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Problem 1. Suppose that a sequence of random variables {Xn}∞n=1 and X are defined on the same probability
space (Ω,F ,P). Consider the following types of convergence:

(i) Xn converge to X almost surely (or with probability 1) as n→∞, i.e.,

P
(
{ω : lim

n→∞
Xn(ω) = X(ω)}

)
= 1.

(ii) Xn converge to X in probability as n→∞, i.e., for any ε > 0,

lim
n→∞

P (|Xn −X| > ε) = 0.

(iii) Xn converge to X in Lp-norm as n→∞, i.e.,

lim
n→∞

E (|Xn −X|p) = 0,

provided that the p-th absolute moments E|Xn|p and E|X|p of Xn, n = 1, 2, ... and X exist. When p = 1, it
reduces to the convergence in (absolute) expectation.

(iv) Xn converge to X in distribution as n→∞, i.e., the cumulative distribution functions (CDFs) F1, F2, ...
of X1, X2, ... converge to the CDF F of X in the sense that

lim
n→∞

Fn(x) = F (x)

for every x ∈ R at which F is continuous.

For each ordered pair of conditions (there are 12 ordered pairs), determine whether the first condition in the
pair implies the other. Give a proof if yes. Give a counterexample if not.

Solution. The true implications between different types of convergence are

(i) ⇒ (ii) ⇒ (iv)
⇑

(iii)
.

We prove these implications and provide counterexamples for others.

(i) ⇒ (ii): If Xn → X almost surely, then P
(
{ω : lim

n→∞
Xn(ω) = X(ω)}

)
= 1. By definition, it can also be

expressed as

P

( ∞⋃
N=1

∞⋂
n=N

{ω : |Xn(ω)−X(ω)| ≤ ε}

)
= 1, for all ε > 0.

Equivalently, it indicates that P
( ∞⋂
N=1

∞⋃
n=N

{ω : |Xn(ω)−X(ω)| > ε}
)

= 0 for any ε > 0. By the continuity

of measure P (recall Lecture 1 notes), we know that

P

( ∞⋂
N=1

∞⋃
n=N

{ω : |Xn(ω)−X(ω)| > ε}

)
= lim
N→∞

P

( ∞⋃
n=N

{ω : |Xn(ω)−X(ω)| > ε}

)
= 0.

1
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Since {ω : |XN (ω)−X(ω)| > ε} ⊂
∞⋃
n=N

{ω : |Xn(ω)−X(ω)| > ε},

lim
N→∞

P ({ω : |XN (ω)−X(ω)| > ε}) ≤ lim
N→∞

P

( ∞⋃
n=N

{ω : |Xn(ω)−X(ω)| > ε}

)
= 0

for any ε > 0. Thus, XN converge to X in probability as N →∞.

(ii) ; (i): Counterexample A: For a probability space (Ω,B, P ), where Ω = (0, 1], B is the Borel set in
(0, 1], and P is the Lebesgue measure, we consider a sequence of random variables

Yki(ω) =

{
1, if ω ∈ ( i−1k , ik ], i = 1, 2, ..., k,

0, otherwise,
for k = 1, 2, ...

Let X1 = Y11, X2 = Y21, X3 = Y22, ..., Xn = Yki, ..., where n = i + k(k−1)
2 . On the one hand, for any fixed

ω ∈ (0, 1], there exists infinite Xnj
’s such that |Xnj

(ω)| > ε for any ε ∈ (0, 1), where {nj}∞j=1 is an increasing
sequence of integer. On the other hand, for any fixed ω ∈ (0, 1], there also exists infinite Xn′

j
such that

|Xn′
j
(ω)| ≤ ε, where {n′j}∞j=1 is an increasing sequence of integer. Hence,

P ({ω : Xn(ω)→ 0}) 6= 1,

showing that Xn’s do not converge to X = 0 almost surely.

However, for any ε > 0, P({ω : |Xn(ω)| > ε}) ≤ 1
k . Since n = i + k(k−1)

2 ≤ k + k(k−1)
2 , k → ∞ whenever

n→∞. Thus,

lim
n→∞

P({ω : |Xn(ω)| > ε}) ≤ lim
k→∞

1

k
= 0,

which means that Xn converge to X in probability.

(i) ; (iii): Counterexample B: For a probability space (Ω,B, P ), where Ω = (0, 1], B is the Borel set in
(0, 1], and P is the Lebesgue measure, we define

Xn(ω) =

{
n, if ω ∈ (0, 1

np ],

0, otherwise.

Thus, P({ω : lim
n→∞

Xn(ω) = 0}) = 1 and Xn converge to X = 0 (almost surely) as n→∞.

However, lim
n→∞

(
E|Xn|p

) 1
p =

(
np · 1

np

) 1
p = 1 6= 0, so Xn does not converge to X in Lp.

(iii) ; (i): Consider the Counterexample A again.
(
E|Xn|p

) 1
p ≤ 1

k
1
p

and thus as n→∞, we know that Xn

converge to X = 0 in Lp. However, we have shown that Xn do not converge to X = 0 almost surely.

In order to prove (i) ⇒ (iv), it suffices to prove (ii) ⇒ (iv).
(ii) ⇒ (iv): For any x1 < x, we have that

{X ≤ x1} = {Xn ≤ x,X ≤ x1} ∪ {Xn > x,X ≤ x1}
⊂ {Xn ≤ x} ∪ {Xn > x,X ≤ x1}.

Thus,
F (x1) ≤ Fn(x) + P ({Xn > x,X ≤ x1}) = Fn(x) + P ({|Xn −X| ≥ x− x1}) .
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Since Xn converge to X in probability, we know that lim
n→∞

P ({|Xn −X| ≥ x− x1}) = 0. Thus,

F (x1) ≤ lim inf
n→∞

Fn(x).

On the other hand, if x2 > x, we have that

{X > x2} = {Xn ≤ x,X > x2} ∪ {Xn > x,X > x2}
⊂ {Xn ≤ x,X > x2} ∪ {Xn > x}

Thus,
1− F (x2) ≤ P({Xn ≤ x,X > x2}) + 1− Fn(x),

which, in turn, shows that 1− F (x2) ≤ 1− lim sup
n→∞

Fn(x).

Therefore, we conclude that

F (x1) ≤ lim inf
n→∞

Fn(x) ≤ lim sup
n→∞

Fn(x) ≤ F (x2),

where x1 < x < x2. For every x such that F is continuous at x, we let x1 → x and x2 → x and obtain that

F (x) = lim inf
n→∞

Fn(x) = lim sup
n→∞

Fn(x) = lim
n→∞

Fn(x),

yielding that Xn converge to X in distribution.

(iv) ; (ii) and (iv) ; (i): Counterexample C: Consider Ω = {ω1, ω2} and P(ω1) = P(ω2) = 1
2 . Let

X(ω1) = −1, X(ω2) = 1. Then the distribution of X is

P(X = 1) = P(X = −1) =
1

2
.

Now, we define Xn = −X for all n. Obviously, the distributions of Xn’s are identical to X, so Xn
D→ X

naturally.
However, for any ε ∈ (0, 2),

P(|Xn −X| > ε) = P(Ω) = 1,

so Xn’s will not converge to X in probability, let alone converge to X almost surely.

(iv) ⇒ (ii) under the condition that X is a constant: Let X ≡ C be a constant. For any ε > 0,

P(|Xn − C| > ε) = P(Xn > C + ε) + P(Xn < C − ε)
≤ 1− Fn(C + ε) + Fn(C − ε).

Since Xn converge to X in distribution and the CDF of X ≡ C is

F (x) =

{
1, if x ≥ C,
0, if x < C,

we let n→∞ in the above inequality and derive that

P (|Xn − C| > ε) ≤ 1− lim
n→∞

Fn(C + ε) + lim
n→∞

Fn(C − ε) = 1− 1 + 0 = 0.

Therefore, Xn converge to X ≡ C in probability.
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(ii) ; (iii): Consider the Counterexample B again. Xn converge to X = 0 a.s., so Xn converge to X = 0 in

probability as shown previously. However, (E|Xn|p)
1
p = 1 6= 0 = (E|X|p)

1
p .

(iii) ⇒ (ii): We first show that given a random variable Y , for any ε > 0,

P(|Y | > ε) = E(1{|Y |>ε}) ≤ E
(
|Y |p

εp
1{|Y |>ε}

)
≤ E(|Y |p)

εp
,

where 1A is the indicator function of A.
Let Y = Xn −X. We thus have that

P(|Xn −X| > ε) ≤ E(|Xn −X|p)
εp

.

If Xn converge to X in Lp, then

lim
n→∞

P(|Xn −X| > ε) ≤ lim
n→∞

E(|Xn −X|p)
εp

= 0,

showing that Xn converge to X in probability.

(iii) ⇒ (iv): It is obvious since we have (iii) ⇒ (ii) and (ii) ⇒ (iv).

(iv) ; (iii): In the Counterexample C, (E|Xn|p)
1
p = 2 6= 0, so Xn’s do not converge to X = 0 in Lp.

Problem 2 (Hypergeometric Distribution; Example 3.2 in Perlman [2020]). Suppose an urn contains r red
balls and w white balls. Draw n balls at random from the urn and let X denote the number of red balls
obtained.

If the balls are sampled with replacement, then clearly X ∼ Binomial(n, p), where p = r
r+w , so

E(X) = np, Var(X) = np(1− p).

In what follows, we suppose that the balls are sampled without replacement. Note that we now require that
n ≤ r + w.

(a) What is the probability distribution of X?

(b) Calculate the expectation E(X).

(c) Find the variance Var(X). Do we expect Var(X) also to be the same as for sampling with replacement,
namely, np(1− p)? Would Var(X) be larger or smaller than np(1− p)?

Solution. (a) Note that the range of X = x is

max(0, n− w) ≤ x ≤ min(r, n). (Why?)

Then, by combinatorics (Vandermonde’s identity1), we know that the probability mass function (PMF) of
X is

P(X = x) =

(
r
x

)(
w
n−x
)(

r+w
n

) , max(0, n− w) ≤ x ≤ min(r, n). (1)

1See https://en.wikipedia.org/wiki/Vandermonde’s_identity.

https://en.wikipedia.org/wiki/Vandermonde's_identity
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This distribution is called hypergeometric because these ratios of binomial coefficients occurs as the coeffi-
cients in the expansion of hypergeometric functions or hypergeometric series2.

(b) One can directly use (1) to obtain E(X), which requires complicated combinatorial calculations. We
instead consider the following representation of X as:

X = X1 + · · ·+Xn,

where, as in the binomial case, Xi = 1 (or 0) if a red (or white) ball is obtained on the i-th trial. How-
ever, different from the binomial random variable, which is a sum of i.i.d. Bernoulli random variables,
X1, ..., Xn here are not mutually independent. (Why?) Nevertheless, the joint distribution of (X1, ..., Xn) is
exchangeable≡symmetric≡permutation-invariant, i.e.,

(X1, ..., Xn) ∼ (Xi1 , ..., Xin)

for every permutation (i1, ..., in) of (1, ..., n). This is intuitively evident as one can compute, for instance,

P(X1 = 0, X2 = 1) =
w

r + w
· r

r + w − 1
=

r

r + w
· w

r + w − 1
= P(X1 = 1, X2 = 0).

By induction, it can be shown that P(X1 = x1, ..., Xn = xn) = P(Xi1 = x1, ..., Xin = xn). Moreover, notice
that

P(X2 = 1) = P(X2 = 1|X1 = 1) · P(X1 = 1) + P(X2 = 1|X1 = 0) · P(X1 = 0)

=
r − 1

r + w − 1
· r

r + w
+

r

r + w − 1
· w

r + w

=
r

r + w
≡ P(X1 = 1),

showing that X1 and X2 have the same distribution (but they are not independent). Therefore, by linearity
of expectation and exchangeability, E(Xi) = r

r+w and therefore,

E(X) =

n∑
i=1

E(Xi) = n

(
r

r + w

)
= np.

(c) From (b), we know that X1X2 has its range as {0, 1}, so

E(X1X2) = P(X1X2 = 1)

= P(X1 = 1, X2 = 1)

= P(X2 = 1|X1 = 1) · P(X1 = 1)

=
r − 1

r + w − 1
· r

r + w

and

Cov(X1, X2) = E(X1X2)− (EX1)(EX2)

=
r − 1

r + w − 1
· r

r + w
−
(

r

r + w

)2

= − rw

(r + w)2(r + w − 1)
< 0.

(2)

2See https://en.wikipedia.org/wiki/Hypergeometric_function.

https://en.wikipedia.org/wiki/Hypergeometric_function
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Thus, X1 and X2 are negatively correlated, which is intuitively clear (because r−1
r+w−1 <

r
r+w ). By (2) and

exchangeability,

Var(X) =

n∑
i=1

Var(Xi) + 2
∑

1≤i<j≤n

Cov(Xi, Xj)

= np(1− p) + n(n− 1)Cov(X1, X2)

= n

(
r

r + w

)(
1− r

r + w

)
+ n(n− 1)

[
− rw

(r + w)2(r + w − 1)

]
=

nrw

(r + w)2

[
1− n− 1

r + w − 1

]
,

which is smaller than np(1 − p) when n > 1. It suggests that samping without replacement from a finite
population reduces the variability of the outcome. This is expected from the representation X = X1+· · ·+Xn

and the fact that each pair (Xi, Xj) is negatively correlated by (2) and exchangeability.
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