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Let {4;} and {B,} be two given families of n-by-n matrices. We give conditions under which
there is a unitary U such that every matrix UA,UT is upper triangular. We give conditions,
weaker than the classical conditions of commutatmty of the whole family, under which
there is a unitary U such that every matrix UB;U* is upper triangular. We also give
conditions under which there is one single unitary U such that every U4, U’ and every
UB;U* is upper triangular. We give necessary and sufficient conditions for simultaneous
umtary reduction to diagonal formin this way when all the A;’s are complex symmetric and
all the B;'s are Hermitian.

1. INTRODUCTION

Motivated by the Grunsky inequalities from the theory of univalent
analytic functions in the unit disc, we considered recently [3] the
problem of simultaneous reduction of a pair of n-by-n complex matrices
A (Hermitian) and B (symmetric) to diagonal form by nonsingular
congruences that preserve the type of the matrix, ie. 4 — SAS* and
B — SBST. We also considered similar problems when 4 and B are both
Hermitian or both symmetric.

In this paper, we consider unitary congruences and generalize our
previous results in two ways: to families with an arbitrary number of
matrices, and to the problem of simultaneous reduction to triangular
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272 Y. P. HONG AND R. A. HORN

form of families of matrices that need not be either Hermitian or
symmetric.

2. NOTATION, DEFINITIONS AND BASIC CONCEPTS

We denote by M, the set of n-by-n complex matrices. Matrices
A, B e M, are said to be consimilar if there is a nonsingular R € M,, such
that A = RBR™! [2]. Notice that a real consimilarity is just ordinary
similarity (4 = SBS~! = SBS ! if S is real); a unitary consimilarity is
one type of congruence (4 = UBU ! = UBU” if U is unitary); and a
complex orthogonal consimilarity is another type of congruence, often
called a conjunctivity (4 = QBQ ™' = QBQ*if Q is complex orthogonal,
ie. Q7' = Q). The notion of consimilarity can be generalized by
replacing the complex field with an arbitrary field F and replacing the
operation of complex conjugation by an automorphism on F [6, p. 27].

A matrix 4e M, is said to be contriangularizable (respectively,
condiagonalizable) if A is consimilar to an upper triangular (respectively,
diagonal) matrix. A family of matrices # = {4;:ie€ #} < M, is said to
be simultaneously contriangularizable (respectively, simultaneously con-
diagonalizable) if there is one nonsingular R € M, such that RA,R ™! is
upper triangular (respectively, diagonal) for all i € .# If R can be chosen
to be unitary, we say that # is simultaneously unitarily contriangular-
izable or condiagonalizable. The family # is said to be concommuting if
A,-/Ij = AjfL forall i,je £

A subspace S < C” is said to be invariant under Ae M, if Axe S for
every xe€S; it is coninvariant under A if Axe S for every xeS. If
F = {A; i€ #} < M,isagiven family of matrices, the subspace S is said
to be F-invariant (respectively, F-coninvariant) if S is invariant
(respectively, coninvariant) under A, for all ie .£

A nonzero vector x € C" such that 4Ax = Ax is said to be a coneigen-
vector of 4 € M,; the scalar 1 is a coneigenvalue of A. If Ax = Ax, notice
that e ?Ax = A(€'x) = (e""2)(¢"x) for all 0 € R, so a matrix with a
nonzero coneigenvalue has infinitely many distinct coneigenvalues.
Moreover, AAx = A(AX) = A(Ax) = 24X = jix = |}*x, so [A]? is
necessarily an eigenvalue of the matrix A4. If A4 has no nonnegative
eigenvalues, then 4 can have no coneigenvalues.

Lemma 2.1 If S is a subspace of C" that is coninvariant under
A,BeM,, then S is invariant under AB.
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Proof If xe S, then y=BxeS and 4Bx = A(BX)eS. [ ]

The converse of the assertion in the lemma is false, as may be seen from
considering the example B= A4 = (¢ 7}), for which A4 = —I. The
linear span of the vector e, = (}) is a subspace of C? that is invariant
under AA4 but is not coninvariant under A.

LemMa 2.2 Let Ae M, be given, and suppose S < C" is a nonzero
subspace that is coninvariant under A. If AA has an eigenvector in S whose
associated eigenvalue is nonnegative, then S contains at least one
coneigenvector of A.

Proof ByLemma 2.1, Sisinvariant under AA, 5o there is at least one
eigenvector of A4 in S.If AAx = Axwith x # 0, xe S, and A > 0, notice

that AA(AX) = A(AAx) = A(LX) = A(AX). There are two possibilities:
Ax and x are dependent, or they are independent. In the first case,
Ax = pux for some u € C, in which case x is a coneigenvector of 4. In the
second case, AX + ux # 0 for all ue C. But then for any u such that
u>=/ we have A(AX+pux)=AAx+pAX=/x+ IAX=pjx+ iAx
= [(AX+pux), s0 AX + ux is a coneigenvector of 4. [ |

If AA has only nonnegative eigenvalues, the main hypothesis of the
lemma is automatically satisfied. This is the case, for example, if 4 is
symmetric (since 44 = AA*is positive semi-definite) or if 4 is Hermitian
and positive definite (since AA is similar to A'24A4'2, which is
congruent to the positive definite matrix A).

3. SIMULTANEOUS UNITARY
CONTRIANGULARIZATION OF A FAMILY OF
MATRICES

Our first objective is to establish general sufficient conditions for a
family of matrices to be simultaneously unitarily contriangularizable.
We then specialize to obtain a simple necessary and sufficient condition
in the case of a family of complex symmetric matrices. The simultaneous
contriangularization theorem is an immediate consequence of a
sufficient condition for a family of matrices to have a common
coneigenvector.
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LemMma 3.1 Let F = {A; i€ J} < M, beagiven family of matrices, let
4 = {A,A;:1,je F}, and assume that

(@) ¥ is a commuting family,

(b) for all ie %, A;A; has only nonnegative eigenvalues, and

) whenever i,je ¥ and x # 0 is a vector such that Aiffjx = Ax and
A;jA;x = px, then |A| = |ul.
Then every nonzero F -coninvariant subspace S of C" contains a common

coneigenvector for 7, i.e. there is some nonzero x € S such that A;x = A;x
forallie s

Proof Let S = C" be a nonzero subspace that is .# -coninvariant.
Lemma 2.1 guarantees that S is %-invariant, so there is a common
(nonzero) eigenvector x e S for 4. Suppose A;4 jx = Ayxforalli,je 4 so
that |4,] = |A;] for all i,j e .# by (c).

There are two cases to consider:

(1) Ai/f_ix =0forallie.# or
(2) AgAox # 0 for some A, e .F

Consider case (1) first. There are two possibilities:

(1) A;xx=0forall ie 4 or

(1"} Agx # 0 for some A, € Z
In case (1), x is a common coneigenvector for .# and we are done. In case
(1"}, use the commutativity of ¢ to compute

0 = AgA;A;AgAgx = AgAgAgAi AR = AgAiAgApAix
= 1‘10/];0/1_019E = IiO;"_Oi(AO')Z)

which implies that 4,, = A; = 0since |4;9| = |4;]. Thus, Ai(Apx) = Ofor
all i € 7, and the nonzero vector 4,X is a common coneigenvector for #

The final case to consider is (2), so we assume that 4g4ox = Ax with
A>0. Let §'={ze8: AgAoz = Az} # {0}, and let %, = {44, A;Ao:
ie j}. If ze S,, 40140(141'140)2 = AiAOAOAOZ = i(A,-AOZ), so S is
invariant under 4;4,. A similar argument shows that §’ is invariant
under AyA;, s0 ' is Fy-invariant. Since %, is commutative, there exists a
common (nonzero) eigenvector y € S’ for %,. Suppose 4,4y = pi;oy and
AgA;y = pgo;y for all i € .7 so that |ug;| = |ul by (c). Define

So= (N {{zeS: AgAiz = iz} N {z€ 8" AiAgz = pioz}}

ic.s

and notice that §' > S, > {y} # {0}.
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We claim that S, is coninvariant under A4. First observe thatif z € §,
we have AyA,(Ap2) = Ag(Aodoz) = Ao(Az) = Adyz,50 AgZ e S',ie. §'is
coninvariant under A,. Next observe that if z e §’, then

1 - 1 - 1
zZ= 1 A()Aoz = A0<; A02> = A()(j—Aoz_).

for every ze §' there is some we 8" such that z = Agw.  (3.2)

1e.

Using this fact, compute
AO“IOAL'E = Ao/ioAi/IoW = (Aogo)(Aif‘Io)W = (Aifio)(Ao/‘Io)W

= Ai/IOAO(AOVD) = Ai/IOAOE,
ie.
(A;AgA0)I = (AgAoA;)z  forallze S andallie.s.  (3.3)

Now let ze § and use (3.2), (3.3), and (a) to compute

A;AiAgE = A;AiAgAgw = A(AAgAgw) = A(AgApAW)
‘ = (4,40) (Ao )w = ApAiA(Agw) = AgAiAiZ,
O AAAN = AAA):  forallzeS andallic s (4)
Let z € §' again and use (3.2), (a), and (3.4} to compute
AA A Az = A A A A(AGW) = A4 A) (A AW = AA(ApA; AW
= A, A{A; A AgW = A A4 Az,

ie.
(4:4;)(A4;A))z = (4,4;)(4;A4;)z  forall ze S and all ;,je 7 (3.5)

Now let ze S, be given. Notice that 4,4;4,A40z = Willooz and
A;AoAoAiz = piotioz by the definition of S, and  ppeez =
A;AAgAyz = A;AgAgAiz = lotioiz by (3.5). But p,; and iy, are non-
negative by assumption (b), SO gfto; = tiitloo is real and nonnegative for
all i e # Since |pio] = |ioil> it follows that w;q = ito; for all ie £

We can now show that S is coninvariant under A,, for if z€ S is
given, we have

Aogi(AoZ—) = Ao(/‘iiAoZ—) = Ao = toidoZ,
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and
AiAo(Aof) = (AiAOAO)Z_ = (AOAOAi)Z_ = Aoﬁo:‘Z_ = #ivoZ_

where we have used the identity (3.3) in the second calculation. Together,
these two identities show that S, is coninvariant under A4,.

Since AqA,S, = AS, with 4 > 0, S, is certainly invariant under 4,A4,.
By Lemma 2.2, 4, must have a (nonzero) coneigenvector x4 € Sy,
AoXo = tXo, and AyAgX = |u*xo = X, 50 1 # 0. Then

_ 1 - 1 - _
Axy = A'ﬁ Aoxg == A;Agxe = (1io/H)x forall ie 4
U
and this vector x, is a common coneigenvector for % [ |

THEOREM 3.6 Let F ={A;ie S} <M, be a given family, let
G ={A,A; ijes)}, and assume that % is a commuting family. There exists
There exists a unitary U e M, such that UA,U" is upper triangular for
all ie £ if and only if

(a) Forall ic 4, 4,4, has only nonnegative eigenvalues, and
(b) For all i,je s, A;A; + A;A; has only real eigenvalues and
A;A; — A;A; has only imaginary eigenvalues.

Proof Ifthereexistsaunitary U € M, suchthat UA,UT = A,is upper
triangular for all i € .% then A;4; = U*A,A;U, and A;A,; has nonnegative
main diagonal entries, which are the eigenvalues of 4,4, Moreover,
AiA; + A;A; = U*(AA; £ A;A)U has only real (+) or imaginary (—)
eigenvalues because the respective main diagonal entries of A;A; are the
conjugates of those of A;A;. The conditions (a) and (b) are therefore
necessary.

To show that they are also sufficient, claim that it suffices to show that
conditions (a) and (b) imply that there is a common coneigenvector for
all 4;e # If x # Ois such that 4;x =A;xforallie £ let Ue M, be a
unitary matrix with first column x/| x| ,. Then

- A .
U*A,U = <—(-)’- rj-), AieM,_,, forall ies. (37
We can now proceed to reduce the family #' = {A;:ie ¥} « M, _, in

the same way if 7" inherits the two properties (a) and (b) and if ¥’ =
{AjA):1,je .7} is a commuting family. But
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so the eigenvalues of A;4; are just |4,|* together with the eigenvalues of
A’ A which must, therefore, be nonnegative because of (a). Similarly,
_ _ AidiE hid
AAi + A A = U(—-i——’———r——-— - ——-—>U*,

so theeigenvalues of 4,4; + 4;A;arejust 4,4, + 4;4;together with those
of AjA;+ A;A;. The eigenvalues must, therefore, be real (+) or
imaginary (—) because of (b) and the fact that 4;2; + 4;4; = 2 Re(A;4;) is
real and A;A; — 4;4; = 2i Im(/;4;) is imaginary. The commutativity of ¢’
is easily verified.

Finally, observe that if x is a common eigenvector of both AA ;and
A;A;, and if 4,4;x = Ax and A4;4,x = ux, then (AA; + A;jA)x =
(A £ w)x. Assumption (b) says that A + y is real and A — p Is imaginary,
so / = ji. In particular, || = |y, and hence assumption (c) of Lemma 3.1
is met. Since the other assumptions of the lemma are also met, we can
apply Lemma 3.1 to the #-coninvariant subspace S = C" to ensure the
existence of the desired common coneigenvector of % ||

If the family # consists of a single matrix, the assumption about
commutativity of % is vacuous, and hypothesis (b) is subsumed under (a).
Thus, the condition that 44 has all nonnegative eigenvalues is necessary
and sufficient for 4 to be unitarily contriangularizable. A more direct
proof of this result is in [ 2]. If 4 is symmetric, then 44 = AA*is positive
semi-definite and hence every symmetric matrix is unitarily con-
triangularizable. But UAUT is symmetric whenever 4 is symmetric, and
a symmetric triangular matrix is diagonal, so we conclude that every
symmetric matrix is unitarily condiagonalizable (and conversely). This is
a classical result of Takagi [9], Siegel [8]. and Schur [7].

We are also interested in simultaneous unitary condiagonalization of
a family of symmetric matrices, and Theorem 3.6 provides a necessary
and sufficient condition.

CorOLLARY 3.8 Let F ={A;ie S} M, be a given family of
symmetric matrices, and let 4 = {A;A; i,j€ S}. There exists a unitary
U e M, such that UAUT is diagonal for all ie S if and only if 4 is a
commuting family. In this event, every product Ai/Ij is normal.
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Proof Ifthereisaunitary U e M, suchthat 4, = UA,U" forallie .#
and if each A, is diagonal, then each 4,4; = U(A,A;)U*, and % is a
commutative family of normal matrices since it is simultaneously
unitarily diagonalizable.

For the converse, observe that (4;4;)* = A, A;. Thus, hypothesis (b) of
Theorem 3.6 is satisfied because for any C e M,,, C + C* is Hermitian
and has only real eigenvalues while C — C* is skew-Hermitian and has
only imaginary eigenvalues. Hypothesis (a) is satisfied because
A;A; = A;A¥ is Hermitian and positive semi-definite. Thus, the theorem
guarantees that thereis a unitary U € M, such that U4,U” = A,is upper
triangular for every ie .£ But then AT = UATU" = U4,UT = A,, so
each A, is actually diagonal. ]

A commuting family # = {A4;:ie S} = M,(R) of real matrices with
real eigenvalues is simultaneously upper triangularizable by a single real
orthogonal similarity, i.e. a (real) unitary consimilarity. The following
theorem is a simple generalization of this fact to simultaneous unitary
contriangularization of a family of complex matrices. Its hypotheses are
in part stronger than those of Theorem 3.6; the assumption that F is
concommutative (4,4; = A;A; for all i,j e #) implies that % is com-
mutative. But it makes no assumption on the eigenvalues of
A;A; + A;A4;, so its hypotheses are in part weaker than those of
Theorem 3.6.

THEOREM 3.9 Let F = {A;ie 5} = M, and assume that A,A; = A; A,
for all i,je & There exists a unitary U € M, such that UA,UT is upper
triangular for all ie S if and only if A;A; has only non-negative
eigenvalues for all i e . In this event, there is a unitary diagonal matrix
D e M, suchthat V = DU is a unitary matrix for which VA, V7" is upper
triangular and has real main diagonal entries for all i e J.

Proof The condition on the spectrum of 4;4; is necessary as before.
To show that it is sufficient, notice that the assumption that # is
concommutative implies that ¥ = {4,4,:1,j€ .} is commutative, so
assumption (a) of Lemma 3.1 is satisfied. We are explicitly assuming (b)
of the Lemma, and (c) is trivially satisfied since 4;4; = A;A;. Thus, all the
assumptions of Lemma 3.1 are satisfied and, by a normalization if
necessary, we are guaranteed the existence of a unit vector u such that
Aqi = Auforallie % Let U € M, bea unitary matrix whose first column
isu. Then U*A,U has the form (3.7) and one shows, just as in the proof of
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(3.6), that the family 7' = {A}: ie #} = M, _, isaconcommuting family
such that every A;A4; has only nonnegative eigenvalues. The desired
reduction to upper triangular form now follows after at most n — 2
repetitions of this reduction, and hence there is one unitary U € M, such
that UA,;UT = A, is upper triangular for all i e .#

The hypothesis of concommutativity of # implies that the family
of A/s is also concommutative, since AA ;=U0AU" UA JU* =
UAA;U* = UA;AU* = UA;UTUAU* = A)A, Tf a set of complex
numbers {J;: i € .#} has the property that §,0; = 5,0, for all i, j € .7 then
eitherall 5; = Oorforsome k € £ §, # 0. In thelatter case, 6,0, /|, is real
for all i e £ In either case, therefore, we can be sure there is a complex
number d of absolute value one such that d25; is real for all i€ %
Applying this observation to the respective main diagonal entries of the
matrices A;, we see that there is a unitary diagonal matrix
D = diag(dy, - . .. d,) such that DA;D has real main diagonal entries for
allie % and hence (DU)A,(DU)" = DA,D has real main diagonal entries
forall i e .# The unitary matrix ¥ = DU has the asserted properties. il

The hypothesis of concommutativity of # in (3.9) is, like the
hypothesis of commutativity of 4 in (3.6), sufficient but not necessary,
eg 7 = {E) o).

The previous theorem implies a sharpening of the conclusion of
Corollary 3.8 which could have been proved directly.

CoroLLARY 3.10 Let F = {A; i€ F} be a given family of symmetric
matrices. There exists a unitary U e M, such that UA,UT is a real
diagonal matrix for all ie . if and only if 4,4; = Aj/L foralli,je 4 ie.
each A;A; is Hermitian.

Proof Ifthereisaunitary U € M, suchthat A, = UA U forallie .4,
where each A; € M, is real and diagonal, then 4;4; = UA,UTUA; U* =
UANAU* = UAANU* = UNUTUAU* = A;A;. The converse follows
directly from the theorem, since each A4;4; = 4;4¥ is positive semi-
definite. B

The equimodular eigenvalue property (c) in Lemma 3.1 arose in this
section in the context of assumption (b) of Theorem 3.6, but there are
many other natural assumptions that imply it. We list several that
are easily verified. The conditions {dx) played a role in this section; the
conditions (ex) play a role in the next section.
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ProposiTioN 3.11 Let A, Be M,. Each of the following conditions is
sufficient for a family 4 = {Cyie 4} < M, to have the property that if
x#0and Cix = Ai;x forallie S then|i| = || for all i,je £

(al) ¥ ={A,, A,}, where A, = A,

(a2) ¥ = {A,A,, A,A,}, where A and A, commute

@3) 4 = {A4,A4,, A,A,}, where A, and A, concommute

(bt) 4 = {A,, A}, where A, is normal

(b2) ¥ ={A,A,, A,A,}, where A, and A, are Hermitian and A 4,
commutes with A,A,

(b3) ¥ = {A,4,, AZ/II}, where A, and A, are symmetric and A, A,
commutes with A,A,

(c) % = {Ay, A,}, where |x*A;x| = |x*4,x| for all xe C"

(dl) % ={A4,, A,}, where A, + A, has only real eigenvalues and
A, — A, has only imaginary eigenvalues

(d2) ¥ ={A,, A}, where A| + A, is Hermitian and A; — A, is skew-
Hermitian

(el) ¥ = {A,, A,}, where A, — A, is nilpotent

(€2) % ={A,A4,, A,A,}, where A, and A, are simultaneously
triangularizable

€3) ¥ ={A,A,, A,A,}, where A, and A, are simultaneously con-
triangularizable

Each of the conditions in the proposition not only implies the stated
eigenvalue property, but also has the property that it is inherited under
any unitary partial triangularization. That is, if % is any one of the cited
families with the corresponding conditions, and if U is a unitary matrix
such that UA,;U* has the form

AL
OI
vaur=| 0 |, MeM, ., i=12...
Y
0 !

then each A/ inherits the corresponding property, and hence the family
%' formed from A, and A (and their successors from further unitary
reductions) has the equimodular eigenvalue property. This is exactly the
situation one needs for a successful simultaneous unitary triangular-
ization and it is the reason why some sort of unitarily inheritable



SIMULTANEOUS REDUCTION 281

property is assumed in each of our simultaneous unitary triangular-
ization theorems.

4. SIMULTANEOUS TRIANGULARIZATION OF A
FAMILY BY UNITARY SIMILARITY

If # ={A;ief} =M, is a given family, a well-known sufficient
condition for # to be simultaneously unitarily triangularizable is that %
be commutative. Weaker conditions are sufficient for this same con-
clusion, however.

The key observation is that if Aj, A,,..., A, € M, are any k upper
triangular matrices, then for any permutation m of the integers
1,2,...,k, the difference of products AjA, - Ay — Ay Arpy -+ Aoy
always has a zero main diagonal and hence is nilpotent. Thus, if a family
{A;} is simultaneously triangularizable, every difference of products
Ay Ay, - Ay — A A, Ay, must be nilpotent. In the following
lemma, we use this necessary condition to find a sequence of sufficient
conditions for a given family to have a common eigenvector, and then
use the common eigenvector to construct the desired common unitary
similarity. The case k = 2 of the Lemma parallels the statement and
proof of Lemma 3.1; the case k=1 is just the classical sufficient
condition that the family % is commutative.

LemMMma 4.1 Let F = {A;ie I} < M, beagiven family, let k be a given
positive integer, assume that the family of all possible k-fold products
Go={A A, - Ay iy, iy ..., iy €I} is commutative, and assume that
the difference of products A; A, --- A, — Ay A, - Ay, 18 nilpotent
for every iy, iy ...,ik€.¥ and every permutation m of the integers
1,2, ...,k Thenevery hon-zero F -invariant subspace of S of C" contains
a common eigenvector for F, ie. there is some nonzero x € S such that
Ax=Ax forall ie S

Proof Let S — C" be a given nonzero % -invariant subspace, which
must therefore also be %,-invariant. Since ¥, is commutative, there is a
common (nonzero) eigenvector x e S for %,. If k = 1, we are done, so

assume k > 2. Suppose 4; A, - - Ay x = 4, . xforalliy, i, ..., i € S
By the nilpotence assumption, every eigenvalue of the difference
Ay Ay Ay — Ay A, o Ar, 18 Zero, and SINCe Ay — Ao i

is the eigenvalue of this difference associated with the common
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eigenvector x, we have the identity
Liviois = M i
forall i},i,,...,i,€.# and every permutation n. (4.2)
There are two cases to consider:

(a) Ax=0forallie s or
(b) There is some A, € # such that A5x # 0.

We shall show that there exists a common eigenvector for # in either
case.
First consider case (a), in which there are two possibilities:

(al) A;x=0forallie .4 or
(a2) There is some A, € # such that A,x # 0.

In case (al) the vector x itself is a common eigenvector for % and we are
done.

In case (a2), let my = max{j: A{x # Oforallie #},sothatl <m, <k
by assumption, AT*!x = 0 for all ie .% and y, = Afex # 0 for some
A, € 7 Theneither 4;y, = Ofor alli € .# (in which case we are done), or
A;vo = A;Afex # 0 for some i e £ In the latter case, observe that

AP ATox = ATO(AY) (A} ™™ AR0)x = ATo(A™ AT} Al = 0

because A%x = 0. Thus m; = max{j: Aly, # Oforallie .#} is finite and
surely 2k >m; =1, A%y, =0 for all ie.% and y, = APy, =

AT A% x # 0 for some A, € # We claim that this process will, after at
most k — 1 steps, produce a nonzero vector y; = AMy,_; for which
A;y; = 0for all j € .4 in which case we are done. If not, then for some
integer pwith 1 < p <k — 1 we shall have mg + m; +---4+m,_ <k,
mo+my +---m,_; +m, =2k and ApAYey ... AT Agex # 0 for
some Ay, Ay,...,A,e F Let g=k — (my +m; +---+ m,_,) so that
l <g<m, Notice that AIATe~ .. -ATAPe%, and that
A%ATey - AT AGex = Ax # 0 because x is a common eigenvector for
%, and

0% Afedyey - AT AGox = Apr” UAFA et - ATVAGX).
Because of (4.2) we can permute the terms in the product to obtain
ATAT ey AT AGx = AT Ay ATVAGOA X 4.3)
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Using this fact and the commutativity of %,, we compute
A2Agx = AgUrx) = Ag(ALATy - - AT AGOAT ATy - - - ATV AT )X
= Ay(A%” 1Az£‘1‘ o AP AT AN AT AT ATV AG)X
= (AgAS ™ ATey . AT (A, LA - ATIAT T ) A X
= (AT A AT AR T N (Ap AL Ay - AT ATe) A X
= (AT ATy AT AT AL AT AT AT
But this leads to a contradiction, because 22 4,x # Oand A% 'x = O by
construction. Thus, both possibilities have the desired outcome of a
common eigenvector in case (a).
The final case to consider is (b), so we assume that A5x = ix, x # 0,
4 # 0.Let S, denote the A-eigenspace of A, ie. S, = {ze S: Ajz = 4z} o
{x} #{0}. Let 4, = {4614, AST24,4, ..., AgdiARTE AARTh:
ie #} = %, The vector x is a common eigenvector for %, o, and because
of (4.2) we know that A% 74,457 'x = yx for p=1,2,..., k and all
i€ . ie. the eigenvalue does not depend on p because of the assumed
permutation property. Now define

k
So= () [) (e 8 A5 A2 = i,

ief p=

and notice that S > §;, o S, o {x} # {0}. We claim that S, is invariant
under 4471, To show this, let z e S, be given. If p = 1, then

AP A AL (A7) = AN A A 2) = 4B () = pilAbT2).
If k > p > 2, then we can use the commutativity of %, to compute

1
AP AAR (A7) = S AP A AR AN (Abe)

1 1
= A PAART A = (AT A (A4
[ k~p p—1y gk—1 1 2=p 4 Ap—23( 4K
= /7(A0)(A0 A AL A Tz = /T(Ao A;AL” “){Ao2)
= AP AR 2 = AT HAET P A AR z) = AL (i)

= ui(A5™12).
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These two calculations show that S, is invariant under A%~ !. Thus, there
exists an eigenvector for 4%~ ! in S, i.e. there is a nonzero vector w e S,
such that A5 'w = uw, and u # 0 because iw = Akw = 4,45 'w =
Aouw = pAowand A # 0. But then y;w = 4,45 'w = A;uw = pAwand
Aw = (u/pw for all i € £ so w is a common eigenvector for Z W

TueOREM 4.4 Let F = {A; i€ I} < M, be a given family, let k be a
given positive integer, and assume that the family 4, = {A; A, --- A, i,
In, ..., 0 € F}of all k-fold products from F is commutative. There exists
a umtary Ue M, such that UA;U* is upper tr zangular forallie . if and
only if the difference of products A; A, — A Ay Ay B8
nilpotent for every iy, iy ..., i, €.F and every permutation © of the
integers 1,2,..., k.

Proof The necessity of the nilpotence condition has already been
observed. To show its sufficiency, invoke Lemma 4.1 with S = C" to
produce a common eigenvector x for % which we may assume is a unit
vector and satisfies 4;x = A;x for all ie # Let U e M, be a unitary
matrix with first column X, so that

U*A,U = <’“*> AeM,_,, ie 4.

We could now proceed to reduce the family & = {A}: i € .#} in the same
way if #' inherited from # the properties thd.'[ Q’” ={A; A, - 4], —

Aj A, oo Ai, ) is commutative and 4] 4}, - A - A’MA’M - A’er
is nilpotent for all i, iy,... ,ie s and all permutatlons n. It is a
straightforward computation to verify both of these properties, as in the
proof of Theorem 3.6. [ ]

The kinship of this result with Theorem 3.6 is particularly apparent in
the case k = 2, which we state separately for emphasis.

CoroLLARY 4.5 Let # ={Agie 9} <M, be a given family and
assume that the family 4, = {A;A;1i,j € I} is commutative. There exists
aunitary U € M, such that UA,U* is upper triangular for all i € .7 if and
only if every member of the family # = {A;A;— A;A;: i,je S} is
nilpotent.

The Corollary, and hence the Theorem, is stronger than the classical

theorem on simultaneous unitary triangularization, which assumes that
Z# is commutative. Consider the following example of a non-
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commutative .%:

refuy Tha( )

1 0 1 2 1 -2
A%=<0 1>=I=A%, A1A2=<0 1>¢A2A1=<0 1>

(A1A2)(A2A1) =[= (AZAI)(AIAZ)-

Thus, 4, = {43, A, A,, A,A;, A3} is commutative.

There may be a temptation to hope that commutativity of the family
%, for some, perhaps large, value of k might be necessary as well as
sufficient for simultaneous unitary triangularization of # in Theorem
4.4, but this is not true. Consider the family

o T P

1 k 1 0
A (O 1) an A5 <0 2k>.

N \

1 k2 1k
A’;A’§=<0 2k> and (0 2k>=A’§A’{,

the family 4, is not commutative for any & > 1.

For completeness, we give an example [suggested by the referee]
which shows that commutativity of the family %, for k > 2 is, by itself,
insufficient to imply simultaneous unitary triangularizability of the
family % i.e. commutativity of %, does not imply that the elements of #
are nilpotent. For any k > 2, let A = J,(0) be the k-by-k Jordan block
with zero eigenvalue and let B = E, ;, where E,; denotes the k-by-k
matrix with a 1 in the i, j position and zero everywhere else. Then %,
{0, Eyq, Ej2 ..., E,} is commutative, but A*~'B — B4
E{, — E, is not nilpotent.

The conditions we have given in Theorem 4.4 are merely sufficient for a
given family of matrices to be simultaneously unitarily triangularizable.
Necessary and sufficient conditions have been known since the work of
McCoy [5] in 1936; see [ 1, 4] for a more recent perspective and further
references.

for which

Since

(|
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5. SIMULTANEOUS TRIANGULARIZATION OF TWO
FAMILIES BY UNITARY CONGRUENCES

We wish to generalize Theorems 3.6 and 4.4 to cover the case of two

families of matrices {4,} and {B;} that are to be reduced simul-
taneously to upper triangular form by unitary consimilarity and unitary
similarity, respectively. That is, we want to have a single unitary matrix
U such that every U4,;U" and UB;U* is upper triangular. Our first step
is to obtain a version of Lemmata 3.1 and 4.1 that covers this combined
situation.
Lemma 5.1 Let ¥ ={Agie Sy c M,and # = {B;:je J} = M, be
given families. Assume that every nonzero F -coninvariant subspace of C"
contains a common coneigenvector for Z, and that every nonzero #'-
invariant subspace of C" contains a common eigenvector for #. Assume
also that

(a) B; has only real eigenvalues for all je ¢ and
(b) 4B, = B;A; forallic ¥ and all je 4.

Then every nonzero # -invariant subspace S of C" contains a nonzero
vector x such that A;x = A;x forallie ¥ and B;x = u;x forallje 4 ie.
there exists a nonzero vector in S that is a common coneigenvector for &
as well as a common eigenvector for H.

Proof Let § be a nonzero J# -invariant subspace, and let w be a
common eigenvector for #'in §,i.e. 0 # w € Sissuch that Bw = p;w for
allj e % Each y; is real by assumption (a). Let S’ denote the (necessarily
nonzero) subspace of S consisting of all the common eigenvectors of .
with the same eigenvalues as w, i.e.

S8 =) {x:Byx = yx} > {w} # {0}
e ¥

Itis evident that S’ is # -invariant, but we claim that it is .# -coninvariant
as well. If xeS., B;AXx=A4;B;x=A4,B;x)=A,(u;x) = p;(4,X)
because of the assumptions that 4;B; = B; 4, and each y; is real. This
says that A;xe S" for all i€ .4, 1.e. §' is # -coninvariant. The hypotheses
guarantee that there is 2 common coneigenvector for # in S, and this is
the desired vector. [

Our main result says that, subject to three conditions, the two families
Z and # are jointly simultaneously unitarily contriangularizable and
triangularizable, respectively, if and only if they are separately simul-
taneously contriangularizable and simultaneously triangularizable,
respectively.
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Tueorem 5.2 Let #F ={Agie I} c M, and # = {B;:je §} < M,
be given families, let k be a given positive integer, let 4 = {A;A;: i, j € F},
and let 4, ={B; B, - B,:1y,i,,...,0,€.7}. Assume that

(1) Each of % and %, is a commuting family,
(2) B; has only real eigenvalues for all j e ¢, and
(3) A;B;=B;A; foralliec S and allje ¢

Then there exists a unitary U € M,, such that UA,UT is upper triangular
for all ie 5 and UB;U* is upper triangular for all je ¢ if and only if

(a) A;A; has only nonnegative eigenvalues for all ie .4,

(b) A;A; + A;A; has only real eigenvalues and A;A; — A;A; has only
imaginary eigenvalues for all i,j e ., and
(c} B;B;,---B;, — B, B, B, is nipotent for all ji j, ...,
jx € # and every permutation w of the integers 1,2,..., k.

Proof The necessity of conditions (a), (b), and (c) is easily checked; it
also follows from Theorems 3.6 and 4.4. To establish the sufficiency of
these three conditions it suffices to show, as in the proofs of Theorems 3.6
and 4.4, that there is some nonzero x € C" that is both a common
coneigenvector for .7 and a common eigenvector for 3% and Lemmata
5.1, 3.1, and 4.1 guarantee the existence of such an x. [ |

An important special case is the one in which the family # consists of
complex symmetric matrices and # consists of Hermitian matrices. In
this case, assumption (2) and conditions (a) and (b) are automatically
satisfied.

CoroLLARY 5.3 Let F ={A;ie S} =M, be a given family of
symmetric matrices, let # = {B;je 7} c M, be a given family of
Hermitian matrices, and let 4 = {A;A;1 i,j € 7). There exists a unitary
Ue M, such that UAUT is diagonal for allie .9 and UB;U* is diagonal
forallje ¢ if and only if each of 4 and # is a commuting family and B; A,
is symmetric for all ie # and all je ¢

Proof The necessity of the stated conditions is easily verified. To
show that they are also sufficient, we show that they imply the six
assumptions and conditions in Theorem 5.2. Commutativity of »# is a
stronger condition than commutativity of % in Theorem 5.2, so
assumption (1) is satisfied and (c) is trivially satisfied since all these
differences vanish. Because (B;A4;)" = A]B] = A;B;, the assumption
that B; A, is symmetric is equivalent to (3) when B; is Hermitian and 4;is
symmetric. We have already observed that the remaining assumption (2)
and conditions (a) and (b) are automatically satisfied. Thus, there exists a
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unitary U € M, such that every UA,U" and UB;U* is upper triangular.
But an upper triangular symmetric or Hermitian matrix must be
diagonal, so the assertion is proved. [ ]

If we specialize the Corollary to the case in which the families .# and
# each contain only one element, we obtain a result from [3]: Let
A, Be M, be given, with A symmetric and B Hermitian. There exists a
unitary U € M,, such that both UAU™ and UBU* are diagonal if and
only if BA is symmetric, i.e. BA = AB.
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