Lab 2: Data Types

INSERT YOUR NAME HERE (INSERT YOUR UW NETID HERE)

Due by 23:59pm on Jan 23, 2024

Total Points: 40
Part 1. Review Questions (24543 pts)

3 2 1
1. Multiply the inverse of a matrix ({4 8 1 | with itself.
5 9 16

Also, return those entries that are bigger than 107Y.

Your code here

2. Make a list 1st1 with components

e 1:15 under the name num_vec;

e matrix(15:1, ncol = 3) under the name mat;

e rep(c("a", "x"), each = 3) under the name char_vec;

e list(x = c(1,2), y="STAT 302") under the name sublst.

Answer the following questions using R:

e Compute the sum of the component num_vec;

o What is the element in position [2,3] in the component mat?

e What is the third element in the component char_vec?

e Use the function strsplit() with argument split = "" to split the subcomponent y in the component
sublst. What is the data type for the result strsplit()?

e Subset the result after strsplit() via [[1]]. What is the fifth element of this character vector?

Your code here

3. Download the family.txt shown in Lecture 2 to your laptop. Then, read the file into R using the
function read.delim(). Then, compute the following statistics in R:

o What is the standard deviation of ages in family.txt?
e What is the percentage of males in family.txt?
e What is the maximum BMI within all the female individuals?

Your code here

Part 2: Normal Distribution (245+3-+4 pts)
R provides several functions for the normal/Gaussian distribution:

e dnorm() computes the density function of a normal distribution;

o pnorm() calculates the percentiles (or equivalently, the cumulative distribution function) of a normal
distribution;

e gunorm() returns the quantiles of a normal distribution;

e rnorm() generates the normally distributed random variables.

Use R to answer the following questions:

1. Create and store a vector norm_vec with 100,000 random variables from a Normal distribution with
mean 6 and standard deviation 2. Print out the first 7 elements of norm_vec using the function head ().

set.seed(123) ## Don't change this line. It makes the result reproducible.
Your code starts from here

2. Plot two histograms, one with the first 100 elements of norm_vec, and the other with all the elements
of norm_vec. Set the argument freq = FALSE for both histograms for better comparisons.

o Change the x axis labels for both histograms to “Observations”.

o Set their titles as “Histogram of N(6,2) distributed random sample with n=THE CORRECT NUMBER
OF SAMPLE POINTS”. Remember to change “THE CORRECT NUMBER OF SAMPLE POINTS”.

e Answer it by words: Which one looks more symmetric?

Your code starts from here

3. Standardize the vector norm_vec to N(0,1) by subtracting its mean and then dividing it by its standard
deviation. Name it as norm_vec_std. Compute the standard deviation of norm_vec_std. Also, what
is the percentage of observations in norm_vec_std that are greater than 1.6448547

Your code here

4. Apply the function pnorm() (without specifying any other arguments) to the vector norm_vec_std.
Then, compute its mean and variance after applying the function pnorm(). Finally, plot its histogram
after applying the function pnorm() with the argument freq = FALSE.

o Describe in words what do you see from the histogram. (Hint: How is the height of each bin compared
with others?)

Your code here

Part 3: Binomial Distribution (4pts per question)

The binomial distribution Bin(m, p) is defined by the number of successes in m independent trials, each have
probability p of success. Think of flipping an (unfair) coin m times, where the coin could be biased and has
probability p of landing on heads.

Similar to the above normal distribution, R also provides several functions for the binomial distribution:

e dbinom() computes the probability mass function of a binomial distribution;

o pbinom() calculates the percentiles (or equivalently, the cumulative distribution function) of a binomial
distribution;

e gbinom() returns the quantiles of a binomial distribution;

e rbinom() generates the random variables from a binomial distribution.

1. Initialize a matrix binom_mat with 3 columns and 100 rows, whose entries are all NA.

e Then, fill in each column with random samples from binomial distributions with m = 300,p = 0.25
(first column), m = 300,p = 0.5 (second column), and m = 300, p = 0.75 (third column), respectively.
e Compute the column means of binom_mat.

set.seed(1234) ## Don't change this line. It makes the result reproducible.
Your code starts from here

2. Compute the means of every 10 elements in the first column of binom_mat. There should be 10 mean
values in total. Then, output the median of these 10 mean values. Assign it to a variable MoM.

e Compared with the mean of the first column of binom_mat, is MoM closer to the expected mean 757
(Output a logical TRUE/FALSE using R!)

Your code here

3.

Now, change the first element in the first column of binom_mat to -100. Then, repeat what we did in

Question 2 (i.e., compute the means of every 10 elements in the first column of binom_mat and then
calculate the median as MoM2.)

Now, compared with the mean of the first column of binom_mat, is MoM2 closer to the expected mean
m*p = 757 (Output a logical TRUE/FALSE using R!)

Your code here

4.

Create a list binom_lst with 3 components:

A vector with 500 elements from a Bin(300,0.75) and name it as binom500;

A vector with 1000 elements from a Bin(300,0.75) and name it as binom1000;
A vector with 20000 elements from a Bin(300,0.75) and name it as binom20000.

Compute the mean of each component of binom_lst. Which one is closest to the expected mean m*p
= 2257 Can you explain why?

Look at the documentation of the functions qgnorm() and qqline (). Make QQ-plots with diagonal
lines for each component of binom_lst. Which QQ-plot is most aligned with the diagonal line? Can
you explain why?

set.seed(1234) ## Don't change this line. It makes the result reproducible.
Your code starts from here

	Total Points: 40
	Part 1. Review Questions (2+5+3 pts)
	Part 2: Normal Distribution (2+5+3+4 pts)
	Part 3: Binomial Distribution (4pts per question)

