Quiz Session 2: Independence and Conditional Independence

Some problems in this notes are selected from the STAT 512 lecture notes [Perlman, 2020] written by Prof. Michael Perlman (MDP).

Problem 1 (Simpson's Paradox; Example 3.3 in MDP). Given three events A, B, C, prove or disprove the following implication:

$$
\left\{\begin{array}{r}
P(A \mid B, C)>P\left(A \mid B^{c}, C\right), \tag{1}\\
P\left(A \mid B, C^{c}\right)>P\left(A \mid B^{c}, C^{c}\right)
\end{array}\right\} \stackrel{?}{\Longrightarrow} P(A \mid B)>P\left(A \mid B^{c}\right) .
$$

If the above implication does not hold, could we add some assumptions to make it hold?

Solution.

The implication (1) does not hold in general. Here is a counterexample.

Physics	Accept	Reject	
Female	60	40	$\mathrm{P}(\mathrm{A} \mid \mathrm{F}, \mathrm{Ph})=0.6$
Male	50	50	$\mathrm{P}(\mathrm{A} \mid \mathrm{M}, \mathrm{Ph})=0.5$
English	Accept	Reject	
Female	250	750	$\mathrm{P}(\mathrm{A} \mid \mathrm{F}, \mathrm{En})=0.25$
Male	20	80	$\mathrm{P}(\mathrm{A} \mid \mathrm{M}, \mathrm{En})=0.2$
Total	Accept	Reject	
Female	310	790	$\mathrm{P}(\mathrm{A} \mid \mathrm{F})=0.28$
Male	70	130	$\mathrm{P}(\mathrm{A} \mid \mathrm{M})=0.35$

One could verify that

$$
\begin{aligned}
& P(A \mid F, P h)>P(A \mid M, P h), \\
& P(A \mid F, E n)>P(A \mid M, E n),
\end{aligned}
$$

but

$$
P(A \mid F)<P(A \mid M)
$$

A key reasoning of the Simpson's paradox is that most female students applied to English, where the acceptance rate is considerably low; see also Figure 1.

Figure 1: Explanation of the Simpson's paradox.

If B is independent with C, then the implication (1) does hold.

Proof. Note that

$$
\begin{aligned}
P(A \mid B) & =P(A \mid B, C) P(C \mid B)+P\left(A \mid B, C^{c}\right) P\left(C^{c} \mid B\right) \\
P\left(A \mid B^{c}\right) & =P\left(A \mid B^{c}, C\right) P\left(C \mid B^{c}\right)+P\left(A \mid B^{c}, C^{c}\right) P\left(C^{c} \mid B^{c}\right)
\end{aligned}
$$

Given the independence between B and C, it follows that

$$
\begin{aligned}
P(A \mid B) & =P(A \mid B, C) P(C)+P\left(A \mid B, C^{c}\right) P\left(C^{c}\right) \\
P\left(A \mid B^{c}\right) & =P\left(A \mid B^{c}, C\right) P(C)+P\left(A \mid B^{c}, C^{c}\right) P\left(C^{c}\right)
\end{aligned}
$$

and hence

$$
\begin{aligned}
& P(A \mid B)-P\left(A \mid B^{c}\right) \\
= & P(C) \underbrace{\left.\left[P(A \mid B, C)-P\left(A \mid B^{c}, C\right)\right)\right]}_{>0}+P\left(C^{c}\right) \underbrace{\left[P\left(A \mid B, C^{c}\right)-P\left(A \mid B^{c}, C^{c}\right)\right]}_{>0} \\
> & 0 .
\end{aligned}
$$

Problem 2 (Uniform on the Unit Disk; MDP Example 1.12). Let (X, Y) follow a uniform distribution on the unit disk $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$.
(a) Show that X and Y are not independent. (Notes: Try not to calculate the marginal distributions of X and Y at this point.)
(b) Verify that X and Y are uncorrelated.
(c) Calculate the marginal probability density functions (PDF) of X and Y.
(d) Find the conditional PDF of $Y \mid X$.
(e) Show that $\frac{Y}{\sqrt{1-X^{2}}}$ is independent of X.
(f) Consider representing the random vector (X, Y) in polar coordinates as (R, Θ), where $R=\sqrt{X^{2}+Y^{2}}$ and $\Theta=\arctan (Y / X)$. Verify that R and Θ are independent.

Figure 2: Unit disk D and other graphical illustrations.
$\left(g^{*}\right)$ Let $S=\frac{Y}{\sqrt{1-X^{2}}}$ and $T=\frac{X}{\sqrt{1-Y^{2}}}$. Prove or disprove: S and T are independent.
$\left(h^{* *}\right)$ Find the joint PDF $f(s, t)$ and cumulative distribution function $F(s, t)=\mathbb{P}(S \leq s, T \leq t)$ of (S, T).

Solution.

(a) Notice that the range of (X, Y) is the unit disk D, while the marginal ranges of X and Y are both $[-1,1]$. Given that $D \neq[-1,1] \times[-1,1]$, we conclude that X and Y are not independent.
(b) By the symmetry of D, we know that $\mathbb{E}(X Y)=\mathbb{E}(X)=\mathbb{E}(Y)=0$; see also Figure 2a. Hence, X and Y are uncorrelated, i.e., has no linear trend.
(c) Notice that the joint PDF of (X, Y) is

$$
\begin{equation*}
f_{X, Y}(x, y)=\frac{1}{\pi} \cdot \mathbb{1}_{D}(x, y) \tag{2}
\end{equation*}
$$

where

$$
\mathbb{1}_{D}(x, y)= \begin{cases}1 & \text { if }(x, y) \in D \\ 0 & \text { otherwise }\end{cases}
$$

By definition, the marginal PDF of X is

$$
f_{X}(x)=\frac{1}{\pi} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} d y=\frac{2}{\pi} \sqrt{1-x^{2}} \cdot \mathbb{1}_{[-1,1]}(x)
$$

Likewise, the marginal PDF of Y is $f_{Y}(y)=\frac{2}{\pi} \sqrt{1-y^{2}} \cdot \mathbb{1}_{[-1,1]}(y)$.
(d) By definition (see Section 1.5 in Lecture Note 1), the conditional PDF of $Y \mid X$ is

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{\mathbb{1}_{D}(x, y) / \pi}{2 \sqrt{1-x^{2}} \cdot \mathbb{1}_{[-1,1]}(x) / \pi}=\frac{1}{2 \sqrt{1-x^{2}}} \cdot \mathbb{1}_{\left[-\sqrt{1-x^{2}}, \sqrt{1-x^{2}}\right]}(y)
$$

Remark 1. It is worth mentioning that the domains/supports of the conditional PDF $f_{Y \mid X}(y \mid x)$ and marginal PDF $f_{Y}(y)$ are different! The former one, $\left[-\sqrt{1-x^{2}}, \sqrt{1-x^{2}}\right]$ depends on the choice of $X=x$, while the latter one, $[-1,1]$, is independent of X. Furthermore, given that $f_{Y \mid X}(y \mid x) \neq f_{Y}(y)$, it provides another way to verify the dependency between X and Y.
(e) By (d), we know that the conditional distribution $Y \mid X=x$ is Uniform $\left[-\sqrt{1-x^{2}}, \sqrt{1-x^{2}}\right]$; see also Figure 2b. Thus, $\left.\frac{Y}{\sqrt{1-X^{2}}} \right\rvert\, X$ follows the distribution Uniform $[-1,1]$, which in turn shows that $\frac{Y}{\sqrt{1-X^{2}}}$ is independent of X.
(f) By the uniformity of (X, Y) on D, the joint range of (R, Θ) is $[0,1] \times[0,2 \pi]$, which is the cross product of the marginal ranges of R and Θ. Moreover, the joint cumulative distribution function (CDF) of (R, Θ) is

$$
\begin{aligned}
F_{R, \Theta}(r, \theta) & \equiv \mathbb{P}(0 \leq R \leq r, 0 \leq \Theta \leq \theta) \\
& =\frac{\theta r^{2} / 2}{\pi} \\
& =r^{2} \cdot \frac{\theta}{2 \pi} \\
& =\mathbb{P}(0 \leq R \leq r) \cdot \mathbb{P}(0 \leq \Theta \leq \theta)
\end{aligned}
$$

yielding the product of marginal CDFs of R and Θ. Hence, R and Θ are independent.
Remark 2. One can also leverage the Jacobian method (see Section 8.2 in Lecture Note 8) to directly compute the joint PDF of (R, Θ) as:

$$
\begin{aligned}
f_{R, \Theta}(r, \theta) & =f_{X, Y}(r \cos \theta, r \sin \theta) \\
& =\frac{1}{\pi} \cdot \mathbb{1}_{D}(r \cos \theta, r \sin \theta) \cdot\left|\frac{\partial(x, y)}{\partial(r, \theta)}\right| \\
& =\frac{1}{\pi} \cdot \mathbb{1}_{\{[0,1] \times[0,2 \pi]\}}(r, \theta) \cdot\left|\operatorname{det}\left(\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right)\right| \\
& =\frac{r}{\pi} \cdot \mathbb{1}_{\{[0,1] \times[0,2 \pi]\}}(r, \theta) \\
& =2 r \mathbb{1}_{[0,1]}(r) \cdot \frac{1}{2 \pi} \mathbb{1}_{[0,2 \pi]}(\theta),
\end{aligned}
$$

which is the product of two marginal PDFs $f_{R}(r)$ and $f_{\Theta}(\theta)$.
(g) We claim that S and T are not independent. To prove this, it suffices to show that

$$
\begin{equation*}
\mathbb{P}(S \leq 1 / 2, T \leq 1 / 2) \neq \mathbb{P}(S \leq 1 / 2) \cdot \mathbb{P}(T \leq 1 / 2) \tag{3}
\end{equation*}
$$

By (e), we know that S and T follow Uniform $[-1,1]$. Hence,

$$
\mathbb{P}(S \leq 1 / 2)=\mathbb{P}(T \leq 1 / 2)=\int_{-1}^{1 / 2} \frac{1}{2} d s=\frac{3}{4}
$$

On the other hand,

$$
\begin{aligned}
\mathbb{P}(S \leq 1 / 2, T \leq 1 / 2) & =\mathbb{P}\left(-1 \leq \frac{Y}{\sqrt{1-X^{2}}} \leq \frac{1}{2},-1 \leq \frac{X}{\sqrt{1-Y^{2}}} \leq \frac{1}{2}\right) \\
& =\mathbb{P}\left(A_{1} \cup A_{2} \cup A_{3} \cup A_{4}\right)
\end{aligned}
$$

where, referring to Figure 3,

$$
\begin{aligned}
& A_{1}=\{X \leq 0, Y \leq 0\} \\
& A_{2}=\left\{X<0, Y>0, X^{2}+4 Y^{2} \leq 1\right\} \\
& A_{3}=\left\{X>0, Y<0,4 X^{2}+Y^{2} \leq 1\right\} \\
& A_{4}=\left\{X \geq 0, Y \geq 0, X^{2}+4 Y^{2} \leq 1,4 X^{2}+Y^{2} \leq 1\right\}
\end{aligned}
$$

and they are mutually exclusive.

Figure 3: Graphical display of the probability $\mathbb{P}(S \leq 1 / 2, T \leq 1 / 2)$.

Given the uniformity of (X, Y) on D, we know that $\mathbb{P}\left(A_{1}\right)=\frac{1}{4}$. In addition, using the property that the area of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\pi a b$ (which can be proved by integrating $\int_{-a}^{a} 2 b \sqrt{1-x^{2} / a^{2}} d x$), we have that

$$
\mathbb{P}\left(A_{2}\right)=\mathbb{P}\left(A_{3}\right)=\frac{\frac{1}{4} \cdot \pi \cdot \frac{1}{2}}{\pi}=\frac{1}{8}
$$

(Or, one can resort to Cavalieri's principle to argue that the area of $A_{2}+A_{3}$ is equal to $1 / 4$ of the area of D.) Finally, we are not going to directly compute $\mathbb{P}\left(A_{4}\right)$. Instead, according to (3), we intend to show that

$$
\begin{aligned}
\mathbb{P}(S \leq 1 / 2, T \leq 1 / 2)=\sum_{i=1}^{4} \mathbb{P}\left(A_{i}\right)=\frac{1}{4}+2 \times \frac{1}{8}+\mathbb{P}\left(A_{4}\right) & =\frac{1}{2}+\mathbb{P}\left(A_{4}\right) \\
& >\mathbb{P}(S \leq 1 / 2) \cdot \mathbb{P}(T \leq 1 / 2)=\frac{9}{16}
\end{aligned}
$$

Notice that two ellipses $4 x^{2}+y^{2}=1$ and $x^{2}+4 y^{2}=1$ intersects at $\left(\frac{1}{\sqrt{5}},-\frac{1}{\sqrt{5}}\right)$ in the first quadrant. By the shape of the circular boundaries of A_{4}, it contains the square with lower left vertex $(0,0)$ and upper right vertex $\left(\frac{1}{\sqrt{5}},-\frac{1}{\sqrt{5}}\right)$, whose probability is $\frac{1}{5 \pi}$. Therefore,

$$
\mathbb{P}(S \leq 1 / 2, T \leq 1 / 2)=\frac{1}{2}+\mathbb{P}\left(A_{4}\right) \geq \frac{1}{2}+\frac{1}{5 \pi}>\frac{9}{16}
$$

It completes our proof for the claim that S and T are not independent.
(h) Based on the Jacobian method (Theorem 8.1 in Lecture Note 8), we take $s=\frac{y}{\sqrt{1-x^{2}}}, t=\frac{x}{\sqrt{1-y^{2}}}$, and calculate the determinant

$$
\left|\frac{\partial(s, t)}{\partial(x, y)}\right|=\left|\begin{array}{ll}
\frac{\partial s}{\partial x} & \frac{\partial s}{\partial y} \\
\frac{\partial t}{\partial x} & \frac{\partial t}{\partial y}
\end{array}\right|=\left|\begin{array}{cc}
\frac{x y}{\left(1-x^{2}\right)^{\frac{3}{2}}} & \frac{1}{\sqrt{1-x^{2}}} \\
\frac{1}{\sqrt{1-y^{2}}} & \frac{x y}{\left(1-y^{2}\right)^{\frac{3}{2}}}
\end{array}\right|=\frac{1-x^{2}-y^{2}}{\left(1-x^{2}\right)^{\frac{3}{2}}\left(1-y^{2}\right)^{\frac{3}{2}}} .
$$

Solving for x^{2}, y^{2}, we obtain that $x^{2}=\frac{t^{2}\left(1-s^{2}\right)}{1-s^{2} t^{2}}$ and $y^{2}=\frac{s^{2}\left(1-t^{2}\right)}{1-s^{2} t^{2}}$. Hence, the joint PDF of (S, T) is

$$
\begin{aligned}
f(s, t) & =\frac{1}{\pi}\left|\frac{\partial(x, y)}{\partial(s, t)}\right| \cdot \mathbb{1}_{\left\{x^{2}+y^{2} \leq 1\right\}} \\
& =\frac{1}{\pi} \cdot \frac{\left(1-x^{2}\right)^{\frac{3}{2}}\left(1-y^{2}\right)^{\frac{3}{2}}}{1-x^{2}-y^{2}} \cdot \mathbb{1}_{\left\{\frac{t^{2}\left(1-s^{2}\right)}{1-s^{2} t^{2}}+\frac{s^{2}\left(1-t^{2}\right)}{1-s^{2} t^{2}} \leq 1\right\}} \\
& =\frac{\sqrt{\left(1-t^{2}\right)\left(1-s^{2}\right)}}{\pi\left(1-s^{2} t^{2}\right)} \cdot \mathbb{1}_{\left\{\left(1-s^{2}\right)\left(1-t^{2}\right) \geq 0\right\}} \\
& =\frac{\sqrt{\left(1-t^{2}\right)\left(1-s^{2}\right)}}{\pi\left(1-s^{2} t^{2}\right)} \cdot \mathbb{1}_{\{(s, t) \in[-1,1] \times[-1,1]\}} .
\end{aligned}
$$

Notice that $f(s, t)$ cannot be factored into the product of two marginal densities, so it provides another way to justify the dependence between S and T.

To compute the CDF $F(s, t)=\int_{-1}^{s} \int_{-1}^{t} f(u, v) d u d v$, we need to consider 4 different cases regarding the signs of s and t.

Case 1: $-1 \leq s<0,-1 \leq t<0$. Then, from $-1<\frac{y}{\sqrt{1-x^{2}}} \leq s,-1<\frac{x}{\sqrt{1-y^{2}}} \leq t$, we know that the integral range of $f_{X, Y}(x, y)$ on D satisfies

$$
x^{2}+y^{2} \leq 1 \quad \frac{y^{2}}{s^{2}}+x^{2} \geq 1, \quad \frac{x^{2}}{t^{2}}+y^{2} \geq 1
$$

See also Figure 4 for a graphical illustration. Thus,

$$
\begin{aligned}
F(s, t) & =\iint_{D_{1}} \frac{1}{\pi} d x d y \\
& =\frac{4}{\pi}\left[\frac{\pi}{4}-\left(\frac{\pi t}{4}+\frac{\pi s}{4}-\int_{0}^{\theta_{1}} \int_{0}^{1} t r d r d \theta-\int_{\theta_{1}}^{\frac{\pi}{2}} \int_{0}^{1} s r d r d \theta\right)\right] \\
& =(1-t)+\frac{2(1-s) \theta_{1}}{\pi}
\end{aligned}
$$

where $\theta_{1}=\arctan \left(\frac{s \sqrt{1-t^{2}}}{t \sqrt{1-s^{2}}}\right)$.

Figure 4: Integrating range of $f_{X, Y}(x, y)$ when $-1 \leq s<0,-1 \leq t<0$.

Case 2: $0 \leq s \leq 1,-1 \leq t<0$. Then, from $-1<\frac{y}{\sqrt{1-x^{2}}} \leq s,-1<\frac{x}{\sqrt{1-y^{2}}} \leq t$, we know that the integral
range of $f_{X, Y}(x, y)$ on D satisfies

$$
\frac{x^{2}}{t^{2}}+y^{2} \geq 1
$$

and

$$
\frac{y^{2}}{s^{2}}+x^{2} \leq 1, y \geq 0 \quad \text { or } \quad \frac{x^{2}}{t^{2}}+y^{2} \leq 1, x>0
$$

See also Figure 5 for a graphical illustration. Thus,

$$
\begin{aligned}
F(s, t) & =\iint_{D_{2}} \frac{1}{\pi} d x d y \\
& =\frac{1}{\pi}\left[\frac{\pi s}{2}-2\left(\int_{0}^{\theta_{1}} \int_{0}^{1} t r d r d \theta+\int_{\theta_{1}}^{\frac{\pi}{2}} \int_{0}^{1} s r d r d \theta\right)+\frac{\pi}{2}-\frac{\pi t}{2}\right] \\
& =\frac{1}{\pi}\left[\frac{\pi s}{2}-2\left(\frac{t \theta_{1}}{2}+\frac{s}{2}\left(\frac{\pi}{2}-\theta_{1}\right)\right)+\frac{\pi}{2}-\frac{\pi t}{2}\right] \\
& =\frac{1-t}{2}+\frac{(1-s) \theta_{1}}{2 \pi}
\end{aligned}
$$

where $\theta_{1}=\arctan \left(-\frac{s \sqrt{1-t^{2}}}{t \sqrt{1-s^{2}}}\right)$.

Figure 5: Integrating range of $f_{X, Y}(x, y)$ when $0 \leq s \leq 1,-1 \leq t<0$.

Case 3: $-1 \leq s<0,0 \leq t \leq 1$. Then, from $-1<\frac{y}{\sqrt{1-x^{2}}} \leq s,-1<\frac{x}{\sqrt{1-y^{2}}} \leq t$, we know that the integral range of $f_{X, Y}(x, y)$ on D satisfies

$$
x^{2}+\frac{y^{2}}{s^{2}}>1
$$

and

$$
x^{2}+y^{2} \leq 1, x \leq 0 \quad \text { or } \quad \frac{x^{2}}{t^{2}}+y^{2} \leq 1, x>0
$$

See also Figure 6 for a graphical illustration. Thus,

$$
\begin{aligned}
F(s, t) & =\iint_{D_{3}} \frac{1}{\pi} d x d y \\
& =\frac{1}{\pi}\left[\frac{\pi}{2}-\frac{\pi s}{2}+\frac{\pi t}{2}-2\left(\frac{t \theta_{1}}{2}+\frac{s}{2}\left(\frac{\pi}{2}-\theta_{1}\right)\right)\right] \\
& =\frac{1+t}{2}-s+\frac{(s-t) \theta_{1}}{\pi}
\end{aligned}
$$

where $\theta_{1}=\arctan \left(-\frac{s \sqrt{1-t^{2}}}{t \sqrt{1-s^{2}}}\right)$.

Figure 6: Integrating range of $f_{X, Y}(x, y)$ when $-1 \leq s<0,0 \leq t \leq 1$.

Case 4: $0 \leq s \leq 1,0 \leq t \leq 1$. Then, from $-1<\frac{y}{\sqrt{1-x^{2}}} \leq s,-1<\frac{x}{\sqrt{1-y^{2}}} \leq t$, we know that the integral range of $f_{X, Y}(x, y)$ on D satisfies

$$
x^{2}+y^{2} \leq 1, y<0 \quad \text { or } \quad x^{2}+\frac{y^{2}}{s^{2}} \leq 1, y \geq 0
$$

and

$$
x^{2}+y^{2} \leq 1, x<0 \quad \text { or } \quad \frac{x^{2}}{t^{2}}+y^{2} \leq 1, x \geq 0
$$

See also Figure 7 for a graphical illustration. Thus,

$$
\begin{aligned}
F(s, t) & =\iint_{D_{4}} \frac{1}{\pi} d x d y \\
& =\frac{1}{\pi}\left[\frac{\pi}{4}+\frac{\pi s}{4}+\frac{\pi t}{4}+2\left(\frac{t \theta_{1}}{2}+\frac{s}{2}\left(\frac{\pi}{2}-\theta_{1}\right)\right)\right] \\
& =\frac{1+t+2 s}{4}+\frac{(s-t) \theta_{1}}{2 \pi}
\end{aligned}
$$

where $\theta_{1}=\arctan \left(\frac{s \sqrt{1-t^{2}}}{t \sqrt{1-s^{2}}}\right)$.

Figure 7: Integrating range of $f_{X, Y}(x, y)$ when $0 \leq s \leq 1,0 \leq t \leq 1$.

Problem 3 (Homework 1; Exercise 1.32 in Casella and Berger 2002). An employer is about to hire one new employee from a group of N candidates, whose future potential can be rated on a scale from 1 to N. The employer proceeds according to the following rules:
(a) Each candidate is seen in succession (in random order) and a decision is made whether to hire the candidate.
(b) Having rejected $m-1$ candidates $(m>1)$, the employer can hire the m th candidate only if the mth candidate is better than the previous $m-1$.
Suppose a candidate is hired on the ith trial. What is the probability that the best candidate was hired?

Solution. Let E be the event that $i^{t h}$ candidate is the best, and F be the event that $i^{t h}$ candidate is better than the previous $i-1$ candidates. The probability that the best candidate was hired is

$$
\mathbb{P}(E \mid F)=\frac{\mathbb{P}(F \mid E) \cdot \mathbb{P}(E)}{\mathbb{P}(F)}
$$

Here, $\mathbb{P}(F \mid E)=1$ because if the $i^{t h}$ candidate is the best among all, it must be better than the previous $i-1$ candidates. Moreover, $\mathbb{P}(E)=\frac{1}{N}$ and $\mathbb{P}(F)=\frac{1}{i}$. Thus,

$$
\mathbb{P}(E \mid F)=\frac{i}{N}
$$

References

G. Casella and R. Berger. Statistical Inference. Duxbury advanced series. Thomson Learning, 2nd ed. edition, 2002.
M. Perlman. Probability and mathematical statistics i (stat 512 lecture notes), 2020. URL https://sites. stat.washington.edu/people/mdperlma/STAT $\% 20512 \% 20 \mathrm{MDP} \% 20 \mathrm{Notes} . p d f$.

