Lab 7: Numerical Analysis

INSERT YOUR NAME HERE (INSERT YOUR UW NETID HERE)

Due by 23:59pm on Mar 8, 2024

Total Points: 30

Part 1. Basic Root-Finding Problems (8 pts)

Use both the bisection method and fixed-point iteration to find an approximation to $\sqrt[3]{25}$ that is accurate to within 10^{-7}.

1. For the bisection method, use $f(x)=x^{3}-25$ with the search interval $[1,3]$.
2. For the fixed-point iteration, use $g(x)=\frac{2 x^{3}+25}{3 x^{2}}$ to identify the fixed point $g(x)=x$ with some initial point (says, $p_{0}=1$ or $p_{0}=2$).
\# Your code goes here

Part 2. Non-quadratic Convergence of Newton's Method (10 pts)

Recall that Newton's method does not exhibit quadratic convergence when one of the following two cases occur:

- Case 1: The derivative of the function f is zero at the root p with $f(p)=0$.
- Case 2: The second-order derivative of the function f does not exist at the root p with $f(p)=0$.

We already demonstrate the exact linear convergence of Newton's method under Case 1 in the Lecture 8 slides. Now, we will explore Case 2 by implementing Newton's method on $f(x)=x+x^{\frac{4}{3}}$. In addition, output the limiting point p^{*} of Newton's method under the initialization $p_{0}=3$ and the tolerance level $\epsilon=10^{-13}$. Moreover, apply the Aitken's Δ^{2} method to the sequence produced by Newton's method. Finally, plot the logarithm of the error $\left|p_{n}-p^{*}\right|$ against the number of iterations for both the Newton's method and Aitken's Δ^{2} method in the same plot. (Hint: You can adopt the code in Lecture 8 slides, but the ylim and legend location for the plot need adjusting.)

```
library(latex2exp)
# Your code goes here
```


Part 3. Numerical Differentiation and Integration ($6+6 \mathrm{pts}$)

1. Compute the first-order derivative of $f(x)=\log (x)+\cos (x)-\sqrt{x}$ at $x=2$ using the forward-difference, three-point endpoint formula, and five-point midpoint formula with $h=0.005$. Then, also compute its second-order derivative at $x=2$ using the second-order derivative midpoint formula. Output all these values. Finally, also output $f^{\prime}(2)$ and $f^{\prime \prime}(2)$ that are computed by hand with R as your calculator.
```
# Your code goes here
```

2. Compute the integral $\int_{0}^{\pi} \exp (2 \cos (x)) d x$ using the trapezoidal rule, Simpson's rule, composite Simpson's rule with $n=60$, and composite Trapezoidal rule with $n=30$. Output all these values. In addition, output the integral value using the build-in function integrate().
\# Your code goes here
