Quiz Session 3: Convergence of Random Variables and Hypergeometric Distribution

Problem 1. Suppose that a sequence of random variables $\left\{X_{n}\right\}_{n=1}^{\infty}$ and X are defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Consider the following types of convergence:
(i) X_{n} converge to X almost surely (or with probability 1) as $n \rightarrow \infty$, i.e.,

$$
\mathbb{P}\left(\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right\}\right)=1
$$

(ii) X_{n} converge to X in probability as $n \rightarrow \infty$, i.e., for any $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{n}-X\right|>\epsilon\right)=0
$$

(iii) X_{n} converge to X in L^{p}-norm as $n \rightarrow \infty$, i.e.,

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(\left|X_{n}-X\right|^{p}\right)=0
$$

provided that the p-th absolute moments $\mathbb{E}\left|X_{n}\right|^{p}$ and $E|X|^{p}$ of $X_{n}, n=1,2, \ldots$ and X exist. When $p=1$, it reduces to the convergence in (absolute) expectation.
(iv) X_{n} converge to X in distribution as $n \rightarrow \infty$, i.e., the cumulative distribution functions (CDFs) F_{1}, F_{2}, \ldots of X_{1}, X_{2}, \ldots converge to the CDF F of X in the sense that

$$
\lim _{n \rightarrow \infty} F_{n}(x)=F(x)
$$

for every $x \in \mathbb{R}$ at which F is continuous.
For each ordered pair of conditions (there are 12 ordered pairs), determine whether the first condition in the pair implies the other. Give a proof if yes. Give a counterexample if not.

Solution. The true implications between different types of convergence are

$$
(i) \Rightarrow \underset{\Uparrow}{(i i)} \Rightarrow \quad(i v)
$$

We prove these implications and provide counterexamples for others.
(i) \Rightarrow (ii): If $X_{n} \rightarrow X$ almost surely, then $\mathbb{P}\left(\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right\}\right)=1$. By definition, it can also be expressed as

$$
\mathbb{P}\left(\bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty}\left\{\omega:\left|X_{n}(\omega)-X(\omega)\right| \leq \epsilon\right\}\right)=1, \quad \text { for all } \epsilon>0
$$

Equivalently, it indicates that $\mathbb{P}\left(\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty}\left\{\omega:\left|X_{n}(\omega)-X(\omega)\right|>\epsilon\right\}\right)=0$ for any $\epsilon>0$. By the continuity of measure \mathbb{P} (recall Lecture 1 notes), we know that

$$
\mathbb{P}\left(\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty}\left\{\omega:\left|X_{n}(\omega)-X(\omega)\right|>\epsilon\right\}\right)=\lim _{N \rightarrow \infty} \mathbb{P}\left(\bigcup_{n=N}^{\infty}\left\{\omega:\left|X_{n}(\omega)-X(\omega)\right|>\epsilon\right\}\right)=0 .
$$

Since $\left\{\omega:\left|X_{N}(\omega)-X(\omega)\right|>\epsilon\right\} \subset \bigcup_{n=N}^{\infty}\left\{\omega:\left|X_{n}(\omega)-X(\omega)\right|>\epsilon\right\}$,

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(\left\{\omega:\left|X_{N}(\omega)-X(\omega)\right|>\epsilon\right\}\right) \leq \lim _{N \rightarrow \infty} \mathbb{P}\left(\bigcup_{n=N}^{\infty}\left\{\omega:\left|X_{n}(\omega)-X(\omega)\right|>\epsilon\right\}\right)=0
$$

for any $\epsilon>0$. Thus, X_{N} converge to X in probability as $N \rightarrow \infty$.
(ii) $\nRightarrow($ i): Counterexample A: For a probability space (Ω, \mathcal{B}, P), where $\Omega=(0,1], \mathcal{B}$ is the Borel set in $(0,1]$, and P is the Lebesgue measure, we consider a sequence of random variables

$$
Y_{k i}(\omega)=\left\{\begin{array}{ll}
1, & \text { if } \omega \in\left(\frac{i-1}{k}, \frac{i}{k}\right], i=1,2, \ldots, k, \\
0, & \text { otherwise }
\end{array} \quad \text { for } k=1,2, \ldots\right.
$$

Let $X_{1}=Y_{11}, X_{2}=Y_{21}, X_{3}=Y_{22}, \ldots, X_{n}=Y_{k i}, \ldots$, where $n=i+\frac{k(k-1)}{2}$. On the one hand, for any fixed $\omega \in(0,1]$, there exists infinite $X_{n_{j}}$'s such that $\left|X_{n_{j}}(\omega)\right|>\epsilon$ for any $\epsilon \in(0,1)$, where $\left\{n_{j}\right\}_{j=1}^{\infty}$ is an increasing sequence of integer. On the other hand, for any fixed $\omega \in(0,1]$, there also exists infinite $X_{n_{j}^{\prime}}$ such that $\left|X_{n_{j}^{\prime}}(\omega)\right| \leq \epsilon$, where $\left\{n_{j}^{\prime}\right\}_{j=1}^{\infty}$ is an increasing sequence of integer. Hence,

$$
\mathbb{P}\left(\left\{\omega: X_{n}(\omega) \rightarrow 0\right\}\right) \neq 1
$$

showing that X_{n} 's do not converge to $X=0$ almost surely.
However, for any $\epsilon>0, \mathbb{P}\left(\left\{\omega:\left|X_{n}(\omega)\right|>\epsilon\right\}\right) \leq \frac{1}{k}$. Since $n=i+\frac{k(k-1)}{2} \leq k+\frac{k(k-1)}{2}, k \rightarrow \infty$ whenever $n \rightarrow \infty$. Thus,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left\{\omega:\left|X_{n}(\omega)\right|>\epsilon\right\}\right) \leq \lim _{k \rightarrow \infty} \frac{1}{k}=0
$$

which means that X_{n} converge to X in probability.
(i) \nRightarrow (iii): Counterexample B: For a probability space (Ω, \mathcal{B}, P), where $\Omega=(0,1], \mathcal{B}$ is the Borel set in $(0,1]$, and P is the Lebesgue measure, we define

$$
X_{n}(\omega)= \begin{cases}n, & \text { if } \omega \in\left(0, \frac{1}{n^{p}}\right] \\ 0, & \text { otherwise }\end{cases}
$$

Thus, $\mathbb{P}\left(\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=0\right\}\right)=1$ and X_{n} converge to $X=0$ (almost surely) as $n \rightarrow \infty$.
However, $\lim _{n \rightarrow \infty}\left(E\left|X_{n}\right|^{p}\right)^{\frac{1}{p}}=\left(n^{p} \cdot \frac{1}{n^{p}}\right)^{\frac{1}{p}}=1 \neq 0$, so X_{n} does not converge to X in L^{p}.
(iii) $\nRightarrow(\mathrm{i})$: Consider the Counterexample A again. $\left(\mathbb{E}\left|X_{n}\right|^{p}\right)^{\frac{1}{p}} \leq \frac{1}{k^{\frac{1}{p}}}$ and thus as $n \rightarrow \infty$, we know that X_{n} converge to $X=0$ in L^{p}. However, we have shown that X_{n} do not converge to $X=0$ almost surely.

In order to prove (i) \Rightarrow (iv), it suffices to prove (ii) \Rightarrow (iv).
(ii) \Rightarrow (iv): For any $x_{1}<x$, we have that

$$
\begin{aligned}
\left\{X \leq x_{1}\right\} & =\left\{X_{n} \leq x, X \leq x_{1}\right\} \cup\left\{X_{n}>x, X \leq x_{1}\right\} \\
& \subset\left\{X_{n} \leq x\right\} \cup\left\{X_{n}>x, X \leq x_{1}\right\}
\end{aligned}
$$

Thus,

$$
F\left(x_{1}\right) \leq F_{n}(x)+\mathbb{P}\left(\left\{X_{n}>x, X \leq x_{1}\right\}\right)=F_{n}(x)+\mathbb{P}\left(\left\{\left|X_{n}-X\right| \geq x-x_{1}\right\}\right)
$$

Since X_{n} converge to X in probability, we know that $\lim _{n \rightarrow \infty} \mathbb{P}\left(\left\{\left|X_{n}-X\right| \geq x-x_{1}\right\}\right)=0$. Thus,

$$
F\left(x_{1}\right) \leq \liminf _{n \rightarrow \infty} F_{n}(x)
$$

On the other hand, if $x_{2}>x$, we have that

$$
\begin{aligned}
\left\{X>x_{2}\right\} & =\left\{X_{n} \leq x, X>x_{2}\right\} \cup\left\{X_{n}>x, X>x_{2}\right\} \\
& \subset\left\{X_{n} \leq x, X>x_{2}\right\} \cup\left\{X_{n}>x\right\}
\end{aligned}
$$

Thus,

$$
1-F\left(x_{2}\right) \leq \mathbb{P}\left(\left\{X_{n} \leq x, X>x_{2}\right\}\right)+1-F_{n}(x)
$$

which, in turn, shows that $1-F\left(x_{2}\right) \leq 1-\limsup _{n \rightarrow \infty} F_{n}(x)$.
Therefore, we conclude that

$$
F\left(x_{1}\right) \leq \liminf _{n \rightarrow \infty} F_{n}(x) \leq \limsup _{n \rightarrow \infty} F_{n}(x) \leq F\left(x_{2}\right)
$$

where $x_{1}<x<x_{2}$. For every x such that F is continuous at x, we let $x_{1} \rightarrow x$ and $x_{2} \rightarrow x$ and obtain that

$$
F(x)=\liminf _{n \rightarrow \infty} F_{n}(x)=\limsup _{n \rightarrow \infty} F_{n}(x)=\lim _{n \rightarrow \infty} F_{n}(x)
$$

yielding that X_{n} converge to X in distribution.
(iv) $\nRightarrow\left(\right.$ ii) and (iv) $\nRightarrow(\mathrm{i})$: Counterexample \mathbf{C} : Consider $\Omega=\left\{\omega_{1}, \omega_{2}\right\}$ and $\mathbb{P}\left(\omega_{1}\right)=\mathbb{P}\left(\omega_{2}\right)=\frac{1}{2}$. Let $X\left(\omega_{1}\right)=-1, X\left(\omega_{2}\right)=1$. Then the distribution of X is

$$
\mathbb{P}(X=1)=\mathbb{P}(X=-1)=\frac{1}{2}
$$

Now, we define $X_{n}=-X$ for all n. Obviously, the distributions of X_{n} 's are identical to X, so $X_{n} \xrightarrow{D} X$ naturally.
However, for any $\epsilon \in(0,2)$,

$$
\mathbb{P}\left(\left|X_{n}-X\right|>\epsilon\right)=\mathbb{P}(\Omega)=1
$$

so X_{n} 's will not converge to X in probability, let alone converge to X almost surely.
(iv) \Rightarrow (ii) under the condition that X is a constant: Let $X \equiv C$ be a constant. For any $\epsilon>0$,

$$
\begin{aligned}
\mathbb{P}\left(\left|X_{n}-C\right|>\epsilon\right) & =\mathbb{P}\left(X_{n}>C+\epsilon\right)+\mathbb{P}\left(X_{n}<C-\epsilon\right) \\
& \leq 1-F_{n}(C+\epsilon)+F_{n}(C-\epsilon)
\end{aligned}
$$

Since X_{n} converge to X in distribution and the CDF of $X \equiv C$ is

$$
F(x)= \begin{cases}1, & \text { if } x \geq C \\ 0, & \text { if } x<C\end{cases}
$$

we let $n \rightarrow \infty$ in the above inequality and derive that

$$
\mathbb{P}\left(\left|X_{n}-C\right|>\epsilon\right) \leq 1-\lim _{n \rightarrow \infty} F_{n}(C+\epsilon)+\lim _{n \rightarrow \infty} F_{n}(C-\epsilon)=1-1+0=0
$$

Therefore, X_{n} converge to $X \equiv C$ in probability.
(ii) \nRightarrow (iii): Consider the Counterexample B again. X_{n} converge to $X=0$ a.s., so X_{n} converge to $X=0$ in probability as shown previously. However, $\left(\mathbb{E}\left|X_{n}\right|^{p}\right)^{\frac{1}{p}}=1 \neq 0=\left(\mathbb{E}|X|^{p}\right)^{\frac{1}{p}}$.
(iii) \Rightarrow (ii): We first show that given a random variable Y, for any $\epsilon>0$,

$$
\mathbb{P}(|Y|>\epsilon)=\mathbb{E}\left(\mathbf{1}_{\{|Y|>\epsilon\}}\right) \leq \mathbb{E}\left(\frac{|Y|^{p}}{\epsilon^{p}} \mathbf{1}_{\{|Y|>\epsilon\}}\right) \leq \frac{\mathbb{E}\left(|Y|^{p}\right)}{\epsilon^{p}}
$$

where $\mathbf{1}_{A}$ is the indicator function of A.
Let $Y=X_{n}-X$. We thus have that

$$
\mathbb{P}\left(\left|X_{n}-X\right|>\epsilon\right) \leq \frac{E\left(\left|X_{n}-X\right|^{p}\right)}{\epsilon^{p}}
$$

If X_{n} converge to X in L^{p}, then

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{n}-X\right|>\epsilon\right) \leq \lim _{n \rightarrow \infty} \frac{E\left(\left|X_{n}-X\right|^{p}\right)}{\epsilon^{p}}=0
$$

showing that X_{n} converge to X in probability.
(iii) \Rightarrow (iv): It is obvious since we have (iii) \Rightarrow (ii) and (ii) \Rightarrow (iv).
(iv) $\nRightarrow($ iii $)$: In the Counterexample C, $\left(\mathbb{E}\left|X_{n}\right|^{p}\right)^{\frac{1}{p}}=2 \neq 0$, so X_{n} 's do not converge to $X=0$ in L^{p}.

Problem 2 (Hypergeometric Distribution; Example 3.2 in Perlman [2020]). Suppose an urn contains red balls and w white balls. Draw n balls at random from the urn and let X denote the number of red balls obtained.

If the balls are sampled with replacement, then clearly $X \sim \operatorname{Binomial}(n, p)$, where $p=\frac{r}{r+w}$, so

$$
\mathbb{E}(X)=n p, \quad \operatorname{Var}(X)=n p(1-p)
$$

In what follows, we suppose that the balls are sampled without replacement. Note that we now require that $n \leq r+w$.
(a) What is the probability distribution of X ?
(b) Calculate the expectation $\mathbb{E}(X)$.
(c) Find the variance $\operatorname{Var}(X)$. Do we expect $\operatorname{Var}(X)$ also to be the same as for sampling with replacement, namely, $n p(1-p)$? Would $\operatorname{Var}(X)$ be larger or smaller than $n p(1-p)$?

Solution. (a) Note that the range of $X=x$ is

$$
\max (0, n-w) \leq x \leq \min (r, n)
$$

Then, by combinatorics (Vandermonde's identity ${ }^{1}$), we know that the probability mass function (PMF) of X is

$$
\begin{equation*}
\mathbb{P}(X=x)=\frac{\binom{r}{x}\binom{w}{n-x}}{\binom{r+w}{n}}, \quad \max (0, n-w) \leq x \leq \min (r, n) \tag{1}
\end{equation*}
$$

[^0]This distribution is called hypergeometric because these ratios of binomial coefficients occurs as the coefficients in the expansion of hypergeometric functions or hypergeometric series ${ }^{2}$.
(b) One can directly use (1) to obtain $\mathbb{E}(X)$, which requires complicated combinatorial calculations. We instead consider the following representation of X as:

$$
X=X_{1}+\cdots+X_{n}
$$

where, as in the binomial case, $X_{i}=1$ (or 0) if a red (or white) ball is obtained on the i-th trial. However, different from the binomial random variable, which is a sum of i.i.d. Bernoulli random variables, X_{1}, \ldots, X_{n} here are not mutually independent. (Why?) Nevertheless, the joint distribution of $\left(X_{1}, \ldots, X_{n}\right)$ is exchangeable \equiv symmetric \equiv permutation-invariant, i.e.,

$$
\left(X_{1}, \ldots, X_{n}\right) \sim\left(X_{i_{1}}, \ldots, X_{i_{n}}\right)
$$

for every permutation $\left(i_{1}, \ldots, i_{n}\right)$ of $(1, \ldots, n)$. This is intuitively evident as one can compute, for instance,

$$
\mathbb{P}\left(X_{1}=0, X_{2}=1\right)=\frac{w}{r+w} \cdot \frac{r}{r+w-1}=\frac{r}{r+w} \cdot \frac{w}{r+w-1}=\mathbb{P}\left(X_{1}=1, X_{2}=0\right)
$$

By induction, it can be shown that $\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\mathbb{P}\left(X_{i_{1}}=x_{1}, \ldots, X_{i_{n}}=x_{n}\right)$. Moreover, notice that

$$
\begin{aligned}
\mathbb{P}\left(X_{2}=1\right) & =\mathbb{P}\left(X_{2}=1 \mid X_{1}=1\right) \cdot \mathbb{P}\left(X_{1}=1\right)+\mathbb{P}\left(X_{2}=1 \mid X_{1}=0\right) \cdot \mathbb{P}\left(X_{1}=0\right) \\
& =\frac{r-1}{r+w-1} \cdot \frac{r}{r+w}+\frac{r}{r+w-1} \cdot \frac{w}{r+w} \\
& =\frac{r}{r+w} \equiv \mathbb{P}\left(X_{1}=1\right),
\end{aligned}
$$

showing that X_{1} and X_{2} have the same distribution (but they are not independent). Therefore, by linearity of expectation and exchangeability, $\mathbb{E}\left(X_{i}\right)=\frac{r}{r+w}$ and therefore,

$$
\mathbb{E}(X)=\sum_{i=1}^{n} \mathbb{E}\left(X_{i}\right)=n\left(\frac{r}{r+w}\right)=n p
$$

(c) From (b), we know that $X_{1} X_{2}$ has its range as $\{0,1\}$, so

$$
\begin{aligned}
\mathbb{E}\left(X_{1} X_{2}\right) & =\mathbb{P}\left(X_{1} X_{2}=1\right) \\
& =\mathbb{P}\left(X_{1}=1, X_{2}=1\right) \\
& =\mathbb{P}\left(X_{2}=1 \mid X_{1}=1\right) \cdot \mathbb{P}\left(X_{1}=1\right) \\
& =\frac{r-1}{r+w-1} \cdot \frac{r}{r+w}
\end{aligned}
$$

and

$$
\begin{align*}
\operatorname{Cov}\left(X_{1}, X_{2}\right) & =\mathbb{E}\left(X_{1} X_{2}\right)-\left(\mathbb{E} X_{1}\right)\left(\mathbb{E} X_{2}\right) \\
& =\frac{r-1}{r+w-1} \cdot \frac{r}{r+w}-\left(\frac{r}{r+w}\right)^{2} \tag{2}\\
& =-\frac{r w}{(r+w)^{2}(r+w-1)}<0 .
\end{align*}
$$

[^1]Thus, X_{1} and X_{2} are negatively correlated, which is intuitively clear (because $\frac{r-1}{r+w-1}<\frac{r}{r+w}$). By (2) and exchangeability,

$$
\begin{aligned}
\operatorname{Var}(X) & =\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+2 \sum_{1 \leq i<j \leq n} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =n p(1-p)+n(n-1) \operatorname{Cov}\left(X_{1}, X_{2}\right) \\
& =n\left(\frac{r}{r+w}\right)\left(1-\frac{r}{r+w}\right)+n(n-1)\left[-\frac{r w}{(r+w)^{2}(r+w-1)}\right] \\
& =\frac{n r w}{(r+w)^{2}}\left[1-\frac{n-1}{r+w-1}\right]
\end{aligned}
$$

which is smaller than $n p(1-p)$ when $n>1$. It suggests that samping without replacement from a finite population reduces the variability of the outcome. This is expected from the representation $X=X_{1}+\cdots+X_{n}$ and the fact that each pair $\left(X_{i}, X_{j}\right)$ is negatively correlated by (2) and exchangeability.

References

M. Perlman. Probability and Mathematical Statistics I (STAT 512 Lecture Notes), 2020. URL https: //sites.stat.washington.edu/people/mdperlma/STAT $\% 20512 \% 20 \mathrm{MDP} \% 20 \mathrm{Notes}$. pdf.

[^0]: ${ }^{1}$ See https://en.wikipedia.org/wiki/Vandermonde's_identity.

[^1]: ${ }^{2}$ See https://en.wikipedia.org/wiki/Hypergeometric_function.

