
STAT 512: Statistical Inference Autumn 2022

Quiz Session 1: Review of Prerequisites
Yikun Zhang September 28, 2022

Quiz Session:

• Time: Every Wednesday from 12:30pm to 1:20pm (there will be 11 quiz sessions in total).

• Location: Room 145 of Health Sciences Education Building.

• Zoom Option: https://washington.zoom.us/j/98450014077?pwd=V1RIUlRCSTliK3R6NnRNZy80T1NxQT09
(password: 512quiz).

• Attendance: Recommended but not required.

Yikun’s Office Hour:

• Time: Every Tuesday from 9:30am to 10:30am (with possible extension to 11am).

• Location: Padelford Hall B-226.

• Virtual Option: https://washington.zoom.us/j/98194898781?pwd=bFpRSG4yclJETFNyNTcrR2RTcjhHZz09
(password: stat512).

• Email: yikun@uw.edu.

Zhen’s Office Hour:

• Time: Every Wednesday from 4pm to 5pm.

• Virtual Only: https://washington.zoom.us/j/99384780380.

• Email: zhenm@uw.edu

Main Scheme of Quiz Sessions:

• Review a couple of key concepts in the lecture.

• Go through some homework problems that have been due in the previous weeks if necessary.

• Discuss other exercises that help strengthen the understanding of lecture materials or provide insights
into other related study fields.

The first quiz session is intended to help assess your mathematical preparation for STAT 512 and review
selected background knowledge.

Diagnostic Exercises: (check them by yourself and don’t hand in!)

1. Evaluate lim
n→∞

p
1
n for any p > 0.

2. Evaluate
∞∑
k=0

kxk for |x| < 1.

1

https://facilities.uw.edu/projects/health-sciences-education-building
https://washington.zoom.us/j/98450014077?pwd=V1RIUlRCSTliK3R6NnRNZy80T1NxQT09
https://www.washington.edu/maps/#!/PDL
https://washington.zoom.us/j/98194898781?pwd=bFpRSG4yclJETFNyNTcrR2RTcjhHZz09
https://washington.zoom.us/j/99384780380
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3. Evaluate
∫
D

1
π dxdy with D =

{
(x, y) ∈ R2 : x

2

a2 + y2

b2 ≤ 1
}

being an ellipse, where a, b > 0.

4. Let X be a random variable uniformly distributed on the interval (a, b). Find E(X) and P[X ≤ E(X)].

5. Compute the determinant, eigenvalues, and eigenvectors of the matrix

 0 −1 1
−1 0 1
1 1 0

.

1 Multivariate Calculus (or Mathematical Analysis)

Metric Space: A set X, whose elements we shall call points, is said to be a metric space if with any two
points p and q of X there is associated a real number d(p, q), called the distance from p to q, such that

(a) d(p, q) > 0 if p 6= q and d(p, p) = 0 for any p ∈ X;

(b) d(p, q) = d(q, p);

(c) d(p, q) ≤ d(p, r) + d(r, q) for any r ∈ X.

Any function with these three properties is called a distance function, or metric.

Example 1 (Euclidean Spaces). In STAT 512, the major metric space of concern will be the Euclidean
spaces Rn for some integer n, whose distance is defined by

d(x,y) = ||x− y||2 for any x = (x1, ..., xn)T ,y = (y1, ..., yn)T ∈ Rn, (1)

in which ||x||2 =
√∑n

i=1 x
2
i is the L2 norm in Rn and the superscript T stands for the (vector/matrix)

transpose. Notice that L2 norm can be determined by the inner product

〈x,y〉 = xTy =

n∑
i=1

xiyi (2)

in Rn. Other possible norms in Rn include

• Lp norm: ||x||p = (
∑n
i=1 x

p
i )

1
p ;

• Infinity norm: ||x||∞ = maxi |xi|.

Convergent Sequence: A sequence {pn} in a metric space X is said to converge if there is a point p ∈ X
with the following property: For every ε > 0 there is an integer N such that n ≥ N implies that d(pn, p) < ε.
We write pn → p or limn→∞ pn = p and call p the limit of {pn}.

Subsequence: Given a sequence {pn}, consider an increasing sequence {nk} of positive integers. Then the
sequence {pnk

} is called a subsequence of {pn}. If {pnk
} converges, its limit is called a sequential limit of

{pn}.

Cauchy Sequence: A sequence {pn} in a metric space X is said to be Cauchy sequence if for every ε > 0
there is an integer N such that d(p, pn) < ε if n ≥ N and m ≥ N .

Proposition 1. Let {pn} be a sequence in a metric space X.

(a) Whenever {pn} converges, its limit is unique.
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(b) If {pn} converges, then {pn} is bounded, i.e., there exists a real number M > 0 and a point q ∈ X such
that d(pn, q) < M for all n.

(c) Every bounded sequence in Rn contains a convergent subsequence.

(d) In any metric space X, every convergent sequence is a Cauchy sequence.

(e) In Rn, every Cauchy sequence converges.

Proof. See Theorem 3.2, 3.6, 3.11 in Rudin [1976].

Lower and Upper Limits: Let {sn} be a sequence of real numbers. The lower limit or limit inferior of
{sn} is defined by

lim inf
n→∞

sn := lim
n→∞

(
inf
m≥n

sm

)
≡ sup {inf {sm : m ≥ n} : n ≥ 0} . (3)

Similarly, the upper limit or limit superior of {sn} is defined by

lim sup
n→∞

sn := lim
n→∞

(
sup
m≥n

sm

)
≡ inf {sup{sm : m ≥ n} : n ≥ 0} . (4)

Equivalently, the lower and upper limits can be defined through the subsequential limits of {sn} as

lim inf
n→∞

sn = inf E and lim sup
n→∞

sn = supE,

where E ⊆ [−∞,∞] is the set of all subsequential limits of {sn}.

Proposition 2. Let {sn} be a sequence of real numbers.

(a) The lower and upper limits of {sn} always exist in R̄ = [−∞,∞] and

lim inf
n→∞

sn ≤ lim sup
n→∞

sn.

(b) When the ordinary limit limn→∞ sn exists in R = (−∞,∞),

lim inf
n→∞

sn = lim sup
n→∞

sn = lim
n→∞

sn.

Series: Given an (infinite) series
∑∞
k=1 ak, we say that the series converges if its partial sum sn =

∑n
k=1 ak

converges to s as n→∞. In this case, we write s =
∑∞
k=1 ak.

Proposition 3.
∑∞
k=1 ak converges if and only if for every ε > 0, there is an integer N such that∣∣∣∣∣

m∑
k=n

ak

∣∣∣∣∣ ≤ ε
if m ≥ n ≥ N .

You should also be familiar with some usual tests, such as root and ratio tests, for determining the conver-
gence of

∑∞
k=1 ak.

Continuity: Suppose X and Y are metric spaces, E ⊂ X, p ∈ E, and f maps E into Y. Then f is said to
be continuous at p if for every ε > 0 there exists a δ > 0 such that

dY (f(x), f(p)) < ε
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for all points x ∈ E for which dX(x, p) < δ.

Let f : X→ Y. We say that f is uniformly continuous on X if for every ε > 0 there exists δ > 0 such that

dY (f(p), f(q)) < ε

for all p and q in X for which dX(p, q) < δ.

Let f : X→ Y. We say that f is Lipschitz continuous if there exists a real constant K ≥ 0 such that

dY (f(p), f(q)) < K · dX(p, q)

for all p and q in X.

Notes: In STAT 512, we mainly deal with the function with range Y = R or Rn.

Proposition 4. f is Lipschitz continuous =⇒ f is uniformly continuous =⇒ f is continuous at every
p ∈ X.

Derivative of a Real Function: Let f : [a, b]→ R. Define the quotient

φ(t) =
f(t)− f(x)

t− x
(a < t < b, t 6= x).

The derivative of f at x is defined by
f ′(x) = lim

t→x
φ(t), (5)

provided this limit exists. The higher order derivatives can be defined inductively on f ′ and its derivatives.

Taylor’s Theorem: Suppose f is a real function on [a, b], n is a positive integer, f (n−1) is continuous on
[a, b], f (n) exists for every t ∈ (a, b). Let x, y be distinct points of [a, b]. Then, there exists a point θ between
x and y such that

f(y) =

n−1∑
k=0

f (k)(x)

k!
(y − x)k +

f (n)(θ)

n!
(y − x)n. (6)

See Theorem 5.15 in Rudin [1976] for its proof. For n = 1, it reduces to the mean value theorem.

Riemann-Stieltjes Integral: Let α be a monotonically increasing function on [a, b] with α(a) and α(b)
being finite. For any real function f which is bounded on [a, b] and a partition P of [a, b] as

a = x0 ≤ x1 ≤ · · · ≤ xn−1 ≤ xn = b

, we write ∆αi = α(xi)− α(xi−1) and

U(P, f, α) =

n∑
i=1

Mi∆αi and L(P, f, α) =

n∑
i=1

mi∆αi,

where Mi = sup
xi−1≤x≤xi

f(x) and mi = inf
xi−1≤x≤xi

f(x). If infP U(P, f, α) = supP L(P, f, α), then the Riemann-

Stieltjes integral of f with respect to α over [a, b] exists and is denoted by
∫ b
a
fdα ≡

∫ b
a
f(x)dα(x).

In STAT 512, the Riemann-Stieltjes integral and its notation will appear when we compute the expectation∫
xdF (x) of a random variable with cumulative distribution function (CDF) F or its more general statistical

functional
∫
g(x)dF (x) for some function g.

Some Integration Techniques:
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Proposition 5. Let f be an Riemann integrable on [a, b], i.e.,
∫ b
a
f(x)dx <∞. For any x ∈ [a, b], put

F (x) =

∫ x

a

f(t)dt.

Then F is continuous on [a, b], furthermore, if f is continuous at a point x0 of [a, b], then F is differentiable
at x0, and

F ′(x0) = f(x0).

Proof. See Theorem 6.20 in Rudin [1976] for the proof.

• Fundamental theorem of Calculus: Let f be an Riemann integrable on [a, b]. If there is a differ-
entiable function F on [a, b] such that F ′ = f , then∫ b

a

f(x)dx = F (b)− F (a).

• Integration by parts: Suppose F and G are differentiable functions on [a, b], whose derivatives
F ′ = f and G′ = g are both Riemannian integrable. Then,∫ b

a

F (x)g(x)dx = F (b)G(b)− F (a)G(a)−
∫ b

a

f(x)G(x)dx.

Uniform Convergence of a Sequence of Functions: We say that a sequence of functions {fn} converges
uniformly on E to a function f if for every ε > 0 there is an integer N such that n ≥ N implies

|fn(x)− f(x)| ≤ ε

for all x ∈ E.

Proposition 6. Let {fn} be a sequence of continuous functions on [a, b].

(a) If fn → f uniformly on [a, b], then f is continuous on [a, b].

(b) Let α be monotonically increasing on [a, b]. Suppose each fn is Riemann-Stieltjes integrable with respect
to α. If fn → f uniformly on [a, b], then f is also Riemann-Stieltjes integrable on [a, b] and∫ b

a

fdα = lim
n→∞

∫ b

a

fndα.

(c) Suppose that each fn is differentiable on [a, b] and the numerical sequence {fn(x0)} converges for some
point x0 on [a, b]. If {f ′n} converges uniformly on [a, b], then {fn} converges uniformly on [a, b] to a
function f and

f ′(x) = lim
n→∞

f ′n(x) for any x ∈ [a, b].

Proof. See the proof in Theorem 7.11, 7.16, 7.17 in Rudin [1976].

Differentiation of a Multivariate Function: Suppose E is an open set in Rn, f : E → Rm, and x ∈ E.
If there exists a linear transformation A of Rn into Rm such that

lim
h→0

|f(x + h)− f(x)−Ah|
|h|

= 0,
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then we say that f is differentiable at x, and we write f ′(x) = A. If f is differentiable at every x ∈ E, we
say that f is differentiable in E.
When m = 1, A = ∇f(x) becomes the gradient of f .

Partial Derivatives: We again consider a function f that maps an open set E ⊂ Rn into Rm. Let
{e1, ..., en} and {u1, ...,um} be the standard bases of Rn and Rm. The components of f are the real
functions f1, ..., fm defined by

f(x) =

m∑
i=1

fi(x)ui (x ∈ E).

For x ∈ E, 1 ≤ i ≤ m, 1 ≤ j ≤ n, we define the partial derivative as

∂fi
∂xj

(x) = lim
t→0

fi(x + tej)− fi(x)

t
,

provided the limit exists.

Inverse Function Theorem: Suppose f is a continuously differentiable (meaning that all of its first-order
partial derivatives are continuous) mapping of an open set E ⊂ Rn into Rn, f ′(a) is invertible for some
a ∈ E, and b = f(a). Then

(a) there exist open sets U and V in Rn such that a ∈ U, b ∈ V , f is one-to-one on U , and f(U) = V .

(b) if g is the inverse of f , which exists by (a), defined in V by

g(f(x)) = x (x ∈ U),

then g is continuously differentiable on V .

See the proof in Theorem 9.24 in Rudin [1976].

Implicit Function Theorem: Let f be a continuously differentiable mapping of an open set E ⊂ Rn+m

into Rn such that f(a, b) = 0 for some point (a, b) ∈ E.
Put A = (Ax, Ay) = f ′(a,y), where A is a linear transformation from Rn+m to Rn, Ax : Rn → Rn is the
linear transformation of its first n coordinates, and Ay : Rm → Rn is the linear transformation of its last m
coordinates. We assume that Ax is invertible.
Then, there exist open sets U ⊂ Rn+m and W ⊂ Rm, with (a, b) ∈ U and b ∈ W , having the following
property:

(a) To every y ∈W corresponds a unique x such that

(x,y) ∈ U and f(x,y) = 0.

(b) If the above x is defined to be g(y), then g is a continuously differentiable mapping of W into Rn,
g(b) = a,

f(g(y),y) = 0 (y ∈W ) and g′(b) = −(Ax)−1Ay.

See the proof in Theorem 9.28 in Rudin [1976].

Differentiation of Integrals: Suppose

(a) ϕ(x, t) is defined for a ≤ x ≤ b, c ≤ t ≤ d;

(b) α is a non-decreasing function on [a, b];

(c) ϕ(·, t) is Riemann-Stieltjes integrable with respect to α for every t ∈ [c, d];
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(d) ∂ϕ
∂t (x, ·) is continuous on (c, d) for all x ∈ [a, b].

Define f(t) =
∫ b
a
ϕ(x, t) dα(x) with t ∈ [c, d]. Then, ∂ϕ

∂t (·, s) is Riemann-Stieltjes integrable with respect to
α for every s ∈ [c, d], f ′(s) exists, and

f ′(s) =

∫ b

a

∂ϕ

∂t
(x, s) dα(x).

See Theorem 9.42 in Rudin [1976] for one possible proof.

In STAT 512, we sometimes need to consider the interchanges of differentiation/limit and integration with
measurable functions defined on a more general measure space (Ω,F , µ); see Remark 1 below. Therefore,
we provide some sufficient conditions under which the interchanges are valid.

Theorem 7. Let {fn} be a sequence of (Borel) measurable functions on (Ω,F , µ).

(a) (Fatou’s Lemma). If fn ≥ 0, then ∫
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
fn dµ.

(b) (Monotone Convergence Theorem). If 0 ≤ f1 ≤ f2 ≤ · · · and limn→∞ fn = f almost everywhere, then∫
lim
n→∞

fn dµ = lim
n→∞

∫
fn dµ.

(c) (Dominated Convergence Theorem). If limn→∞ fn = f almost everywhere and there exists an integrable
function g ( i.e.,

∫
gdµ <∞) such that |fn| ≤ g almost everywhere, then∫

lim
n→∞

fn dµ = lim
n→∞

∫
fn dµ.

(d) (Interchange of Differentiation and Integration). For any fixed θ ∈ R, let f(ω, θ) be a (Borel) measurable

function on Ω. Suppose that ∂f(ω,θ)
∂θ exists almost everywhere for θ ∈ (a, b) ⊂ R and that

∣∣∣∂f(ω,θ)
∂θ

∣∣∣ ≤
g(ω) almost everywhere, where g(ω) is an integrable function on Ω. Then, for each θ ∈ (a, b), ∂f(ω,θ)

∂θ
is integrable and

d

dθ

∫
f(ω, θ) dµ =

∫
∂f(ω, θ)

∂θ
dµ.

Proof. See Theorem 1.5.5, 1.5.7, 1.5.8 in Durrett [2019] as well as Theorem 1.1 and Example 1.8 in Shao
[2003].

Leibniz Integral Rule: Let f(x, t) be a function such that both f(x, t) and its partial derivative ∂f
∂t (x, t) are

continuous with respect to both t and x in some open set U ⊂ R2, including a(x) ≤ t ≤ b(x) and x0 ≤ x ≤ x1.
Suppose also that the functions a(x) and b(x) are both continuously differentiable for x0 ≤ x ≤ x1. Then,
for any x0 ≤ x ≤ x1,

d

dx

(∫ b(x)

a(x)

f(x, t)dt

)
= f(x, b(x)) · b′(x)− f(x, a(x)) · a′(x) +

∫ b(x)

a(x)

∂

∂x
f(x, t)dt.

Another approach1 to proving the above two results (differentiation of integrals or Leibniz integral rules) is
to use the Fubini’s theorem:

1See https://en.wikipedia.org/wiki/Leibniz_integral_rule.

https://en.wikipedia.org/wiki/Leibniz_integral_rule
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Theorem 8 (Fubini). Suppose X and Y are σ-finite measure spaces and X×Y is given the product measure.
If f is X × Y integrable, meaning that f is a measurable function and

∫
X×Y |f(x,y)|d(x,y) <∞, then∫

X

(∫
Y

f(x,y)dy

)
dx =

∫
Y

(∫
X

f(x,y)

)
dy =

∫
X×Y

f(x,y)d(x,y).

Remark 1. A measure µ : F → R is a nonnegatice countably additive set function with F being the σ-field
and

(a) µ(A) ≥ µ(∅) = 0 for all A ∈ F , and

(b) if An ∈ F is a countable sequence of disjoint sets, then

µ(∪iAn) =
∑
i

µ(An).

Let Ω be the sample space. Then, the measure µ is said to be σ-finite if there is a sequence of sets An ∈ F
so that µ(An) <∞ and ∪nAn = Ω.

• The probability measure P is a σ-finite measure with P(Ω) = 1.

• The Lebesgue measure on Rn is also a σ-finite measure. When X × Y are measurable in Rn+m, the
Fubini’s theorem provides a feasible way to compute double/multiple integrals.

Gamma Function and Stirling’s Formula: For x ∈ (0,∞), the Gamma function is Γ(x) =
∫∞

0
tx−1e−tdt.

While the exact value of Γ(x+ 1) is intractable for some x ∈ (0,∞), one can approximate Γ(x+ 1) when x
is large by Stirling’s formula (see 8.22 in Rudin 1976)

lim
x→∞

Γ(x+ 1)

(x/e)x
√

2πx
= 1. (7)

2 Linear Algebra

The review of Linear Algebra will be conducted on Topic 8 during the regular lectures. Other useful references
for linear algebra include

• S. Axler. Linear algebra done right. Springer, 3 edition, 2015. [Axler, 2015]

• R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge university press, 2 edition, 2012. [Horn
and Johnson, 2012]

3 Some Inequalities

Cauchy-Schwarz Inequality: For all vectors x and y if an inner product space, the Cauchy-Schwarz
inequality can be stated as

|〈x,y〉| ≤ ||x|| · ||y|| , (8)

where ||x|| =
√
〈x,x〉. In particular, equality hold if and only if x and y are linearly dependent. In Rn with

the standard inner product, the Cauchy-Schwarz inequality becomes:(
n∑
i=1

xiyi

)2

≤

(
n∑
i=1

x2
i

)(
n∑
i=1

y2
i

)
.
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Hölder Inequality: Let S be a measurable subset of Rn with the Lebesgue measure. Given two measurable
functions2 on S, the Hölder inequality is∫

S

|f(x)g(x)|dx ≤
(∫

S

|f(x)|pdx
) 1

p
(∫

S

|g(x)|qdx
) 1

q

, (9)

where p, q ∈ [1,∞] with 1
p + 1

q = 1. When p = ∞,
(∫
S
|f(x)|pdx

) 1
p := ||f ||∞ stands for the essential

supremum3 of |f |. If p, q ∈ (1,∞), then the equality holds if and only if there exist real numbers α, β ≥ 0,
not both of them zero, such that α|f(x)|p = β|g(x)|q almost everywhere on S with respect to the Lebesgue
measure.

When S = {1, ..., n} with the counting measure, the Hölder inequality becomes

n∑
i=1

|xiyi| ≤

(
n∑
i=1

|xi|p
) 1

p
(

n∑
i=1

|yi|q
) 1

q

for any (x1, ..., xn), (y1, ..., yn) ∈ Rn.

Minkowski Inequality: Let S be a measurable subset of Rn. Given two measurable functions f and g

with ||f ||p ≡
(∫
S
|f(x)|pdx

) 1
p <∞, ||g||p <∞, Minkowski inequality can be stated as

||f + g||p ≤ ||f ||p + ||g||p , (10)

with equality for p ∈ [1,∞) if and only if f = λg for some λ ≥ 0 or g ≡ 0. In the case when p = ∞, the
Minkowski inequality is still valid and ||f ||∞ is the essential supremum of |f |.

Like Hölder inequality, the Minkowski inequality can be specialized to sequences and vectors via the counting
measure (

n∑
i=1

|xk + yk|p
) 1

p

≤

(
n∑
i=1

|xk|p
) 1

p

+

(
n∑
i=1

|yk|p
) 1

p

for all real numbers x1, ..., xn, y1, ..., yn, where n is the cardinality of S.

Jensen’s Inequality: For a real convex function ϕ, real numbers x1, ..., xk in its domain, and positive
weights a1, ..., ak, Jensen’s inequality can be stated as

ϕ

(∑k
i=1 aixi∑k
i=1 ai

)
≤
∑k
i=1 aiϕ(xi)∑k

i=1 ai
. (11)

Equality holds if and only if x1 = · · ·xk or ϕ is linear on a domain containing x1, ..., xk.

3.1 Probability Form

We also present the above inequalities under the context of probability theory. For the probability space
(Ω,F ,P), let E denote the expectation operator. Given two random variables X and Y , we have that

• Cauchy-Schwarz inequality:

|EX,Y (XY )|2 ≤ EX(X2) · EY (Y 2),

where equality holds if and only if either EX(X2) = 0 or EY (Y 2) = 0, or PX,Y (X = cY ) = 1 for some
nonzero constant c ∈ R.
A useful corollary of the Cauchy-Schwarz inequality is that

|Cov(X,Y )|2 ≤ Var(X)Var(Y ),

2https://en.wikipedia.org/wiki/Measurable_function.
3https://en.wikipedia.org/wiki/Essential_infimum_and_essential_supremum.

https://en.wikipedia.org/wiki/Measurable_function
https://en.wikipedia.org/wiki/Essential_infimum_and_essential_supremum
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where Cov(X,Y ) = EX,Y [(X − E(X))(Y − E(Y ))] is the covariance between X and Y and Var(X) =
EX

[
(X − E(X))2

]
is the variance of X.

• Hölder inequality:

EX,Y |XY | ≤ (EX |X|p)
1
p (EY |Y |q)

1
q ≡ ||X||p ||Y ||q

with p, q ∈ [1,∞] and 1
p + 1

q = 1, where equality holds if and only if PX,Y (|X|p = c|Y |q) = 1 for some

nonzero constant c. Specifically, when p =∞, ||X||∞ = inf {M : PX(|X| > M) = 0}.
Let 1 ≤ r < s < ∞ and define p = s

r , q = p
p−1 . Applying Hölder inequality to the random variables

|X|r and 1Ω yields that

EX [|X|r] ≤ (EX [|X|s])
r
s .

It demonstrates that the r-th absolute moment is finite whenever the (higher) s-th moment is finite.
(This can also be proved using Jensen’s inequality.)

• Minkowski Inequality:

[EX,Y |X + Y |p]
1
p ≤ [EX |X|p]

1
p + [EY |Y |p]

1
p

for p ∈ [1,∞), where equality holds if and only if PX,Y (X = cY ) = 1 for some nonzero constant c or
PY (Y = 0) = 1.

• Jensen’s Inequality: Given a convex function ϕ,

ϕ (EX(X)) ≤ EX [ϕ(X)] ,

where equality holds if and only if either PX(X = c) = 1 for some constant c, or for every line a+ bx
that is tangent to ϕ at EX [X], PX (ϕ(x) = a+ bx) = 1.

Remark 2. Jensen’s inequality provides an insight into the rationale behind the maximum likelihood
estimator (MLE): Suppose X1, ..., Xn are independent and identically distributed (i.i.d.) from a dis-
tribution with density p(x; θ0), where θ0 ∈ Θ and Θ is a bounded subset in Rn. We find the MLE by
maximizing the log-likelihood function `(θ) =

∑n
i=1 log p(Xi; θ) because by Jensen’s inequality,

Eθ0 [`(θ0)]− Eθ0 [`(θ)] = n · Eθ0
[
log

p(X1; θ0)

p(X1; θ)

]
= n · Eθ0

[
− log

p(X1; θ)

p(X1; θ0)

]
≥ n ·

(
− logEθ0

[
p(X1; θ)

p(X1; θ0)

])
= −n log

∫
p(x; θ)

p(x; θ0)
· p(x; θ0)dx

= 0.

Also, in STAT 513, we will leverage the Jensen’s inequality to prove the non-descending properties of
EM algorithm [Dempster et al., 1977, Wu, 1983, McLachlan and Krishnan, 2007].

The proof of these inequalities under the context of probability theory can be found in https://www.math.

mcgill.ca/dstephens/556-2014/Handouts/Math556-05-Inequalities.pdf.

https://www.math.mcgill.ca/dstephens/556-2014/Handouts/Math556-05-Inequalities.pdf
https://www.math.mcgill.ca/dstephens/556-2014/Handouts/Math556-05-Inequalities.pdf


STAT 512 Quiz 1 11

References

S. Axler. Linear algebra done right. Springer, 3 edition, 2015.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em
algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):1–22, 1977.

R. Durrett. Probability: Theory and Examples, volume 49. Cambridge university press, 5th edition, 2019.

R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge university press, 2 edition, 2012.

G. J. McLachlan and T. Krishnan. The EM algorithm and extensions. John Wiley & Sons, 2007.

W. Rudin. Principles of mathematical analysis. McGraw-hill New York, 3 edition, 1976.

J. Shao. Mathematical statistics. Springer Science & Business Media, 2th edition, 2003.

C. J. Wu. On the convergence properties of the em algorithm. The Annals of statistics, pages 95–103, 1983.


	Multivariate Calculus (or Mathematical Analysis)
	Linear Algebra
	Some Inequalities
	Probability Form


