
STAT 512: Statistical Inference Autumn 2022

Quiz Session 10: Practice Final Problems
Yikun Zhang December 7, 2022

Problem 1 (Final problem in Autumn 2018). Suppose that X,Y, Z are independent standard normal N(0, 1)
random variables. Let

U = X, V = X + Y, W = X + Y + Z.

(a) What is the distribution of the random vector (U, V,W )?

(b) What is the conditional distribution of (V,W ) |U? Are V and W conditionally independent given U?
(Justify your answer.)

(c) What is the conditional distribution of (U,W ) |V ? Are U and W conditionally independent given V ?
(Justify your answer.)

(d) What is the conditional distribution of (U, V ) |W? Are U and V conditionally independent given W?
(Justify your answer.)

Solution. (a) Note that (X,Y, Z)T ∼ N3(0, I3) andU
V
W

 =

1 0 0
1 1 0
1 1 1

XY
Z

 := A

XY
Z

 .

By the linearity of multivariate normal distributions, the distribution of (U, V,W ) isU
V
W

 ∼ N3

(
A · 0, AI3AT

)
= N3

0
0
0

 ,

1 1 1
1 2 2
1 2 3

 .
(b) By the conditional normal distribution X1|X2 ∼ Nn1

(
µ1 + Σ12Σ−122 (X2 − µ2),Σ11,2

)
with Σ11,2 = Σ11−

Σ12Σ−122 Σ21 that we derived in the lecture, we know that(
V
W

)
|U ∼ N2

((
0
0

)
+

(
1
1

)
1−1(U − 0),

(
2 2
2 3

)
−
(

1
1

)
1−1(1, 1)

)
= N2

((
U
U

)
,

(
1 1
1 2

))
.

Since Cov(V,W |U) = 1 6= 0, V and W are not conditionally independent given U .

(c) Similarly, we know that(
U
W

)
|V ∼ N2

((
0
0

)
+

(
1
2

)
2−1(V − 0),

(
1 1
1 3

)
−
(

1
2

)
2−1(1, 2)

)
= N2

((
V
2
V

)
,

(
1
2 0
0 1

))
.

Since Cov(U,W |V ) = 0, U and W are conditionally independent given V .
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(d) Analogously, we know that(
U
V

)
|W ∼ N2

((
0
0

)
+

(
1
2

)
3−1(W − 0),

(
1 1
1 2

)
−
(

1
2

)
3−1(1, 2)

)
= N2

((
W
3

2W
3

)
,

(
2/3 1/3
1/3 2/3

))
.

Since Cov(U, V |W ) = 2
3 6= 0, U and V are not conditionally independent given W .

Problem 2 (Final problem in Autumn 2018). Two identical sealed envelopes are placed side-by-side on a
table in front of you. One contains a real number a, the other contains a real number b, where a and b are
unknown and fixed (nonrandom) with a 6= b. You choose one of the envelopes at random according to the
toss of a fair coin and open it. Let X1 denote the (random) number (either a or b) in the envelope that you
choose and let X2 denote the number in the second (unopened) envelope, which you give to your friend Tom.
You open the first envelope and observe X1. Consider the following two strategies:

(I) Tell Tom to open the second envelope and reveal X2. If X1 > X2, Tom pays you $1; if X1 < X2, you
pay Tom $1.

(II) Switch envelopes with Tom and open the second envelope, revealing X2. Now, if X1 > X2, you pay
Tom $1; if X1 < X2, Tom pays you $1.

Question (a): Which of these two strategies is preferable, or are they equivalent? Justify your answer.

Now consider a third strategy, which combines (I) and (II) as follows:

(III) After observing X1, you generate a standard normal random variable Z ∼ N(0, 1) independently of the
coin toss and use Z as a surrogate for X2 as follows: if X1 > Z, then you proceed according to Strategy
(I); while if X1 < Z, then you proceed according to Strategy (II).

Question (b): Which of these three strategies is preferable, or are they equivalent? Justify your answer by
means of a quantitative argument (not hand-waving).

Solution. Without loss of generality, we assume that a < b.

(a) Note that the joint distribution of (X1, X2) is

P(X1 = a,X2 = b) = P(X1 = b,X2 = a) =
1

2
.

Hence,

P (Strategy (I) wins you $1) = P (Strategy (II) wins you $1) =
1

2
,

so Strategies (I) and (II) are equivalent.

(b) We decompose the probability of winning $1 in Strategy (III) as follows:

P (Strategy (III) wins you $1) = P(Enter Strategy (I) when X1 = b) + P(Enter Strategy (II) when X1 = a)

= P(X1 = b,X1 > Z) + P(X1 = a,X1 < Z)

= P(Z < b|X1 = b) · P(X1 = b) + P(Z > a|X1 = a) · P(X1 = a)

= Φ(b) · 1

2
+ [1− Φ(a)] · 1

2

=
1

2
+

1

2
[Φ(b)− Φ(a)]
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>
1

2
,

where Φ is the CDF of N(0, 1) and Φ(b) > Φ(a) by our assumption. Therefore, Strategy (III) is preferable
in both cases.

The following problems are partially adopted from quiz sessions developed by Apara Venkat and Zhen Miao
for STAT 512 in Autumn 2021.

Problem 3. Suppose that a density f0 has its support on some fixed interval I ⊂ (0,∞), e.g., I = (a, b)
with 0 < a < b, and we observe X1, ..., Xn from a distribution fS satisfying

fS(x) =
xf0(x)

µ0
with µ0 =

∫ b

a

tf0(t) dt.

Assume that ν0 =
∫ b
a
f0(t)
t dt <∞ and we define

µS =

∫ ∞
0

ufS(u) du.

(a) Show that µS > µ0.

(b) Using (a), prove that X̄n = 1
n

∑n
i=1Xi is not a consistent estimator of µ0.

(c) Define Yi = 1
Xi

for i = 1, . . . , n. Show that 1/Ȳn = n/
(∑n

i=1
1
Xi

)
is a consistent estimator of µ0.

Proof. (a) By direct calculations,

µS =

∫ ∞
0

ufS(u)du

=

∫ ∞
0

u
uf0(u)

µ0
du

=
1

µ0

∫ ∞
0

u2f0(u)du

=
1

µ0
EZ∼f0

[
Z2
]

>
1

µ0
[EZ∼f0(Z)]

2
(by Jensen’s inequality)

= µ0,

where the equality does not hold because g(z) = z2 is a nonlinear function and f0 has its support as an
interval.

(b) From law of large numbers, X̄n
p→ µS . By (a), we know that X̄n cannot be a consistent estimator of µ0.

(c) We start by finding the mean of Y = 1
X as

EY =

∫ ∞
0

1

x
fS(x)dx

=

∫ ∞
0

f0(x)

µ0
dx

=
1

µ0

By law of large numbers, Ȳn
p→ 1

µ0
. Finally, by continuous mapping theorem, we have 1/Ȳn

p→ µ0.
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Problem 4. Let A,B,C
i.i.d.∼ Uniform(0, 1). Consider the polynomial f(x) = Ax2 + Bx + C. What is the

probability that f(x) has real roots?

Solution. Recall that a quadratic polynomial has real roots if and only if B2 ≥ 4AC. Therefore,

P(f(x) has real roots) = P(B2 ≥ 4AC)

= P(−2 logB ≤ − log 4− logA− logC).

Now, let U = − logB, V = − logA,W = − logC. It can be shown that U, V,W are i.i.d. Exponential(1)
because the CDF of U is

P(U ≤ u) = P(− logA ≤ u) = P(A ≥ e−u) = 1− e−u with u ∈ (0,∞).

In addition, 2U ∼ Exponential(1/2), V +W ∼ Gamma(2, 1). Thus, define X = 2U, Y = V +W . We have,

P(f(x) has real roots) =

∫ ∞
y=log 4

∫ − log 4+y

x=0

1

2
e−x/2dxye−ydy

=

∫ ∞
y=log 4

(1− e(log 4−y)/2)ye−ydy

=

∫ ∞
y=log 4

(1− 2e−y/2)ye−ydy

=

∫ ∞
y=log 4

(ye−y − 2ye−3y/2)dy

Note that ∫
te−ktdt = t

∫
e−ktdt−

∫
−1

k
e−ktdt

= −e
−kt

k2
(kt+ 1) + c

=⇒
∫ ∞
a

te−ktdt =
eak

k2
(ak + 1).

Therefore,

P(f(x) has real roots) =

∫ ∞
y=log 4

(ye−y − 2ye−3y/2)dy

=
e− log 4

12
(log 4 + 1)− 2

e−3 log 4/2

(3/2)2

(
3

2
log 4 + 1

)
=

1 + log 4

4
− 1

6

(
log 4 +

2

3

)
.

Problem 5. Let X1, . . . , Xn be independent and identically distributed. Define X(n) = max1≤i≤nXi.

(a) Suppose Xi ∼ Beta(1, β). Find a γ ≥ 0 such that nγ(1−X(n)) converges in distribution.

(b) Suppose Xi ∼ Exponential(1). Find a sequence of constants {an}∞n=1 such that X(n) − an converges in
distribution.
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Note that both questions concern the existence of such values. We do not need to enumerate all possible
values that satisfy the results.

Solution. (a) Note that the density of Xi is

pX(x) =
(1− x)β−1

B(1, β)
= β(1− x)β−1

Now, let us find the distribution of X(n).

P (X(n) ≤ x) = [P (X1 ≤ x)]
n

=

[∫ x

0

β(1− t)β−1dt
]n

=

[∫ 1

1−x
βuβ−1du

]n
=
[
1− (1− x)β

]n
Next, let us analyze the quantity in question. Assume x ∈ (0, 1).

P (nγ(1−X(n)) ≤ x) = P
(

1−X(n) ≤
x

nγ

)
= P

(
X(n) ≥ 1− x

nγ

)
= 1− P

(
X(n) ≤ 1− x

nγ

)
= 1−

[
1− xβ

nβγ

]n
First, we note that if γ = 0, then

lim
n→∞

P (nγ(1−X(n)) ≤ x) = lim
n→∞

1−
[
1− xβ

]n
= 1

Therefore, X(n)
p→ 1. Think about why this makes sense. Second, we analyze for the general γ 6= 0. Assume

the limit L exists

L = lim
n→∞

[
1− xβ

nβγ

]n

=⇒ logL = lim
n→∞

log
(

1− xβ

nβγ

)
1
n

Note for all γ > 0, the limit is of the form, 0/0. So we use L’Hospital’s rule,

logL = lim
n→∞

1(
1− xβ

nβγ

) βγxβ

nβγ+1

− 1
n2

= lim
n→∞

−n2 βγxβ

nβγ+1 − nxβ

= lim
n→∞

− βγxβ

nβγ−1 − xβ

n
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If βγ = 1, we have nβγ−1 = 1. This gives us

logL = −βγxβ = −xβ

=⇒ L = e−x
β

=⇒ lim
n→∞

P (nγ(1−X(n)) ≤ x) = 1− e−x
β

This limit is actually the CDF of the Weibull distribution. This is a distribution that commonly appears
in survival analysis and failure analysis in reliability engineering. It is also considered an extreme-value
distribution which has connections with logit-choice models.1

We worked out a very similar problem on November 10, 2021. Compare the two results and see if you observe

any similarities. It might help to notice that Beta(1, 1)
d
= Uniform(0, 1). As practice, you can work out what

happens when γ 6= 1/β.

(b) First, let us find the distribution of X(n),

P (X(n) ≤ x) = (P (X1 ≤ x))
n

=
(
1− e−x

)n
=⇒ P (X(n) − an ≤ x) = P (X(n) ≤ x+ an)

=
(
1− e−x−an

)n
Thinking along the same lines as part (a),

lim
n→∞

P (X(n) − an ≤ x) = lim
n→∞

(
1− e−x

ean

)n
Note that this limit becomes well-defined when ean = n i.e., an = log n. Then, we have

lim
n→∞

P (X(n) − an ≤ x) = lim
n→∞

(
1− e−x

n

)n
= e−e

−x

This turns out to be the CDF of the Gumbel distribution.2 This is also an extreme-value distribution and
has connections with logistic regression (see the practice problem below).

As practice, try to work out what happens when an = k log n, where k > 1 is an integer.

As more practice, consider the two independent random variables X,Y (with support all over R) drawn from
a Gumbel distribution with parameters µX , µY ∈ R and β > 0. The density is given by

pX(x) =
1

β
e−( x−µXβ +e−x)

pY (y) =
1

β
e−( x−µYβ +e−y)

Show that X − Y follows a logistic distribution with parameters (µX − µY , β). A logistic distribution with
parameters a, b has CDF

1

1 + e−(x−a)/b
, x ∈ R

1See https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution
2This distribution is named after Emil Gumbel, who developed extreme value theory. Interestingly, he investigated political

murders in Germany after losing his friend. Eventually the Nazis forced him out of this professorship at the University of
Heidelberg.

https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution
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You might recognize the CDF as the sigmoid function from your machine learning classes.

Also show that if Z ∼ Exponential(1), then − logZ follows a standard Gumbel distribution i.e., has param-
eters µ = 0, β = 1.

Problem 6. Let X1, . . . , Xn
i.i.d.∼ Beta(θ, 1), whose density is θxθ−1 with θ > 0 and 0 < x < 1. Find the

MLE of θ. Also find the MLE of 1/θ. Is the MLE of 1/θ unbiased?

Solution. We have the likelihood of the data,

L(X1, . . . , Xn; θ) =

n∏
i=1

pXi(xi; θ)

= θn

(
n∏
i=1

xi

)θ−1
Therefore the log-likelihood is,

`(θ) = logL(X1, . . . , Xn; θ)

= n log θ + (θ − 1)

n∑
i=1

log xi

Now, we maximize this

d`(θ)

dθ

set
= 0

=⇒ n

θ
+

n∑
i=1

log xi = 0

=⇒ θ̂MLE = − n∑n
i=1 log xi

The invariance property says that if θ̂ is the MLE of θ, then the MLE of τ(θ), where τ is some function, is

τ(θ̂). Therefore, the MLE of 1
θ ,

1

θ̂MLE

= −
∑n
i=1 log xi
n

Next, we need to find E
[

1

θ̂MLE

]
and compare it with 1

θ .

To do this, we will start by finding E [logX1]. There are few ways to do this. One way is to do a direct

calculation of
∫ 1

x=0
log x · θxθ−1dx. We will do it by finding the distribution of − logXi as that gives us a

useful result. Let Yi = − logXi = g(Xi). Then

pY (y) = pX(g−1(y))

∣∣∣∣ ddy g−1(y)

∣∣∣∣ = pX(e−y)

∣∣∣∣ ddy e−y
∣∣∣∣

= θe−y(θ−1)e−y

= θe−θy

So Yi ∼ Exp(θ). Therefore, E[Yi] = 1/θ. This gives,

E
[

1

θ̂MLE

]
= E

[
−
∑n
i=1 logXi

n

]
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=
1

n

n∑
i=1

E[Yi]

=
1

θ

So the MLE of 1/θ is unbiased.

Problem 7. Let F denote the true distribution (CDF) of a random variable. Let X1, . . . , Xn
i.i.d.∼ F . Denote

the empirical CDF by F̂n, which places an equal point mass on each Xi. Suppose we want to estimate
θ := T (F ). We denote the plug-in estimate of θ as θ̂n := T (F̂n).

Find the plug-in estimate for the following quantities:

(a) Mean, θ = E[X]

(b) Variance, θ = Var(X)

(c) Skewness, θ = E[X−µ]3
σ3

(d) The p-th quantile.

Solution. The strategy to find plug-in estimates is to first find the function θ = T (F ). Once we find T , the

plug-in estimate is as simple as replacing F with F̂n in T .

(a) Here the mean E[X] =
∫
xdF (x). Therefore, T (F ) =

∫
xdF (x). This gives us the following plug-in

estimate

θ̂n = T (F̂n)

=

∫
xdF̂n(x)

=
1

n

n∑
i=1

Xi

(b) We can write the variance as

θ = Var(X) =

∫
x2dF (x)−

[∫
xdF (x)

]2
Therefore, T (F ) =

∫
x2dF (x)−

[∫
xdF (x)

]2
. This gives our plug-in estimate,

θ̂n = T (F̂n)

=

∫
x2dF̂n(x)−

[∫
xdF̂n(x)

]2
=

1

n

n∑
i=1

X2
i −

(
Xn

)2
=

1

n

n∑
i=1

(Xi −Xn)2

Notice that this is different from the sample variance where instead of 1/n, we have 1/(n− 1).
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(c) Once again we write θ as a function of the CDF,

θ =
E[X − µ]3

σ3

=

∫
(x−

∫
tdF (t))3dF (x){∫

(x−
∫
tdF (t))2dF (x)

}3/2
= T (F )

So, the plug-in estimate is

θ̂n = T (F̂n)

=

∫
(x−

∫
tdF̂n(t))3dF̂n(x){∫

(x−
∫
tdF̂n(t))2dF̂n(x)

}3/2

From previous problems,
∫
xdF̂n(x) = Xn, and σ̂2 = 1

n

∑n
i=1(Xi−Xn)2 is the plug-in estimate for variance.

Therefore,

θ̂n =

∫
(x−Xn)3dF̂n(x)

σ̂3/2

=

∑n
i=1(Xi −Xn)3

nσ̂3/2

(d) By definition, the p-th quantile is θ = F−1(p). Therefore the plug-in estimate is θ̂n = F̂−1n (p).

Problem 8. Let X,Y be two random variables. Define the correlation as ρ = E[(X−µX)(Y−µY )]
σXσY

. Define the
joint distribution of (X,Y ) as F . Find the plug-in estimate of ρ.

Solution. First, let us find the mean and variance of the two random variables as a function of the CDF F :

µX = E[X] =

∫
xdF (x, y)

= T1(F )

µY = E[Y ] =

∫
ydF (x, y)

= T2(F )

σ2
X = Var(X) =

∫
x2dF (x, y)− [µX ]

2

= T3(F )− [T1(F )]
2

σ2
Y = Var(X) =

∫
y2dF (x, y)− [µY ]

2

= T4(F )− [T2(F )]
2

Now, let us move to then numerator:

E[(X − µX)(Y − µY )] =

∫
(x− T1(F ))(y − T2(F ))dF (x, y)

=

∫
xydF (x, y)︸ ︷︷ ︸
=T5(F )

−T2(F )

∫
xdF (x, y)− T1(F )

∫
ydF (x, y) + T1(F )T2(F )
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= T5(F )− T1(F )T2(F )

Therefore,

ρ =
T5(F )− T1(F )T2(F )[

(T3(F )− [T1(F )]
2
)(T4(F )− [T2(F )]

2
)
]1/2

The plug-in estimate is

ρ̂ =
T5(F̂n)− T1(F̂n)T2(F̂n)[

(T3(F̂n)−
[
T1(F̂n)

]2
)(T4(F̂n)−

[
T2(F̂n)

]2
)

]1/2
From Problem 1,

ρ̂ =
T5(F̂n)−XnY n[

1
n

∑n
i=1(Xi −Xn)2 · 1n

∑n
i=1(Yi − Y n)2

]1/2
Finally, T5(F̂n) = 1

n

∑n
i=1XiYi. This gives,

ρ̂ =
1
n

∑n
i=1XiYi −XnY n[

1
n

∑n
i=1(Xi −Xn)2 · 1n

∑n
i=1(Yi − Y n)2

]1/2
=

∑n
i=1(Xi −Xn)(Yi − Y n)[∑n

i=1(Xi −Xn)2 ·
∑n
i=1(Yi − Y n)2

]1/2
where showing the last equality needs some algebra.


