distribution
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Before introducing the thinning property of the negative binomial distribution, we discuss the connections
between negative binomial and Poisson distributions.

Problem 3. Recall that a Gamma(α, γ) distribution has a density function as f(x) = γα

Γ(α)x
α−1e−γx with

x > 0.

(a) Assume that Y |Λ ∼ Poisson(Λ) and Λ ∼ Gamma
(
r, r

µ

)
. Show that the marginal distribution of Y

follows a NegBinomial(r, p) distribution with p = r
r+µ .

(b) Show that the negative binomial distribution NegBinomial
(
r, r

r+λ

)
converges in distribution to Poisson(λ)

when r → ∞.

(c) Calculate the mean and variance of the negative binomial distribution NegBinomial(r, p). Does its
variance larger or smaller than its mean?

Proof. (a) We compute the probability mass function of Y by integrating out the prior Λ as:

P(Y = y) =

∫ ∞

0

λy

y!
e−λ · (r/µ)

r

Γ(r)
λr−1e−

rλ
µ dλ

=
(r/µ)r

y! · Γ(r)

∫ ∞

0

λy+r−1e−(1+
r
µ )λdλ

=
(r/µ)r

y! · Γ(r)

∫ ∞

0

(
µ

µ+ r

)y+r

vy+r−1e−vdv by v =

(
µ+ r

r

)
λ

=
Γ(y + r)

y! · Γ(r)

(
r

µ

)r (
µ

µ+ r

)y+r

=

(
y + r − 1

y

)(
r

µ+ r

)r (
µ

µ+ r

)y

for any y = 0, 1, ....

(b) In Homework 3 (Exercise 2.38 in Casella and Berger 2002), we already compute the MGF of Y ∼
NegBinomial (r, p) as

MY (t) = E exp(tY )

=

∞∑
y=0

ety
(
r + y − 1

y

)
pr(1− p)y

= pr
∞∑
y=0

(
r + y − 1

y

)[
(1− p)et

]y
= pr

[
1− (1− p)et

]−r

=

[
p

1− (1− p)et

]r
when t < log

(
1

1−p

)
, where we use the fact that

∑∞
y=0

(
r+y−1

y

)
(1− p)y = p−r to obtain the fourth equality.

Thus, when p = r
λ+r , the MGF of Y ∼ NegBinomial

(
r, r

λ+r

)
becomes

MY (t) =

 r
r+λ

1−
(

r
r+λ

)
et

r
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=

[
r

r + λ(1− et)

]r
=

[
1− λ(1− et)

r + λ(1− et)

]r
→ exp

[
λ(et − 1)

]
as r → ∞, where the range of t is

(
−∞, log

(
1 + r

λ

))
→ (−∞,∞) at the same time. Since exp [λ(et − 1)] with

t ∈ (−∞,∞) is the MGF of Poisson(λ), we conclude that NegBinomial
(
r, r

λ+r

)
converges in distribution to

Poisson(λ) as r → ∞.

Another method for arguing this convergence in distribution is to work directly with the probability mass

function of NegBinomial
(
r, r

λ+r

)
as

P(Y = y) =

(
r + y − 1

y

)(
r

r + λ

)r (
λ

r + λ

)y

=
λy

y!
· (r + y − 1) · · · (r + 1)r

(r + λ)y
·
(

1

1 + λ/r

)r

→ λy

y!
· 1 · e−λ,

which is the probability mass function of Poisson(λ).

(c) According to the MGF of Y ∼ NegBinomial(r, p), we know that

d

dt
MY (t) =

rpr(1− p)et

[1− (1− p)et]
r+1 and

d2

dt2
MY (t) =

rpr(1− p)et [1 + r(1− p)et]

[1− (1− p)et]
r+2 .

By the property of MGF, we obtain that

E(Y ) =
d

dt
MY (t)

∣∣∣
t=0

=
r(1− p)

p
and E(Y 2) =

d2

dt2
MY (t)

∣∣∣
t=0

=
r(1− p) [1 + r(1− p)]

p2
.

Hence, Var(Y ) = E(Y 2)− (EY )
2
= r(1−p)

p2 , which is larger than its mean when p ∈ (0, 1).

Remark 3. Different from the Poisson distribution, whose mean is always equal to its variance, the negative
binomial distribution has its variance larger than its mean. This property of the negative binomial distribution
can be utilized to model the overdispersion in the Poisson-based model [Gardner et al., 1995], where the sample
variance exceeds the sample mean given the observational data.

There are some recent studies [Neufeld et al., 2023] about the “count splitting” procedure when each entry of
the data matrix X ∈ Rn×p does not follow the Poisson distribution but the negative binomial distribution.
We will demonstrate through Problem 4 that sampling Xtrain

ij via the binomial distribution from the original

count data Xij for i = 1, ..., n, j = 1, ..., p cannot guarantee the independence between Xtrain
ij and Xtest

ij =

Xij −Xtrain
ij . Instead, the thinning property of the negative binomial distribution appears when we sample

from Xtrain
ij from a beta-binomial distribution; see also Joe [1996].

Problem 4. Assume that Z|P ∼ Binomial(n, P ) and P ∼ Beta(α, β) for α, β > 0.

(a) Show that the marginal distribution of Z follows a BetaBinomial(n, α, β) distribution with its probability
mass function as:

P(Z = z) =

(
n

z

)
B(z + α, n− z + β)

B(α, β)
,

where B(α, β) = Γ(α)Γ(β)
Γ(α+β) =

∫ 1

0
xα−1(1− x)β−1dx is a Beta function2.

2See https://en.wikipedia.org/wiki/Beta_function.

https://en.wikipedia.org/wiki/Beta_function
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(b) Consider X|Y ∼ Binomial(Y, ϵ) and Y ∼ NegBinomial(r, p) for some ϵ ∈ (0, 1). Calculate the (Pear-
son’s) correlation Cor(X,Y −X). Are X and Y −X independent?

(c) Suppose again that Y ∼ NegBinomial(r, p). If Z|Y ∼ BetaBinomial (Y, ϵr, (1− ϵ)r) for some ϵ ∈ (0, 1),
show that Z ∼ NegBinomial(ϵr, p), Y − Z ∼ NegBinomial ((1− ϵ)r, p) and Z, Y − Z are independent.

Proof. (a) Recall from Homework 4 (Exercise 4.36 in Casella and Berger 2002) that we have derived the
mean and variance of this compound distribution for Z via laws of total expectation and variance. Indeed,
the marginal distribution of Z is tractable and we calculate it by integrating out P as:

P(Z = z) =

∫ 1

0

(
n

z

)
pz(1− p)n−z · 1

B(α, β)
pα−1(1− p)β−1dp

=

(
n

z

)
1

B(α, β)

∫ 1

0

pz+α−1(1− p)n−z+β−1dp

=

(
n

z

)
B(z + α, n− z + β)

B(α, β)
.

(b) By law of total variance, we calculate that

Var(X) = E [Var(X|Y )] + Var [E(X|Y )]

= E [Y ϵ(1− ϵ)] + Var(ϵY )

= ϵ(1− ϵ)
r(1− p)

p
+

ϵ2r(1− p)

p2
,

where we use the fact that X|Y ∼ Binomial(Y, ϵ) and results in Problem 3 (c). By symmetry, we know that

Var(Y −X) = ϵ(1 − ϵ) r(1−p)
p + (1−ϵ)2r(1−p)

p2 . By the formula in Section 4.2 in Lecture 4 notes, we compute
that

Cov(X,Y −X) = Cov(X,Y )−Var(X)

= Cov (E[X|Y ], Y )−Var(X)

= Cov(ϵY, Y )−Var(X)

= ϵ · r(1− p)

p2
− ϵ(1− ϵ)

r(1− p)

p
− ϵ2r(1− p)

p2

=
ϵ(1− ϵ)r(1− p)2

p2
.

Finally, the correlation between X and Y −X is

Cor(X,Y −X) =
Cov(X,Y −X)√
Var(X) ·Var(Y )

=

ϵ(1−ϵ)r(1−p)2

p2√
r(1−p)ϵ

p

(
1− ϵ+ ϵ

p

)
· r(1−p)(1−ϵ)

p

(
ϵ+ 1−ϵ

p

)
=

(1− p)
√

ϵ(1− ϵ)

p

√(
1− ϵ+ ϵ

p

)(
ϵ+ 1−ϵ

p

) > 0

when ϵ, p ∈ (0, 1). Hence, X and Y −X are not independent.
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(c) Given that the MGF of a beta-binomial distribution is of the form of a hypergeometric function and will
be intractable to work with, we derive the distribution of Z from its probability mass function as:

P(Z = z) =

∞∑
y=z

(
y

z

)
B (z + ϵr, y − z + (1− ϵ)r)

B (ϵr, (1− ϵ)r)
·
(
r + y − 1

y

)
pr(1− p)y note that we sum over y from z

=

∞∑
y=z

y!

z!(y − z)!
· Γ(ϵr + z) · Γ (y − z + (1− ϵ)r) · Γ(r)

Γ(y + r) · Γ(ϵr) · Γ ((1− ϵ)r)
· Γ(r + y)

y! · Γ(r)
pr(1− p)y

=
Γ(ϵr + z)

Γ(ϵr) · Γ ((1− ϵ)r) · z!

∞∑
y=z

Γ (y − z + (1− ϵ)r)

(y − z)!
pr(1− p)y

=
Γ(ϵr + z)

Γ(ϵr) · Γ ((1− ϵ)r) · z!

∞∑
x=0

Γ (x+ (1− ϵ)r)

x!
pr(1− p)x+z

=
Γ(ϵr + z)

Γ(ϵr) · z!
· pϵr(1− p)z

∞∑
x=0

(
x+ (1− ϵ)r − 1

x

)
p(1−ϵ)r(1− p)x︸ ︷︷ ︸

Summation over the PMF of NegBinomial((1−ϵ)r,p)

=

(
z + ϵr − 1

z

)
· pϵr(1− p)z,

which is the probability mass function (PMF) of NegBinomial(ϵr, p) distribution. Notice that we make
extensive use of the equality Γ(α+1) = α! in our derivations. Likewise, one can follow the above argument to
show that the marginal distribution of Y −Z is NegBinomial ((1− ϵ)r, p). Finally, to prove the independence
of Z and Y − Z, we compute that

P(Z = z, Y − Z = x) = P(Z = z, Y = x+ z)

= P(Z = z|Y = x+ z) · P(Y = x+ z)

=

(
x+ z

z

)
B (z + ϵr, x+ (1− ϵ)r)

B (ϵr, (1− ϵ)r)
·
(
r + x+ z − 1

x+ z

)
pr(1− p)x+z

=
(x+ z)!

x!z!
· Γ(z + ϵr) · Γ (x+ (1− ϵ)r) · Γ(r)
Γ(z + x+ r) · Γ(ϵr) · Γ ((1− ϵ)r)

· Γ(r + x+ z)

(x+ z)! · Γ(r)
· pr(1− p)x+z

=
Γ(z + ϵr) · Γ (x+ (1− ϵ)r)

z!x! · Γ(ϵr) · Γ ((1− ϵ)r)
· pϵrp(1−ϵ)r(1− p)x(1− p)z

=

(
z + ϵr − 1

z

)
pϵr(1− p)z ·

(
x+ (1− ϵ)r − 1

x

)
p(1−ϵ)r(1− p)x

= P(Z = z) · P(Y − Z = x).

It demonstrates that Z and Y − Z are independent.

Remark 4. According to our results in Problem 4, if each entry Xij of the count data matrix X ∈ Rn×p

is assumed to follow a NegBinomial(r, p) distribution, one can still split it into two independent matrices
Xtrain,Xtest ∈ Rn×p by the following procedures for i = 1, ..., n, j = 1, ..., p and ϵ ∈ (0, 1) as:

1. Draw Xtrain
ij |Xij

ind.∼ BetaBinomial (Xij , ϵr, (1− ϵ)r);

2. Take Xtest
ij = Xij −Xtrain

ij .

This “negative binomial count splitting” procedure is applicable to the overdispersed count data ( i.e., when the
sample variance exceeds the sample mean) and facilitates the model estimation and post-selection inference
on two independent pieces of the original data.
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