Quiz Session 4: Practice Midterm Problems

Yikun Zhang

The following problems are partially adopted from quiz sessions developed by Zhen Miao and Apara Venkat for STAT 512 in Autumn 2021.

Problem 1 (Expectation of a Positive Random Variable). Suppose X is a positive random variable with finite expectations, i.e., $\mathbb{E}(X)<\infty$. Show that $\mathbb{E}(X)=\int_{0}^{\infty} \mathbb{P}(X>x) d x$.

Proof. We start from the definition of $\mathbb{E}(X)$ and compute that

$$
\begin{aligned}
\mathbb{E}(X) & =\mathbb{E} \int_{0}^{X} d t \\
& =\mathbb{E}\left(\int_{0}^{\infty} \mathbb{1}_{\{y \leq X\}} d y\right) \\
& =\int_{0}^{\infty}\left(\mathbb{E}\left[\mathbb{1}_{\{y \leq X\}}\right]\right) d y \\
& =\int_{0}^{\infty} \mathbb{P}(X>y) d y
\end{aligned}
$$

The result follows.

Problem 2 (Tail Bound for a Standard Normal Distribution). Suppose Z is a standard normal random variable with $z \mapsto \phi(z)=\frac{1}{\sqrt{2 \pi}} \exp \left(-z^{2} / 2\right)$ as its density function.
(a)Show $\phi^{\prime}(z)+z \cdot \phi(z)=0$.
(b) Use (a) to prove

$$
P(Z \geq z) \leq \frac{\phi(z)}{z} \text { for all } z>0
$$

Proof. (a) It follows from $\phi^{\prime}(z)=\frac{1}{\sqrt{2 \pi}} \exp \left(-z^{2} / 2\right) \cdot \frac{d}{d z}\left(-z^{2} / 2\right)=-z \phi(z)$ that $\phi^{\prime}(z)+z \phi(z)=0$.
(b) To bound $P(Z \geq z)$, note that

$$
\begin{aligned}
P(Z \geq z) & =\int_{z}^{\infty} \phi(x) d x \\
& =\int_{z}^{\infty}-\frac{\phi^{\prime}(x)}{x} d x \\
& =\int_{z}^{\infty}-\frac{1}{x} d \phi(x) \\
& =-\left.\frac{\phi(x)}{x}\right|_{z} ^{\infty}-\int_{z}^{\infty} \frac{\phi(x)}{x^{2}} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\phi(z)}{z}-\int_{z}^{\infty} \frac{\phi(x)}{x^{2}} d x \\
& \leq \frac{\phi(z)}{z}
\end{aligned}
$$

The result follows.

Problem 3. Let $X \sim \operatorname{Uniform}(0, \pi / 2)$ and $\gamma>0$ be a constant. Define $Y=\gamma \tan (X)$. Find the distribution of Y and $\mathbb{E}(Y)$.

Solution. Consider the CDF of Y as

$$
\begin{aligned}
\mathbb{P}(Y \leq y) & =\mathbb{P}(\gamma \tan (X) \leq y) \\
& =\mathbb{P}\left(X \leq \arctan \left(\frac{y}{\gamma}\right)\right) \\
& =\frac{2}{\pi} \arctan \left(\frac{y}{\gamma}\right)
\end{aligned}
$$

when $\arctan \left(\frac{y}{\gamma}\right) \in\left(0, \frac{\pi}{2}\right)$, or equivalently, $y \in(0, \infty)$. It implies that the PDF of Y is

$$
f_{Y}(y)=\frac{d}{d y} \mathbb{P}(Y \leq y)=\frac{2}{\pi}\left(\frac{\gamma}{\gamma^{2}+y^{2}}\right)
$$

with $y \in(0, \infty)$, which has a form as the Cauchy distribution.
Notes: you can also obtain the same answer by using Theorem 2.1 in Lecture 2 notes.
Remark 1. Different from the usual Cauchy distribution with $(-\infty, \infty)$, the mean/expectation of Y does exist but is infinite, because

$$
\mathbb{E}(Y)=\int_{0}^{\infty} \frac{2}{\pi}\left(\frac{\gamma y}{\gamma^{2}+y^{2}}\right) d y=\left.\frac{\gamma}{\pi} \log \left(\gamma^{2}+y^{2}\right)\right|_{0} ^{\infty}=\infty-\frac{2 \gamma}{\pi} \log \gamma=\infty
$$

However, if we assume that $X \sim \operatorname{Uniform}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $Y=\gamma \tan (X)$ with $\gamma>0$, then the PDF of Y becomes

$$
\tilde{f}_{Y}(y)=\frac{1}{\pi}\left(\frac{\gamma}{\gamma^{2}+y^{2}}\right)
$$

with $y \in(-\infty, \infty)$. In this case, Y follows the standard Cauchy distribution with scale parameter γ and its mean does not exist (or is undefined), because both integrals are infinite but with a different sign:

$$
\int_{-\infty}^{0} \frac{1}{\pi}\left(\frac{\gamma y}{\gamma^{2}+y^{2}}\right) d y=-\infty \quad \text { and } \quad \int_{0}^{\infty} \frac{1}{\pi}\left(\frac{\gamma y}{\gamma^{2}+y^{2}}\right) d y=\infty
$$

Nevertheless, the even-powered raw moments $\mathbb{E}|Y|^{k}$ with k being an even integer exist but are infinite.

Problem 4 (2017 MS Theory Exam). Let $X \sim \operatorname{Exponential}(\lambda), \lambda>0$. Suppose that we only observe the fractional parts

$$
Y=X-\lfloor X\rfloor,
$$

where $\lfloor x\rfloor$ is the largest integer that is smaller than x. For example, if $X=5.6$, then you observe $Y=0.6$ and if $X=5$, then you observe $Y=0$. Note that $Y \in[0,1)$. What is the distribution of each Y ?
Hint: What are all the possible values of X when $Y=y$?

Solution. Notice that when $Y=y$, then X should be equal to either one of $y, 1+y, 2+y, \ldots$, because $y \in[0,1)$ and $X-Y$ must be an integer.

Now, consider the CDF of Y and calculate that

$$
\begin{aligned}
\mathbb{P}(Y \leq y) & =P(0 \leq X \leq y)+P(1 \leq X \leq 1+y)+P(2 \leq X \leq 2+y)+\ldots \\
& =\sum_{k=0}^{\infty} P(k \leq X \leq k+y) \\
& =\sum_{k=0}^{\infty} \int_{k}^{k+y} \lambda e^{-\lambda x} d x \\
& =\sum_{k=0}^{\infty} e^{-\lambda k}-e^{-\lambda(k+y)} \\
& =\sum_{k=0}^{\infty} e^{-\lambda k}\left(1-e^{-\lambda y}\right) \\
& =\left(1-e^{-\lambda y}\right) \sum_{k=0}^{\infty} e^{-\lambda k}
\end{aligned}
$$

The summation is a geometric series. (Recall that $|a|<1$, then $\sum_{r=0}^{\infty} a^{r}=\frac{1}{1-a}$.) Here, $a=e^{-\lambda}$. Therefore, the CDF of Y is

$$
\mathbb{P}(Y \leq y)=\frac{1-e^{-\lambda y}}{1-e^{-\lambda}}
$$

whose corresponding PDF is $f_{Y}(y)=\frac{\lambda e^{-\lambda y}}{1-e^{-\lambda}}$ with $y \in[0,1)$. Thus, Y indeed follows a truncated exponential distribution to $[0,1)$.

Problem 5 (Poisson-Gamma). Let $X \sim \operatorname{Poisson}(\Lambda)$, where $\Lambda \sim \operatorname{Gamma}(\alpha, \beta)$. Find the distribution of $\Lambda \mid X=x$ and the posterior mean $\mathbb{E}(\Lambda \mid X=x)$.

Reminders: The PMF of $X \sim$ Poisson (λ) is $\mathbb{P}(X=x)=\frac{\lambda^{x}}{x!} e^{-\lambda}$, and the PDF of $\Lambda \sim \operatorname{Gamma}(\alpha, \beta)$ is $f_{\Lambda}(\lambda)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta \lambda}$.

Solution. By Bayes' rule, the conditional PDF of $\Lambda \mid X=x$ is given by

$$
\begin{aligned}
p(\lambda \mid x) & =\frac{p(x \mid \lambda) \cdot p(\lambda)}{p(x)} \\
& \propto p(x \mid \lambda) \cdot p(\lambda) \\
& =\frac{\lambda^{x}}{x!} e^{-\lambda} \cdot \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta \lambda} \\
& \propto \lambda^{x+\alpha-1} e^{-\lambda(\beta+1)},
\end{aligned}
$$

where we drop all the constants (including the factors that only depend on x) in the last step. Thus, the PDF of $\Lambda \mid x$ is of the form

$$
p(\lambda \mid x)=K \cdot \lambda^{x+\alpha-1} e^{-\lambda(\beta+1)}
$$

where K is the normalizing constant such that $\int_{\lambda} p(\lambda \mid x) d \lambda=1$. Thus, we show that

$$
\Lambda \mid X=x \sim \operatorname{Gamma}(x+\alpha, 1+\beta)
$$

Finally, the posterior mean $\mathbb{E}(\Lambda \mid X=x)$ is given by

$$
\begin{aligned}
\mathbb{E}(\Lambda \mid X=x) & =\int_{0}^{\infty} \lambda \cdot \frac{(1+\beta)^{\alpha+x}}{\Gamma(\alpha+x)} \lambda^{\alpha+x-1} e^{-(\beta+1) \lambda} d \lambda \\
& =\frac{\Gamma(\alpha+x+1)}{\Gamma(\alpha+x) \cdot(1+\beta)} \underbrace{\int_{0}^{\infty} \frac{(1+\beta)^{\alpha+x+1}}{\Gamma(\alpha+x+1)} \lambda^{\alpha+x+1-1} e^{-(\beta+1) \lambda} d \lambda}_{\operatorname{PDF} \text { of } \operatorname{Gamma}(x+\alpha+1, \beta+1)} \\
& =\frac{\alpha+x}{\beta+1} .
\end{aligned}
$$

The results follow.
Remark 2. Notice that the prior PDF $p(\lambda)$ and the posterior PDF $p(\lambda \mid x)$ belong to the same distribution family. In this case, we call it a conjugate prior and say that, "the conjugate prior of the Poisson distribution is the gamma distribution."

Problem 6 (Summation of Independent Gamma Random Variables). Let X_{1}, \ldots, X_{n} be independently distributed variables such that $X_{i} \sim \operatorname{Gamma}\left(\alpha_{i}, \beta\right)$. What is the distribution of $T=\sum_{i=1}^{n} X_{i}$?
You may use the fact that the MGF of $X \sim \operatorname{Gamma}(a, b)$ is $M_{X}(t)=\left(1-\frac{t}{b}\right)^{a}$ where $t<b$.
Solution: An easy way to solve this is by using moment generating functions. We know the MGF of X_{i} is

$$
\begin{aligned}
M_{X_{i}}(t) & =\mathbb{E}\left[e^{t X_{i}}\right] \\
& =\left(1-\frac{t}{\beta}\right)^{-\alpha_{i}}, \quad t<\beta \quad \quad \text { (can you show this?) }
\end{aligned}
$$

We know that all X_{i} are independent. Therefore,

$$
\begin{aligned}
M_{T}(t) & =M_{\sum_{i=1}^{n} X_{i}}(t) \\
& =\mathbb{E}\left[e^{t \sum_{i=1}^{n} X_{i}}\right] \\
& =\mathbb{E}\left[\prod_{i=1}^{n} e^{t X_{i}}\right] \\
& =\prod_{i=1}^{n} \mathbb{E}\left[e^{t X_{i}}\right] \\
& =\prod_{i=1}^{n}\left(1-\frac{t}{\beta}\right)^{-\alpha_{i}}, \quad t<\beta \\
& =\left(1-\frac{t}{\beta}\right)^{-\sum_{i=1}^{n} \alpha_{i}}, \quad t<\beta
\end{aligned}
$$

Given that MGFs uniquely determine the distribution, we conclude that $\sum_{i=1}^{n} X_{i} \sim \operatorname{Gamma}\left(\sum_{i=1}^{n} \alpha_{i}, \beta\right)$.

Exercise. Can you arrive at the same result by deriving the CDFs of $\sum_{i=1}^{n} X_{i}$?
Hint: Start with $X_{1}+X_{2}$. Then use induction to complete the argument.

Problem 7 (Acceptance-Rejection Sampling). How can we sample $X \sim F$ with F being a distribution that has a closed-form PDF f ?

Assume that we can sample $U \sim \operatorname{Unif}(0,1)$ infinitely many times. Also, assume that we can sample $Y \sim G$ infinitely many times, where G is a known distribution with density g whose support will include the support of F. Note that X, Y, U are all independent of each other.
Define c to be a fixed constant such that $c \geq \sup _{x} \frac{f(x)}{g(x)}$, where $c \in[1, \infty)$ and we generally want c to be as close as possible to 1. (To see why, look at part (a).) The algorithm is as follows

1. Generate $Y \sim G$.
2. Generate $U \sim \operatorname{Unif}(0,1)$.
3. If $U \leq \frac{f(Y)}{c \cdot g(Y)}$, then "accept" $X:=Y$.
4. Else, "reject" and go back to step 1.
(a) What is the probability that we accept?
(b) Let N be the number of iterative times until an X is accepted. What is the distribution of N ? On average, how many iterative times will be until we accept an X ?
(c) Show that the accepted values indeed come from distribution F.

Hint: What is the distribution of the accepted values in Step 3?

Solution. (a) First, we look at the conditional probability as

$$
\begin{aligned}
\mathbb{P}\left(\left.U \leq \frac{f(Y)}{c \cdot g(Y)} \right\rvert\, Y=y\right) & =\mathbb{P}\left(U \leq \frac{f(y)}{c \cdot g(y)}\right) \\
& =\frac{f(y)}{c \cdot g(y)}
\end{aligned}
$$

Then, the probability of acceptance is

$$
\begin{aligned}
\mathbb{P}(\text { "Accept" }) & =\mathbb{P}\left(U \leq \frac{f(Y)}{c \cdot g(Y)}\right) \\
& =\int_{y=-\infty}^{\infty} \mathbb{P}\left(\left.U \leq \frac{f(Y)}{c \cdot g(Y)} \right\rvert\, Y=y\right) g(y) d y \\
& =\int_{y=-\infty}^{\infty} \frac{f(y)}{c \cdot g(y)} g(y) d y \\
& =\frac{1}{c} \int_{y=-\infty}^{\infty} f(y) d y \\
& =\frac{1}{c}
\end{aligned}
$$

(b) By definition, this is a geometric distribution with probability of success as $p:=\frac{1}{c}$ (think about it). In particular, $\mathbb{P}(N=n)=(1-p)^{n-1} p$ where $n=0,1, \ldots$ The expectation of N is

$$
\mathbb{E}(N)=\sum_{n=0}^{\infty} n(1-p)^{n-1} p=\frac{1}{p}=c
$$

where we recall the diagnostic exercise 2 of Quiz 1 to obtain the second equality.
(c) The distribution of accepted values is a conditional distribution, $Y \left\lvert\, U \leq \frac{f(Y)}{c \cdot g(Y)}\right.$. Let us show that this is the same as F.

$$
\begin{aligned}
\mathbb{P}\left(Y \leq y \left\lvert\, U \leq \frac{f(Y)}{c \cdot g(Y)}\right.\right) & =\frac{\mathbb{P}\left(\left.U \leq \frac{f(Y)}{c \cdot g(Y)} \right\rvert\, Y \leq y\right) \cdot \mathbb{P}(Y \leq y)}{\mathbb{P}\left(U \leq \frac{f(Y)}{c \cdot g(Y)}\right)} \\
& =\frac{\mathbb{P}\left(\left.U \leq \frac{f(Y)}{c \cdot g(Y)} \right\rvert\, Y \leq y\right) \cdot G(y)}{\frac{1}{c}}
\end{aligned}
$$

The probability in the numerator is slightly tricky.

$$
\mathbb{P}\left(\left.U \leq \frac{f(Y)}{c \cdot g(Y)} \right\rvert\, Y \leq y\right)=\frac{\mathbb{P}\left(U \leq \frac{f(Y)}{c \cdot g(Y)}, Y \leq y\right)}{P(Y \leq y)}
$$

and

$$
\begin{aligned}
\mathbb{P}\left(U \leq \frac{f(Y)}{c \cdot g(Y)}, Y \leq y\right) & =\int_{-\infty}^{\infty} \mathbb{P}\left(U \leq \frac{f(Y)}{c \cdot g(Y)}, Y \leq y \mid Y=t\right) g(t) d t \\
& =\int_{-\infty}^{\infty} \mathbb{P}\left(U \leq \frac{f(y)}{c \cdot g(y)}, t \leq y\right) g(t) d t \\
& =\int_{-\infty}^{\infty} \mathbb{P}\left(U \leq \frac{f(y)}{c \cdot g(y)}\right) \cdot \mathbb{1}_{\{t \leq y\}} \cdot g(t) d t \\
& =\int_{-\infty}^{y} \mathbb{P}\left(U \leq \frac{f(Y)}{c \cdot g(Y)}\right) g(t) d t \\
& =\int_{-\infty}^{y} \frac{f(t)}{c \cdot g(t)} g(t) d t \\
& =\frac{1}{c} \int_{-\infty}^{y} f(t) d t \\
& =\frac{F(y)}{c}
\end{aligned}
$$

which implies that $\mathbb{P}\left(\left.U \leq \frac{f(Y)}{c \cdot g(Y)} \right\rvert\, Y \leq y\right)=\frac{F(y)}{c \cdot G(y)}$. Finally,

$$
\begin{aligned}
\mathbb{P}\left(Y \leq y \left\lvert\, U \leq \frac{f(Y)}{c \cdot g(Y)}\right.\right) & =\frac{\frac{F(y)}{c \cdot G(y)} \cdot G(y)}{\frac{1}{c}} \\
& =F(y)
\end{aligned}
$$

which was the target distribution.
Remark 3. The interested readers can be referred to http://www. columbia. edu/~ks20/4703-Sigman/ 4703-07-Notes-ARM. pdf for more discussion about acceptance-rejection methods.

