
Lab 4: Data Manipulation and Visualization

INSERT YOUR NAME HERE (INSERT YOUR UW NETID HERE)

Due by 23:59pm on Feb 13, 2024

Total Points: 70 pts

Part 1. Pipes to Base R (2+2+2+2 pts)
Loading the tidyverse package:
library(tidyverse)

For each of the following code blocks, which are written with pipes, write equivalent code in base R (to do
the same thing).

1. Base R code:
letters %>%

toupper %>%
paste(collapse = "+")

[1] "A+B+C+D+E+F+G+H+I+J+K+L+M+N+O+P+Q+R+S+T+U+V+W+X+Y+Z"
Your code here

2. Base R code:
set.seed(123)
rnorm(1000) %>%

hist(breaks = 30, main = "N(0,1) draws", col = "green", prob = TRUE)

1

N(0,1) draws

.

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

Your code here

3. Base R code:
set.seed(123)
rnorm(1000) %>%

hist(breaks=30, plot=FALSE) %>%
`[[`("density") %>%
max

[1] 0.42
Your code here

4. Base R code:
" Ceci n'est pas une pipe " %>%
gsub("une", "un", .) %>%
trimws

[1] "Ceci n'est pas un pipe"
Your code here

Part 2. Base R to Pipes (2+2+2+2 pts)
For each of the following code blocks, which are written in base R, write equivalent code with pipes (to do
the same thing).

1. Hint: Use the dot ., as seen above in 1-4, or in the lecture slides.
paste("Your grade is", sample(c("A","B","C","D","R"), size = 1))

[1] "Your grade is A"

2

Your code here

2. Hint: use the dot . again, in order to index state.name directly in the last pipe command. In addition,
you can view state.x77[,"Illiteracy"] as the entire object when writing your pipes code.

state.name[which.max(state.x77[,"Illiteracy"])]

[1] "Louisiana"
Your code here

3. Note: str.url is defined for this question and the next one; you can simply refer to it in your solution
code (it is not part of the code you have to convert to pipes). In addition, you can ignore the difference
between the headers from the output of your pipes code and the original base R code.

str.url = "https://github.com/zhangyk8/zhangyk8.github.io/raw/master/_teaching/file_stat302/Data/king.txt"

lines = readLines(str.url)
text = paste(lines, collapse=" ")
words = strsplit(text, split="[[:space:]]|[[:punct:]]")[[1]]
wordtab = table(words)
wordtab = sort(wordtab, decreasing=TRUE)
head(wordtab, 10)

words
of the to and a be will that is
203 98 98 58 40 37 32 25 24 23
Your code here

4. Hint: the only difference between this and the last part is the line words = words[words != ""]. This
is a bit tricky line to do with pipes: use the dot ., once more, and manipulate it as if were a variable
name.

lines = readLines(str.url)
text = paste(lines, collapse=" ")
words = strsplit(text, split="[[:space:]]|[[:punct:]]")[[1]]
words = words[words != ""]
wordtab = table(words)
wordtab = sort(wordtab, decreasing=TRUE)
head(wordtab, 10)

words
of the to and a be will that is we
98 98 58 40 37 32 25 24 23 21
Your code here

Part 3. Practice with dplyr Verbs (2+2+2+2+2+3+3 pts)
We will look at a data set on 97 men who have prostate cancer (from the book The Elements of Statistical
Learning). There are 9 variables measured on these 97 men:

1. lpsa: log PSA score.
2. lcavol: log cancer volume.
3. lweight: log prostate weight.
4. age: age of patient.
5. lbph: log of the amount of benign prostatic hyperplasia.
6. svi: seminal vesicle invasion (0 means no SVI).

3

http://statweb.stanford.edu/~hastie/ElemStatLearn/
http://statweb.stanford.edu/~hastie/ElemStatLearn/

7. lcp: log of capsular penetration.
8. gleason: Gleason score.
9. pgg45: percent of Gleason scores 4 or 5.

Read the prostate cancer data into R as a data frame.
pros_df = read.table("https://github.com/zhangyk8/zhangyk8.github.io/raw/master/_teaching/file_stat302/Data/pros.dat")

In the following, you are required to use pipes and dplyr verbs to answer questions on pros_df.

1. Among the men whose lcp value is equal to the minimum value (across the entire data set), report the
range (min and max) of lpsa.

Your code goes here

2. Order the rows by decreasing age, then display the rows from men who are strictly older than 70 and
without SVI.

Your code goes here

3. Order the rows by decreasing age, then decreasing lpsa score, and display the rows from men who are
strictly older than 70 and without SVI, but only the age, lpsa, lcavol, and lweight columns. Hint:
arrange() can take two arguments, and the order you pass in them specifies the priority.

Your code goes here

Below, we read in a dataset of the 1000 fastest times ever recorded for the 100m sprint in women’s track.
sprint_w = read.table(

file="https://github.com/zhangyk8/zhangyk8.github.io/raw/master/_teaching/file_stat302/Data/sprint.w.txt",
sep="\t", quote="", header=TRUE)

In the following, use pipes and dplyr verbs to answer questions on sprint_w.

4. Order the rows by increasing Wind value, and then display only the women who ran at most 10.7
seconds.

Your code goes here

5. Order the rows by terms of increasing Time, then decreasing Wind, and again display only the women
who ran at most 10.7 seconds, but only the Time, Wind, Name, and Date columns.

Your code goes here

6. Select a data frame from sprint_w with only Time and Wind columns using data where Wind values that
are nonpositive. Then, coerce all the entries of the selected data frame to numeric values and subset
those rows without NA. Print the number of rows in the final data frame and plot Time versus Wind
columns. Hint: note that for a data frame, df with columns colX and colY, you can use plot(colY ~
colX, data = df), to plot df$colY (y-axis) versus df$colX (x-axis). Hint: drop_na() in the tidyr
package allows you to drop rows based on NA values.

Your code goes here

7. Based on the selected data frame in the last subquestion, further subset a data frame with the single
fastest Time per Wind value. Add this scatterplot to the plot in the last subquestion using different
color and point type. In addition, set the point size of the plot in the last subquestion as cex=2 and
the point size of the added scatterplot as cex=1 (That is, your new data frame and added plot should
be as in the last part, but among points that share the same x value, only the point with the lowest y
value should be drawn.)

Your code goes here

4

Part 4: Practice with tidyr Verbs (2+3+3+4+2+3+3 pts)
Below, we read in a dataset of the 1000 fastest times ever recorded for the 100m sprint in men’s track.
sprint_m = read.table(

file="https://github.com/zhangyk8/zhangyk8.github.io/raw/master/_teaching/file_stat302/Data/sprint.m.txt",
sep="\t", quote="", header=TRUE)

In the following, use pipes and dplyr and tidyr verbs to answer questions on sprint_m. In some parts, it
might make more sense to use direct indexing, and that’s perfectly fine.

1. Compute, for each country, the fastest time among men athletes who come from that country. Display
the first 7 rows of the result.

Your code goes here

2. Confirm that the Time column is stored as character data type (store it as a variable Time_org and
print out the data type). Then, convert the Time column to numeric. After converting to numeric, there
will be NA values; look at the positions with NA values and revisit the original Time column. Explain in
words why it was stored as character type in the first place.

Your code goes here

3. Define a reduced data frame dat_reduced as follows. For each athlete and each city, keep the fastest of
all times that they recorded in this city. Then keep all rows without NA values in the Time column and
drop duplicated rows. Your new data frame dat_reduced should have 600 rows and 3 columns (Name,
City, Time). Confirm that it has these dimensions, and display its first 7 rows.

Your code goes here

4. The data frame dat_reduced is said to be in “long” format: it has observations on the rows, and
variables (Name, City, Time) on the columns. Arrange the rows alphabetically by city; convert this data
frame into “wide” format; and then order the rows so that they are alphabetical by athlete name. Call
the result dat_wide. To be clear, here the first column should be the athlete names, and the remaining
columns should correspond to the cities. Confirm that your data frame has dimension 141 × 152. Find
the lengths of unique athletes and unique cities in dat_reduced and argue why these dimensions make
sense.

Your code goes here

5. Not counting the names in the first column, how many non-NA values does dat_wide have? How could
you have guessed this number ahead of time, directly from dat_reduced (before any pivoting at all)?

Your code goes here

6. From dat_wide, look at the row for the world record keeper “Usain Bolt”, and determine the city
names that do not have NA values. These should be the cities in which he raced. Determine these cities
directly from dat_reduced, and confirm that they match using logical operations.

Your code goes here

7. Convert dat_wide back into “long” format, and call the result dat_long. Remove rows that have NA
values (hint: you can do this by setting values_drop_na = TRUE in the call to the pivoting function),
and order the rows alphabetically by athlete and city name. Once you’ve done this, dat_long should
have matching entries to the ordered dat_reduced; confirm that this is the case by outputting a logical
TRUE/FALSE.

Your code goes here

5

Part 5: Practice with ggplot2 (2+2+2+3+3+6 pts)
We are going to create some plots using ggplot2 based on the data frame babies. Let’s load this data frame
into R, whose column descriptions can be found in Table 3.1 on Page 112 of this document.
load(url("https://github.com/zhangyk8/zhangyk8.github.io/raw/master/_teaching/file_stat302/Data/babies.rda"))
library(ggplot2)

There are at least 5 “notions” to a ggplot:

• The plot object (created by ggplot()). That can be used to identify the data frame and set up the
aesthetic mapping of variables to aspects of the plot.

• The aesthetic mapping which connects variables in a data frame to plotting features such as the x axis,
y axis, color, line type, etc.

• Layers - These contain visual components that are added to the plot. A layer consists of a geom
(visual representation) and a statistic (operation on variable). Each geom has a default statistic and we
typically use the default. We can specify a layer with layer(), but more typically we use the shortcut
functions geom_VisualPiece() and the default values that are set up with this function.

• Scales - These allow us to control how an aesthetic is represented in the plot. Through the
scale_XXX_XXX() functions we can, e.g., specify axis labels (name), axis limits, transformations, colors,
line types, etc.

• Themes - The theme allows us to control non-data aspects of the graphic such as font size, location of
legend, background colors, etc.

We will demonstrate these various pieces as we make 4 plots of the babies data. These include a histogram,
boxplot, bar plot, and scatter plot.

1. We begin by making the histogram on the variable parity. Set the binwidth to be 0.8 for the plotted
histogram.

Your code goes here

2. Create a boxplot (with geom_boxplot()) of the birth weight where we have a separate box for each
level of smoking status. (Hint: What is the x-axis aesthetic? What is the y-axis aesthetic?)

Your code goes here

One problem here is that there are some NAs in somking status. We want to eliminate them. We can drop
any rows in babies that have NA for smoking status when we specify the data frame to use. In addition, set
the x-axis label as “Smoking Status” and y-axis label as “Birth Weight” in the new boxplot.
Your code goes here

3. We want to know the numbers of mothers in each smoking status. Make a bar plot for smoking status
and drop the NAs. In addition, set the x-axis label as “Smoking Status” and y-axis label as “Number of
mothers” in the bar plot.

Your code goes here

4. We want to make a scatter plot that shows the relationship between the baby’s birth weight and the
mothers height. In particular, we will only look at Never and Current smokers.

Begin by making a scatter plot of these points and using color to identify the group that each baby belongs
to. Make sure that all the NAs in the baby’s birth weight and the mothers height of the babies data frame
are dropped. Consider also jitterring the points, shrinking the points, and using transparency to reduce the
problems with overplotting.
Your code goes here

6

https://github.com/zhangyk8/zhangyk8.github.io/blob/master/_teaching/file_stat302/Chap3.pdf

5. Now we can add another layer to the above plot in 4 that includes two linear regression lines (Hint:
method = "lm" in the corresponding geom_*** function), for each smoking status. Fix the x and y
labels to be “Baby Weight” and “Mother Height”, respectively.

Your code goes here

6. Plot the density of the baby’s birth weight for each smoking type of the entire babies data frame in
the same plot. Add the rug plot. Change the color legend title to be “Smoking Type” and the colors to
be c("purple", "red","orange", "cyan"). Finally, fix the x and y labels to be “Baby Weight” and
“Densities”, respectively.

Your code goes here

7

	Total Points: 70 pts
	Part 1. Pipes to Base R (2+2+2+2 pts)
	Part 2. Base R to Pipes (2+2+2+2 pts)
	Part 3. Practice with dplyr Verbs (2+2+2+2+2+3+3 pts)
	Part 4: Practice with tidyr Verbs (2+3+3+4+2+3+3 pts)
	Part 5: Practice with ggplot2 (2+2+2+3+3+6 pts)

