
STAT 512: Statistical Inference Autumn 2022

Quiz Session 2: Independence and Conditional Independence
Yikun Zhang October 12, 2022

Some problems in this notes are selected from the STAT 512 lecture notes [Perlman, 2020] written by Prof.
Michael Perlman (MDP).

Problem 1 (Simpson’s Paradox; Example 3.3 in MDP). Given three events A,B,C, prove or disprove the
following implication: {

P (A|B,C) > P (A|Bc, C),
P (A|B,Cc) > P (A|Bc, Cc)

}
?

=⇒ P (A|B) > P (A|Bc). (1)

If the above implication does not hold, could we add some assumptions to make it hold?

Solution.

The implication (1) does not hold in general. Here is a counterexample.

Physics Accept Reject
Female 60 40 P(A|F,Ph)=0.6
Male 50 50 P(A|M,Ph)=0.5

English Accept Reject
Female 250 750 P(A|F,En)=0.25
Male 20 80 P(A|M,En)=0.2

Total Accept Reject
Female 310 790 P(A|F)=0.28
Male 70 130 P(A|M)=0.35

One could verify that

P (A|F, Ph) > P (A|M,Ph),

P (A|F,En) > P (A|M,En),

but
P (A|F ) < P (A|M).

A key reasoning of the Simpson’s paradox is that most female students applied to English, where the
acceptance rate is considerably low; see also Figure 1.
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Figure 1: Explanation of the Simpson’s paradox.

If B is independent with C, then the implication (1) does hold.

Proof. Note that

P (A|B) = P (A|B,C)P (C|B) + P (A|B,Cc)P (Cc|B),

P (A|Bc) = P (A|Bc, C)P (C|Bc) + P (A|Bc, Cc)P (Cc|Bc).

Given the independence between B and C, it follows that

P (A|B) = P (A|B,C)P (C) + P (A|B,Cc)P (Cc),

P (A|Bc) = P (A|Bc, C)P (C) + P (A|Bc, Cc)P (Cc)

and hence

P (A|B)− P (A|Bc)
= P (C) [P (A|B,C)− P (A|Bc, C))]︸ ︷︷ ︸

>0

+P (Cc) [P (A|B,Cc)− P (A|Bc, Cc)]︸ ︷︷ ︸
>0

> 0.

Problem 2 (Uniform on the Unit Disk; MDP Example 1.12). Let (X,Y ) follow a uniform distribution on
the unit disk D =

{
(x, y) ∈ R2 : x2 + y2 ≤ 1

}
.

(a) Show that X and Y are not independent. (Notes: Try not to calculate the marginal distributions of X
and Y at this point.)

(b) Verify that X and Y are uncorrelated.

(c) Calculate the marginal probability density functions (PDF) of X and Y .

(d) Find the conditional PDF of Y |X.

(e) Show that Y√
1−X2

is independent of X.

(f) Consider representing the random vector (X,Y ) in polar coordinates as (R,Θ), where R =
√
X2 + Y 2

and Θ = arctan(Y/X). Verify that R and Θ are independent.
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D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}

x

y

E(XY ) > 0

E(XY ) > 0

E(XY ) < 0

E(XY ) < 0

(a) The sign information of E(XY ).

D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}

x

y

−1 1x

√
1− x2

−
√
1− x2

(b) Conditional distribution of Y |X.

Figure 2: Unit disk D and other graphical illustrations.

(g*) Let S = Y√
1−X2

and T = X√
1−Y 2

. Prove or disprove: S and T are independent.

(h**) Find the joint PDF f(s, t) and cumulative distribution function F (s, t) = P(S ≤ s, T ≤ t) of (S, T ).

Solution.

(a) Notice that the range of (X,Y ) is the unit disk D, while the marginal ranges of X and Y are both [−1, 1].
Given that D 6= [−1, 1]× [−1, 1], we conclude that X and Y are not independent.

(b) By the symmetry of D, we know that E(XY ) = E(X) = E(Y ) = 0; see also Figure 2a. Hence, X and Y
are uncorrelated, i.e., has no linear trend.

(c) Notice that the joint PDF of (X,Y ) is

fX,Y (x, y) =
1

π
· 1D(x, y), (2)

where

1D(x, y) =

{
1 if (x, y) ∈ D,
0 otherwise.

By definition, the marginal PDF of X is

fX(x) =
1

π

∫ √1−x2

−
√

1−x2

dy =
2

π

√
1− x2 · 1[−1,1](x).

Likewise, the marginal PDF of Y is fY (y) = 2
π

√
1− y2 · 1[−1,1](y).

(d) By definition (see Section 1.5 in Lecture Note 1), the conditional PDF of Y |X is

fY |X(y|x) =
fX,Y (x, y)

fX(x)
=

1D(x, y)/π

2
√

1− x2 · 1[−1,1](x)/π
=

1

2
√

1− x2
· 1[−

√
1−x2,

√
1−x2](y).

Remark 1. It is worth mentioning that the domains/supports of the conditional PDF fY |X(y|x) and

marginal PDF fY (y) are different! The former one,
[
−
√

1− x2,
√

1− x2
]

depends on the choice of X = x,
while the latter one, [−1, 1], is independent of X. Furthermore, given that fY |X(y|x) 6= fY (y), it provides
another way to verify the dependency between X and Y .
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(e) By (d), we know that the conditional distribution Y |X = x is Uniform
[
−
√

1− x2,
√

1− x2
]
; see also

Figure 2b. Thus, Y√
1−X2

|X follows the distribution Uniform[−1, 1], which in turn shows that Y√
1−X2

is

independent of X.

(f) By the uniformity of (X,Y ) on D, the joint range of (R,Θ) is [0, 1]× [0, 2π], which is the cross product
of the marginal ranges of R and Θ. Moreover, the joint cumulative distribution function (CDF) of (R,Θ) is

FR,Θ(r, θ) ≡ P (0 ≤ R ≤ r, 0 ≤ Θ ≤ θ)

=
θr2/2

π

= r2 · θ
2π

= P(0 ≤ R ≤ r) · P (0 ≤ Θ ≤ θ) ,

yielding the product of marginal CDFs of R and Θ. Hence, R and Θ are independent.

Remark 2. One can also leverage the Jacobian method (see Section 8.2 in Lecture Note 8) to directly
compute the joint PDF of (R,Θ) as:

fR,Θ(r, θ) = fX,Y (r cos θ, r sin θ)

=
1

π
· 1D(r cos θ, r sin θ) ·

∣∣∣∣∂(x, y)

∂(r, θ)

∣∣∣∣
=

1

π
· 1{[0,1]×[0,2π]}(r, θ) ·

∣∣∣∣det

(
cos θ −r sin θ
sin θ r cos θ

)∣∣∣∣
=
r

π
· 1{[0,1]×[0,2π]}(r, θ)

= 2r1[0,1](r) ·
1

2π
1[0,2π](θ),

which is the product of two marginal PDFs fR(r) and fΘ(θ).

(g) We claim that S and T are not independent. To prove this, it suffices to show that

P(S ≤ 1/2, T ≤ 1/2) 6= P(S ≤ 1/2) · P(T ≤ 1/2). (3)

By (e), we know that S and T follow Uniform[−1, 1]. Hence,

P(S ≤ 1/2) = P(T ≤ 1/2) =

∫ 1/2

−1

1

2
ds =

3

4
.

On the other hand,

P(S ≤ 1/2, T ≤ 1/2) = P
(
−1 ≤ Y√

1−X2
≤ 1

2
, −1 ≤ X√

1− Y 2
≤ 1

2

)
= P(A1 ∪A2 ∪A3 ∪A4),

where, referring to Figure 3,

A1 = {X ≤ 0, Y ≤ 0},
A2 =

{
X < 0, Y > 0, X2 + 4Y 2 ≤ 1

}
,

A3 =
{
X > 0, Y < 0, 4X2 + Y 2 ≤ 1

}
,

A4 =
{
X ≥ 0, Y ≥ 0, X2 + 4Y 2 ≤ 1, 4X2 + Y 2 ≤ 1

}
,
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and they are mutually exclusive.

D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}

x

y

4x2 + y2 = 1

x2 + 4y2 = 1
A1

A2

A3

A4

(
1√
5
, 1√

5

)

Figure 3: Graphical display of the probability P(S ≤ 1/2, T ≤ 1/2).

Given the uniformity of (X,Y ) on D, we know that P(A1) = 1
4 . In addition, using the property that the

area of an ellipse x2

a2 + y2

b2 = 1 is πab (which can be proved by integrating
∫ a
−a 2b

√
1− x2/a2dx), we have that

P(A2) = P(A3) =
1
4 · π ·

1
2

π
=

1

8
.

(Or, one can resort to Cavalieri’s principle to argue that the area of A2 + A3 is equal to 1/4 of the area of
D.) Finally, we are not going to directly compute P(A4). Instead, according to (3), we intend to show that

P(S ≤ 1/2, T ≤ 1/2) =

4∑
i=1

P(Ai) =
1

4
+ 2× 1

8
+ P(A4) =

1

2
+ P(A4)

> P(S ≤ 1/2) · P(T ≤ 1/2) =
9

16
.

Notice that two ellipses 4x2 +y2 = 1 and x2 + 4y2 = 1 intersects at
(

1√
5
,− 1√

5

)
in the first quadrant. By the

shape of the circular boundaries of A4, it contains the square with lower left vertex (0, 0) and upper right

vertex
(

1√
5
,− 1√

5

)
, whose probability is 1

5π . Therefore,

P(S ≤ 1/2, T ≤ 1/2) =
1

2
+ P(A4) ≥ 1

2
+

1

5π
>

9

16
.

It completes our proof for the claim that S and T are not independent.

(h) Based on the Jacobian method (Theorem 8.1 in Lecture Note 8), we take s = y√
1−x2

, t = x√
1−y2

, and

calculate the determinant∣∣∣∣ ∂(s, t)

∂(x, y)

∣∣∣∣ =

∣∣∣∣∣ ∂s∂x ∂s
∂y

∂t
∂x

∂t
∂y

∣∣∣∣∣ =

∣∣∣∣∣∣
xy

(1−x2)
3
2

1√
1−x2

1√
1−y2

xy

(1−y2)
3
2

∣∣∣∣∣∣ =
1− x2 − y2

(1− x2)
3
2 (1− y2)

3
2

.
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Solving for x2, y2, we obtain that x2 = t2(1−s2)
1−s2t2 and y2 = s2(1−t2)

1−s2t2 . Hence, the joint PDF of (S, T ) is

f(s, t) =
1

π

∣∣∣∣∂(x, y)

∂(s, t)

∣∣∣∣ · 1{x2+y2≤1}

=
1

π
· (1− x2)

3
2 (1− y2)

3
2

1− x2 − y2
· 1{

t2(1−s2)

1−s2t2
+
s2(1−t2)

1−s2t2
≤1

}

=

√
(1− t2)(1− s2)

π(1− s2t2)
· 1{(1−s2)(1−t2)≥0}

=

√
(1− t2)(1− s2)

π(1− s2t2)
· 1{(s,t)∈[−1,1]×[−1,1]}.

Notice that f(s, t) cannot be factored into the product of two marginal densities, so it provides another way
to justify the dependence between S and T .

To compute the CDF F (s, t) =
∫ s
−1

∫ t
−1
f(u, v) dudv, we need to consider 4 different cases regarding the signs

of s and t.

Case 1: −1 ≤ s < 0,−1 ≤ t < 0. Then, from −1 < y√
1−x2

≤ s,−1 < x√
1−y2

≤ t, we know that the integral

range of fX,Y (x, y) on D satisfies

x2 + y2 ≤ 1
y2

s2
+ x2 ≥ 1,

x2

t2
+ y2 ≥ 1.

See also Figure 4 for a graphical illustration. Thus,

F (s, t) =

∫ ∫
D1

1

π
dxdy

=
4

π

[
π

4
−

(
πt

4
+
πs

4
−
∫ θ1

0

∫ 1

0

tr drdθ −
∫ π

2

θ1

∫ 1

0

sr drdθ

)]

= (1− t) +
2(1− s)θ1

π
,

where θ1 = arctan
(
s
√

1−t2
t
√

1−s2

)
.

D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}

x

y

x2

t2
+ y2 = 1

x2 + y2

s2
= 1

D1

θ1

(
|t|
√

1−s2√
1−s2t2

,
|s|
√

1−t2√
1−s2t2

)

Figure 4: Integrating range of fX,Y (x, y) when −1 ≤ s < 0,−1 ≤ t < 0.

Case 2: 0 ≤ s ≤ 1,−1 ≤ t < 0. Then, from −1 < y√
1−x2

≤ s,−1 < x√
1−y2

≤ t, we know that the integral
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range of fX,Y (x, y) on D satisfies
x2

t2
+ y2 ≥ 1

and
y2

s2
+ x2 ≤ 1, y ≥ 0 or

x2

t2
+ y2 ≤ 1, x > 0.

See also Figure 5 for a graphical illustration. Thus,

F (s, t) =

∫ ∫
D2

1

π
dxdy

=
1

π

[
πs

2
− 2

(∫ θ1

0

∫ 1

0

tr drdθ +

∫ π
2

θ1

∫ 1

0

sr drdθ

)
+
π

2
− πt

2

]

=
1

π

[
πs

2
− 2

(
tθ1

2
+
s

2

(π
2
− θ1

))
+
π

2
− πt

2

]
=

1− t
2

+
(1− s)θ1

2π
,

where θ1 = arctan
(
− s
√

1−t2
t
√

1−s2

)
.

D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}

x

y

x2

t2
+ y2 = 1

x2 + y2

s2
= 1

D2

(
|t|
√

1−s2√
1−s2t2

,
|s|
√

1−t2√
1−s2t2

)
θ1

Figure 5: Integrating range of fX,Y (x, y) when 0 ≤ s ≤ 1,−1 ≤ t < 0.

Case 3: −1 ≤ s < 0, 0 ≤ t ≤ 1. Then, from −1 < y√
1−x2

≤ s,−1 < x√
1−y2

≤ t, we know that the integral

range of fX,Y (x, y) on D satisfies

x2 +
y2

s2
> 1

and

x2 + y2 ≤ 1, x ≤ 0 or
x2

t2
+ y2 ≤ 1, x > 0.

See also Figure 6 for a graphical illustration. Thus,

F (s, t) =

∫ ∫
D3

1

π
dxdy

=
1

π

[
π

2
− πs

2
+
πt

2
− 2

(
tθ1

2
+
s

2

(π
2
− θ1

))]
=

1 + t

2
− s+

(s− t)θ1

π
,
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where θ1 = arctan
(
− s
√

1−t2
t
√

1−s2

)
.

D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}

x

y

x2

t2
+ y2 = 1

x2 + y2

s2
= 1

(
|t|
√

1−s2√
1−s2t2

,
|s|
√

1−t2√
1−s2t2

)
θ1

D3

Figure 6: Integrating range of fX,Y (x, y) when −1 ≤ s < 0, 0 ≤ t ≤ 1.

Case 4: 0 ≤ s ≤ 1, 0 ≤ t ≤ 1. Then, from −1 < y√
1−x2

≤ s,−1 < x√
1−y2

≤ t, we know that the integral

range of fX,Y (x, y) on D satisfies

x2 + y2 ≤ 1, y < 0 or x2 +
y2

s2
≤ 1, y ≥ 0

and

x2 + y2 ≤ 1, x < 0 or
x2

t2
+ y2 ≤ 1, x ≥ 0.

See also Figure 7 for a graphical illustration. Thus,

F (s, t) =

∫ ∫
D4

1

π
dxdy

=
1

π

[
π

4
+
πs

4
+
πt

4
+ 2

(
tθ1

2
+
s

2

(π
2
− θ1

))]
=

1 + t+ 2s

4
+

(s− t)θ1

2π
,

where θ1 = arctan
(
s
√

1−t2
t
√

1−s2

)
.

D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}

x

y

x2

t2
+ y2 = 1

x2 + y2

s2
= 1

(
|t|
√

1−s2√
1−s2t2

,
|s|
√

1−t2√
1−s2t2

)
θ1

D4

Figure 7: Integrating range of fX,Y (x, y) when 0 ≤ s ≤ 1, 0 ≤ t ≤ 1.
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Problem 3 (Homework 1; Exercise 1.32 in Casella and Berger 2002). An employer is about to hire one new
employee from a group of N candidates, whose future potential can be rated on a scale from 1 to N . The
employer proceeds according to the following rules:

(a) Each candidate is seen in succession (in random order) and a decision is made whether to hire the
candidate.
(b) Having rejected m − 1 candidates (m > 1), the employer can hire the mth candidate only if the mth
candidate is better than the previous m− 1.

Suppose a candidate is hired on the ith trial. What is the probability that the best candidate was hired?

Solution. Let E be the event that ith candidate is the best, and F be the event that ith candidate is better
than the previous i− 1 candidates. The probability that the best candidate was hired is

P(E|F ) =
P(F |E) · P(E)

P(F )
.

Here, P(F |E) = 1 because if the ith candidate is the best among all, it must be better than the previous
i− 1 candidates. Moreover, P(E) = 1

N and P(F ) = 1
i . Thus,

P(E|F ) =
i

N
.
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