
Lab 6: Simulations

INSERT YOUR NAME HERE (INSERT YOUR UW NETID HERE)

Due by 23:59pm on Feb 29, 2024

Total Points: 45

Part 1. Random Number Generation and ECDFs (4+5+5 pts)
1. Generate the following objects, save them to variables (with names of your choosing), and call head()

on those variables.
• A vector with 60 draws from Beta(0.1, 0.1).
• A vector of 200 characters sampled with replacement uniformly from “A”, “G”, “C”, and “T”.
• A data frame with a column x that contains 100 draws from Unif(0, 3), and a column y that

contains 100 draws of the form yi ∼ Unif(0, xi), where xi is the i-th element of column x. Do this
without using explicit iteration.

set.seed(123) # Don't change this line
# Your code goes here

2. You are given a function called plotCumMeans() to plot the cumulative sample mean as the sample
size increases.

• The first argument rfun stands for a function which takes one argument n and generates this many
random numbers when called as rfun(n).

• The second argument n.max is an integer which tells the number samples to draw. As a side effect, the
function plots the cumulative mean against the number of samples.

# plotCumMeans: plot cumulative sample mean as a function of sample size
# Inputs:
# - rfun: function which generates random draws
# - n.max: number of samples to draw
# Ouptut: none
plotCumMeans = function(rfun, n.max) {

samples = rfun(n.max)
plot(1:n.max, cumsum(samples) / 1:n.max, type = "l",

xlab = "Cumulative sample size", ylab = "Sample mean")
}

Use this function to make plots for the following distributions, with n.max = 20000. Then answer: do the
sample means start concentrating around the appropriate value as the sample size increases?

• N(−3, 10).
• Exp(mean = 5).
• Cauchy(location = −1, scale = 2).

Hint: for each case, you should construct a new anonymous function to pass as the rfun argument to
plotCumMeans(). For instance, you should pass function(n) rnorm(n, mean = -3, sd = sqrt(10)) as
the rfun argument to plotCumMeans() for the first case.
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set.seed(123) # Don't change this line
# Your code goes here

3. For the same distributions in Part 1-2 above, we will do the following.
• Generate 10, 100, 1000 random samples from each of the following distributions.

– N(−3, 10), where 10 is the variance.
– Exp(mean = 5).

• Generate 10, 50, 100 random samples from the following distribution.
– Cauchy(location = −1, scale = 2).

• On a single plot, display the ECDFs (empirical cumulative distribution functions) from each set of
samples, and the true CDF, with each curve being displayed in a different color.

In order to do this, we will write a function plotECDF(rfun, pfun, sizes) which takes as its arguments
the single-argument random number generating function rfun, the corresponding single-argument cumulative
distribution function pfun, and a vector of sample sizes sizes for which to plot the ecdf.

We’ve already started to define plotECDF() below, but we’ve left it incomplete. Fill in the definition by
editing the lines with “##” and “??”, and then run it on the same distributions as in Part 1-2.

• Examine the plots and discuss how the ECDFs converge as the sample size increases.

Note: make sure to remove eval=FALSE, after you’ve edited the function, to see the results.
# plotECDF: plots ECDFs along with the true CDF, for varying sample sizes
# Inputs:
# - rfun: function which generates n random draws, when called as rfun(n)
# - pfun: function which calculates the true CDF at x, when called as pfun(x)
# - sizes: a vector of sample sizes
# Output: none

plotECDF = function(rfun, pfun, sizes) {
# Draw the random numbers
## samples = lapply(sizes, ??)

# Calculate the grid for the CDF
grid.min = min(sapply(samples, min))
grid.max = max(sapply(samples, max))
grid = seq(grid.min, grid.max, length=1000)

# Calculate the ECDFs
## ecdfs = lapply(samples, ??)
evals = lapply(ecdfs, function(f) f(grid))

# Plot the true CDF
## plot(grid, ??, type="l", col="black", xlab="x", ylab = "P(X <= x)", lwd=3)

# Plot the ECDFs on top
n.sizes = length(sizes)
cols = rainbow(n.sizes)
for (i in 1:n.sizes) {

lines(grid, evals[[i]], col=cols[i], lwd=1.5)
}
legend("topleft", legend=sizes, col=cols, lwd=3)

}

set.seed(123) # Don't change this line
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# Your code for plotting goes here

Part 2. Drug Effect Simulation (2+2+3+4+2+3 pts)
We continue studying the drug effect model that was discussed in Lecture 6 Slides. Recall that we believe
those who are not given the drug experience a reduction in tumor size of percentage as:

Xno drug ∼ 100 · Exp(mean = R), R ∼ Unif(0, 1),

whereas those who were given the drug experience a reduction in tumor size of percentage as:

Xdrug ∼ 100 · Exp(mean = 2).

1. Look the code chunk in the lecture that generated data according to the above model. Write a function
around this code called simulateData() that takes two arguments:

• n: the sample size (number of subjects in each group) with a default value of 60;
• mu_drug: the mean for the exponential distribution that defines the drug tumor reduction measurements

with a default value of 2.

Your function should return a list with two vectors called no_drug and drug. Each of these two vectors
should have length n, containing the percentage reduction in tumor size under the appropriate condition (not
taking the drug or taking the drug).
# Your code goes here

2. Run your function simulateData() without any arguments (hence, relying on the default values of n and
mu_drug), and store the output in results1. Print out the first 6 values in both the results1$no_drug
and results1$drug vectors. Now, run simulateData() again, and store its output in results2.
Again, print out the first 6 values in both the results2$no_drug and results2$drug vectors. We
have effectively simulated two hypothetical datasets. Note that we shouldn’t expect the values from
results1 and results2 to be the same.

set.seed(123) # Don't change this line
# Your code goes here

3. Compute the following three numbers: the absolute difference in the mean values of no_drug between
results1 and results2, the absolute difference in the mean values of drug between results1 and
results2, and the absolute difference in mean values of no_drug and drug in results1.

Answer in words: Of these three numbers, which one is the largest, and does this make sense?
# Your code goes here

4. Now, we want to visualize the simulated data. Fortunately, the code to visualize the data is already
provided for you in our Lecture 6 slides. Write a function around this code, called plotData() that
takes just one argument data, which is a list with components drug and no_drug.

To be clear, this function should create a single plot, with two overlaid histograms, one fordata$no_drug (in
gray) and one for data$drug (in red), with the same 20 bins. It should also overlay a density curve for each
histogram in the appropriate colors, and produce a legend. Once written, call plotData() on both results1
and results2.
# Your code goes here

5. Generate a new simulated dataset using simulateData() where n=1000 and mu_drug=1.1, and plot
the results using plotData(). In one or two sentences, explain the differences that you see between
this plot and the two you produced in the last problem.
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# Your code goes here

6. Combine the simulateData() function, where n=2000 and mu_drug=1.6, with the replicate() func-
tion that we learned in Lecture 6 slides to generate 3000 simulated datasets and compute the absolute
difference in mean values of no_drug and drug for each of the simulated dataset. Output both the
mean and variance of all these absolute differences.

set.seed(123) # Don't change this line
# Your code goes here

Part 3. Bootstrap (3+7+5 pts)
In this problem, you will use the nonparametric/empirical and parametric bootstrap to estimate the mean of
an exponential distribution Exponential(λ) with density

f(x) = λ exp(−λx) for x ≥ 0.

Suppose that you are given some data X_dat from an exponential distribution with rate λ = 1
3 as follows.

You may need to read about the relation between the rate λ of the exponential distribution Exponential(λ)
and its mean by typing ?rexp.
# Don't change this chunk
set.seed(123)
X_dat = rexp(100, rate = 1/3)

1. Compute and output the empirical mean T = X̄n and its standard error of X_dat. In addition, plot
the histogram of X_dat with freq=FALSE.

# Your code goes here

2. Use the nonparametric bootstrap with the re-sampling times as B = 3000 to estimate and output the
standard error for T . In addition, output the normal, pivotal, and percentile confidence intervals with
the nominal level 90%.

• Answer in words: Do all the confidence intervals cover the empirical mean T = X̄n of X_dat?

• Plot the histogram of these B = 3000 bootstrap statistics with freq=FALSE. Describe in words about
its shape.

set.seed(123) # Don't change this line
# Your code goes here

3. Assume that you know the data X_dat come from an exponential distribution Exponential(λ), but its
rate λ is unknown. Estimate the rate λ by the empirical mean T = X̄n. Then, use the parametric
bootstrap with the re-sampling times as B = 3000 to estimate and output the standard error for T . In
addition, output the normal, pivotal, and percentile confidence intervals with the nominal level 90%.

set.seed(123) # Don't change this line
# Your code goes here

Part 4. Validity of the Bootstrap Confidence Intervals (Extra Credit: 5 pts)
Note: The extra credit in the problem can only be applied to any of your lost points in this Lab 6 assignment.
The total points that you can earn for Lab 6 are still capped at 45.

We again use the exponential distribution with rate λ = 1
3 to check the validity of normal, pivotal, and

percentile confidence intervals based on the nonparametric bootstrap. Taking the normal confidence interval
as an example, we do the following procedure.
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1. Generate X_dat from an exponential distribution with n = 100 and rate λ = 1
3 and compute the mean

statistic T = X̄n of X_dat.

2. Use the nonparametric bootstrap with the re-sampling times as B = 3000 to construct the normal
confidence interval with nominal level 90%.

3. Repeat Steps 1 and 2 for N = 600 times and compute the proportion of normal confidence intervals
covering the true mean 1

λ = 3. Is this proportion close to 90%? (Hint: You may need two nested
replicate() functions or use a replicate() function within the for loop.)

Do the same procedure for the pivotal and percentile confidence intervals with nominal level 90%. Which
type of the confidence interval is closest to 90%?
set.seed(123) # Don't change this line
# Your code goes here
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