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Let { A i )  and { B , }  be two given families of n-by-n matrices. We give conditions under which 
thereisa unitary U such that every matrix UAiUT is upper triangular. We giveconditions, 
weaker than the classical conditions of commutativity of the whole family, under which 
there is a unitary U such that every matrix UBjU* is upper triangular. We also give 
conditions under which there is one single unitary C7 such that every L7A,U' and every 
UBjU* is upper triangular. We give necessary and sufficient conditions for simultaneous 
unitary reduction to diagonal form in this way when all the A,'s are complex symmetric and 
all the Bjs are Hermitian. 

1. INTRODUCTION 

Motivated by the Grunsky inequalities from the theory of univalent 
analytic functions in the unit disc, we considered recently [3] the 
problem of simultaneous reduction of a pair of n-by-n complex matrices 
A (Hermitian) and B (symmetric) to diagonal form by nonsingular 
congruences that preserve the type of the matrix, i.e. A -+ SAS* and 
B -+ SBST. We also considered similar problems when A and B are both 
Hermitian or both symmetric. 

In this paper, we consider unitary congruences and generalize our 
previous results in two ways: to families with an arbitrary number of 
matrices, and to the problem of simultaneous reduction to triangular 
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form of families of matrices that need not be either Hermitian or 
symmetric. 

2. NOTATION. DEFINITIONS AND BASIC CONCEPTS 

We denote by M, the set of n-by-n complex matrices. Matrices 
A, B E M, are said to be consimilar if there is a nonsingular R E M, such 
that A = RBR- ' [2]. Notice that a real consimilarity is just ordinary 
similarity (A = SBS-' = SBS-' if s is real); a unitary consimilarity is 
one type of congruence (A = UBU-' = UBUT if U is unitary); and a 
complex orthogonal consimilarity is another type of congruence, often 
called a conjunctivity (A = QBQ- ' = QBQ* if Q is complex orthogonal, 
i.e. Q-' = QT).  The notion of consimilarity can be generalized by 
replacing the complex field with an arbitrary field F and replacing the 
operation of complex conjugation by an automorphism on F [6, p. 271. 

A matrix A E  M, is said to be contriangularizable (respectively, 
condiagonalizable) if A is consimilar to an upper triangular (respectively, 
diagonal) matrix. A family of matrices ,F = {Ai: i E 9) c M, is said to 
be simultaneously contriangularizable (respectively, simultaneously con- 
diagonalizable) if there is one nonsingular R E M, such that RA,R-' is 
upper triangular (respectively, diagonal) for all i E A If R can be chosen 
to be unitary, we say that .F is simultaneously unitarily contriangular- 
izable or condiagonalizable. The family 9 is said to be concommuting if 
A , A ~  = A ~ A ~  for all i, j E A 

A subspace S c Cn is said to be invariant under A E M, if Ax E S for 
every x E S ;  it is coninvariant under A if A2 E S for every x E S. If 
B = {A,: i E 9) c M, is a given family of matrices, the subspace S is said 
to be 9-invariant (respectively, F-coninvariant) if S is invariant 
(respectively, coninvariant) under Ai for all i E A 

A nonzero vector x E Cn such that A2 = Ax is said to be a coneigen- 
vector of A E M,; the scalar A is a coneigenvalue of A. If Ax = Ax, notice 
that ecil'Ai = ~(e'"x) = (ec2'"1~)(ei"x) for all 0 E R, SO a matrix with a 
nonzero coneigenvalue has infinitely many distinct coneigenvalues. - - 
Moreover, AAX = A(Ai)  = A(Ax) = Z A ~  = :AX = 1A(2x, so 1AI2 is 
necessarily an eigenvalue of the matrix AX. If AA has no nonnegative 
eigenvalues, then A can have no coneigenvalues. 

LEMMA 2.1 If S is a subspace of Cn that is coninvariant under 
A, B E M,, then S is invariant under AB. 
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Proof If x E S, then y = B2 E S and A& = A(%) E S. 

The converse of the assertion in the lemma is false, as may be seen from 
considering the example B = A = ( y  -;), for which AA = -I. The 
linear span of the vector el = (h) is a subspace of C2 that is invariant 
under AA but is not coninvariant under A. 

LEMMA 2.2 Let A E M ,  be given, and suppose S c C" is a nonzero 
subspace that is coninvariant under A. ~f AA has an eigenvector in S whose 
associated eigencalue is nonnegative, then S contains at least one 
coneigenvector of A. 

Proof By Lemma 2.1, S is invariant under AA, so there is at least one 
eigenvector of AAin S. 1f AAX = Ax with x # 0, x E S, and /1 3 0, notice 
that A A ( A ~ )  = A(AAX) = A@,?) = A(Ai). There are two possibilities: 
A.i and x are dependent, or they are independent. In the first case, 
A i  = px for some p E C, in which case x is a coneigenvector of A. In the 
second case, A2 + px # 0 for all p E @. But then for any p such that 
1p/' = i we have A(A.T+px) = AAX +bA.i= i,x+ F A ~ =  p i x  + f i ~ 2  
= b(A.?+ px), so A2 + px is a coneigenvector of A. 

If AA has only nonnegative eigenvalues, the main hypothesis of the 
lemma is automatically satisfied. This is the case, for example, if A is 
symmetric (since AA = AA* is positive semi-definite) or if A is Hermitian 
and positive definite (since AA is similar to A ~ ' ~ A A ~ / ~ ,  which is 
congruent to the positive definite matrix A). 

3. SIMULTANEOUS UNITARY 
CONTRIANGULARIZATION OF A FAMILY OF 
MATRICES 

Our first objective is to establish general sufficient conditions for a 
family of matrices to be simultaneously unitarily contriangularizable. 
We then specialize to obtain a simple necessary and sufficient condition 
in the case of a family of complex symmetric matrices. The simultaneous 
contriangularization theorem is an immediate consequence of a 
sufficient condition for a family of matrices to have a common 
coneigenvector. 
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LEMMA 3.1 Let @ = {A,: i E IQ) c M ,  be a given family of matrices, let 
9 = {A,&: i, j E a), and assume that 

(a) 9 is a commuting family, 
(b) for all i E A AiAi has only nonnegatilie eigenvalues, and 
C) whenever i, j E Y and x # 0 is a vector such that A , A ~ x  = Ax and 

A ~ A , x  = px, then 1L = 1p1. 
Then every nonzero .F-coninvariant subspace S of iCn contains a common 
coneigenvector for i.e. there is some nonzero x E S such that A i i  = 3,,x 
for all i E A 

Proof Let S c Cn be a nonzero subspace that is @-coninvariant. 
Lemma 2.1 guarantees that S is 9-invariant, so there is a common 
(nonzero) eigenvector x E s for 9. Suppose A , A ~ x  = Aijx for all i, j E $ so 
that (Aij /  = lAji( for all i, j E 4 by (c). 

There are two cases to consider: 

(1) A,A,x = o for all i E 4 or 
(2) AoA0x # 0 for some A, E 5 

Consider case (1) first. There are two possibilities: 

(1') A i i  = 0 for all i E f i  or 
(1 ") A,% # 0 for some A, E 9 

In case (l'), xis a common coneigenvector for .9 and we are done. In case 
(I"), use the commutativity of 3 to compute 

O = A , A ~ A ~ A , A , ~  = A ~ A , A ~ A ~ A ~ ~  = A , A ~ A , A ~ A ~ ~  
- - 

= A , & , X ~ ~ ~  = I,ioRoi(Aoi) 

which implies that A, = I.,, = 0 since lAiol = (?,,,I. Thus, Ai(A0x) = Ofor 
all i E $ and the nonzero vector A,i is a common coneigenvector for E 

The final case to consider is (2), so we assume that A,A,X = Ax with 
3, > 0. Let S' = {z E S: A,A,? = Itz) # 10), and let 9, -- {A0Ai, AiA0: 
i E 3). If z E Sf, A ~ A , ( A ~ A ~ ) Z  = A ~ A , A ~ A , ~  = A(AiAoz), SO S' is 
invariant under A,&. A similar argument shows that S' is invariant 
under A,A,, so S' is 9,-invariant. Since go is commutative, there exists a 
common (nonzero) eigenvector y E S' for 9,. Suppose AiA0 = pi, y and 
A , A , ~  = pOiy for all i~ 4 so that (poi( = (pi,( by (c). Define 

so = r )  {{z E s t :  A,&Z = poiz) n (Z E s t :  A,A,z = p i o ~ ) f  
iE ,fl 

and notice that S' 3 So 3 {y) # (0). 
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We claim that So is coninvariant under A,. First observe that if z E S', 
P - 

we have A,A,(A,~) = A,(A,A,z) = A,(E.z) = AA,i, so Aoi  E S', i.e. S' is 
coninvariant under A,. Next observe that if z E St, then 

i.e. 
for every z E S' there is some w E S' such that z = A,$. (3.2) 

Using this fact, compute 

A,&A,Z = AoA0~,Aow = ( A , A , ) ( A , A ~ ) ~  = ( A , A ~ ) ( A , ~ ~ ) ~  

i.e. 
(A,A,A,)z = (AoA0Ai)i  for all z E S' and all i E N. (3.3) 

Now let z E Sr and use (3.2), (3.3), and (a) to compute 

= (A~A~)(A ,A~)W = A,A,A,(*) = A,A,A,~, 
i.e. - 

(A&A,)z = (AiAiAo)i  for all z E Sf and all i E X. (3.4) 

Let z E S' again and use (3.2), (a), and (3.4) to compute 

A,A,A~&z = A,A,A,A,(A,~) = A ~ ( A ~ ~ ) ( A ~ A ~ ) $  = A i A i ( A 0 A , A j ) ~  

= A , A ~ ( A ~ A ~ A , ) ~  = A , A ~ A ~ A , z ,  

i.e. 
( A , A ~ )  (A~A, )z  = (A,A,) (Aj&)z for all z E Sf and all i, j E 2 (3.5) 

Now let z E So be given. Notice that A,&A,A,z = piipOOz and 
A,&A,&,z = pio~,,z by the definition of So, and pi,pooz = 
A~A~A,A,z = Ai~,A,Aiz = piopoiz b y  (3.5). But pi, and ,uoo are non- 
negative by assumption (b), so piopoi = piipoo is real and nonnegative for 
all i E A Since Ip,( = Ipoil, it follows that pi, = goi for all i E A 

We can now show that So is coninvariant under A,, for if z E S, is 
given, we have 
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and 
- 

A~A,(A,?) = (A~A,A,)F = (AoAoAi)? = A,ioi? = pi,Aoi 

where we have used the identity (3.3) in the second calculation. Together, 
these two identities show that S, is coninvariant under A,. 

Since A,A,s, = is, with A > 0, So is certainly invariant under A&. 
By Lemma 2.2, A, must have a (nonzero) coneigenvector x, E So, 
Ango = px,, and A,A,~ ,  = 1p(2x, = %xo, so p # 0. Then 

1 - 1 - 

A,%, = A, Aoxo = A,A,xo = (p,,/j)x for all i~ 6 
P i l L  

and this vector x, is a common coneigenvector for .E 

THEOREM 3.6 Let 9 = {Ai: i E 4) c M ,  be a given family, let 
9 = {A,A,.: i j ~ y ) ,  and assume that 3 is a commuting family. There exists 
There exists a unitary U E M ,  such that UAiUT is upper triangular for 
all i E 4 if and only if 

(a) For all i E $ a,;Ai has only nonnegative eigenvalues, and 
(b) For all i , j ~  r$ A ~ A ~  + A ~ A ~  has only real eigenvalues and 

A,A~ - has only imaginary eigenvalues. 

Proof If there exists a unitary U E M, such that UAiUT = Aiis upper 
triangular for all i E .A then A ~ A ~  = U * A ~ A ~ U ,  and A ~ A ~  has nonnegative 
main diagonal entries, which are the eigenvalues of A,A,. Moreover, 
A , A ~  f A ~ A ,  = u*(diAj + djAi)u has only real (+) or imaginary (-)  
eigenvalues because the respective main diagonal entries of A ~ A ~  are the 
conjugates of those of A ~ A ~ .  The conditions (a) and (b) are therefore 
necessary. 

To show that they are also sufficient, claim that it suffices to show that 
conditions (a) and (b) imply that there is a common coneigenvector for 
all A, E .F If x # 0 is such that Ai2 = Aix for all i E 4 let U E M ,  be a 
unitary matrix with first column x/lixi12. Then 

for all 

We can now proceed to reduce the family 9' = {A:: i E Y) c M,-,  in 
the same way if 9' inherits the two properties (a) and (b) and if V' = 

(A;zJ: i, j E .f) is a commuting family. But 
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so the eigenvalues of A J ,  are just )jVil2 together with the eigenvalues of 
A\Z which must, therefore, be nonnegative because of (a). Similarly, 

so the eigenvalues of A , A ~  f  are just ii& + ij& together with those 
of A\& +  AS^. The eigenvalues must, therefore, be real (+) or 
imaginary (-) because of (b) and the fact that ,?,Ij + = 2 R~(A,&)  is 
real and iixj - A,& = 2i 1m(AiZj) is imaginary. The commutativity of 9' 
is easily verified. 

Finally, observe that if x is a common eigenvector of both AiXj and 
A ~ A , ,  and if Ai&x = i x  and A ~ A , x  = px, then ( A , A  + A;A~)x = 

- 
(3, f p)x. Assumption (b) says that ;I + p is real and - p 1s imaginary, 
so 3, = ,L. In particular, )A) = JpI, and hence assumption (c) of Lemma 3.1 
is met. Since the other assumptions of the lemma are also met, we can 
apply Lemma 3.1 to the P-coninvariant subspace S = @" to ensure the 
existence of the desired common coneigenvector of .F H 

If the family 5 consists of a single matrix, the assumption about 
commutativity of 22 is vacuous, and hypothesis (b) is subsumed under (a). 
Thus, the condition that AA has all nonnegative eigenvalues is necessary 
and sufficient for A to be unitarily contriangularizable. A more direct 
proof of this result is in [2]. If A is symmetric, then AA = AA* is positive 
semi-definite and hence every symmetric matrix is unitarily con- 
triangularizable. But UAUT is symmetric whenever A is symmetric, and 
a symmetric triangular matrix is diagonal, so we conclude that every 
symmetric matrix is unitarily condiagonalizable (and conversely). This is 
a classical result of Takagi [9], Siege1 [a], and Schur [7]. 

We are also interested in simultaneous unitary condiagonalization of 
a family of symmetric matrices, and Theorem 3.6 provides a necessary 
and sufficient condition. 

COROLLARY 3.8 Let 9 = {A,: i E J) c M ,  be a given family of 
symmetric matrices, and let 3 = {A,%: i, j E 9). There exists a unitary 
U E M ,  such that UA,UT is diagonal for all i E Y if and only $ 9  is a 
commuting family. In this event, every product A , A ~  is normal. 
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Proof If there is a unitary U E M ,  such that A, = UAiUT for all i E 3 
and if each A, is diagonal, then each A , A ~  = u(A,A~)u*, and 9 is a 
commutative family of normal matrices since it is simultaneously 
unitarily diagonalizable. 

For the converse, observe that (A,A~)* = A ~ A , .  Thus, hypothesis (b) of 
Theorem 3.6 is satisfied because for any C E M,, C + C* is Hermitian 
and has only real eigenvalues while C - C* is skew-Hermitian and has 
only imaginary eigenvalues. Hypothesis (a) is satisfied because 
A,& = AiAT is Hermitian and positive semi-definite. Thus, the theorem 
guarantees that there is a unitary U E M, such that UAiUT = A,is upper 
triangular for every i E 4; But then AT = UATUT = UAiUT = A,, so 
each A, is actually diagonal. rn 

A commuting family 3 = {A,: i E 4) c M,(R) of real matrices with 
real eigenvalues is simultaneously upper triangularizable by a single real 
orthogonal similarity, i.e. a (real) unitary consimilarity. The following 
theorem is a simple generalization of this fact to simultaneous unitary 
contriangularization of a family of complex matrices. Its hypotheses are 
in part stronger than those of Theorem 3.6; the assumption that 3 is 
concommutative (Ai& = A ~ A ,  for all i, j E 9) implies that 9 is com- 
mutative. But it makes no assumption on the eigenvalues of 
A , A ~  + A,.&, so its hypotheses are in part weaker than those of 
Theorem 3.6. 

THEOREM 3.9 Let 9 = {A,: i E 4) c M ,  and assume that A , A ~  = A ~ A ,  
for all i, j E -9 There exists a unitary U E M ,  such that UAiUT is upper 
triangular for all i E Y i f  and only if A ~ A ~  has only non-negatice 
eigenvalues for all i E .A I n  this euent, there is a unitary diagonal matrix 
D E M ,  such that V = DU is a unitary matrix for which VAiVT is upper 
triangular and has real main diagonal entries f i r  d l  i E .f 

Proof The condition on the spectrum of is necessary as before. 
To show that it is sufficient, notice that the assumption that .3 is 
concommutative implies that 9 = {A,&: i, j E f )  is commutative, so 
assumption (a) of Lemma 3.1 is satisfied. We are explicitly assuming (b) 
of the Lemma, and (c) is trivially satisfied since A ~ A ~  = A~A, .  Thus, all the 
assumptions of Lemma 3.1 are satisfied and, by a normalization if 
necessary, we are guaranteed the existence of a unit vector u such that 
A,; = Aiu for all i E A Let U E M, be a unitary matrix whose first column 
is u. Then U * A , ~  has the form (3.7) and one shows, just as in the proof of 
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(3.6), that the family F = {A:: i E 9) c M ,  - , is a concommuting family 
such that every A:A: has only nonnegative eigenvalues. The desired 
reduction to upper triangular form now follows after at most n - 2 
repetitions of this reduction, and hence there is one unitary U E M, such 
that UAiUT = Ai is upper triangular for all i E A 

The hypothesis of concommutativity of 9 implies that the family 
of Afs is also concommutative, since AiAj = U A , U ~ U A ~ U *  = 
U A ~ A ~ U *  = U A ~ A ~ U *  = U A ~ U ~ U A , U *  = AjAi. If a set of complex 
numbers {Si: i E 9) has the property that 6,dj = 6j6ifor all i, j E then 
either all bi = 0 or for some k E 4 Jk # 0. In the latter case, 6,6,/lfi,J is real 
for all i E A In either case, therefore, we can be sure there is a complex 
number d of absolute value one such that d26, is real for all i E 

Applying this observation to the respective main diagonal entries of the 
matrices A,, we see that there is a unitary diagonal matrix 
D = diag(d,, . . . , d,) such that DAiD has real main diagonal entries for 
all i E .A and hence (D U)Ai(DU)T = DAiD has real main diagonal entries 
for all i E .9 The unitary matrix V = DU has the asserted properties. 

The hypothesis of concommutativity of d in (3.9) is, like the 
hypothesis of commutativity of 59 in (3.6), sufficient but not necessary, 
e g  9 = {(::), (:A)). 

The previous theorem implies a sharpening of the conclusion of 
Corollary 3.8 which could have been proved directly. 

COROLLARY 3.10 Let 9 = {A,: i E 4) be a given family of symmetric 
matrices. There exists a unitary U E M ,  such that UAiUT is a real 
diagonal matrix for all i E 9 if and only if A , A ~  = A ~ A ~  for all i, j E cX i.e. 
each A , A ~  is Hermitian. 

Proof If thereis a unitary U E M, such that A, = UAiUT for all i E .A 
where each Ai E M, is real and diagonal, then A , A ~  = U A ~ U ~ U A ~  U* = 

UAiAjU* = UAjAiU* = U A j ~ T o ~ i ~ *  = A,.&. Theconverse follows 
directly from the theorem, since each A,& = AiAT is positive semi- 
definite. 

The equimodular eigenvalue property (c) in Lemma 3.1 arose in this 
section in the context of assumption (b) of Theorem 3.6, but there are 
many other natural assumptions that imply it. We list several that 
are easily verified. The conditions (dx) played a role in this section; the 
conditions (ex) play a role in the next section. 
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PROPOSITION 3.11 Let A, B E  M,. Each of the following conditions is 
sufJicient for a family 9 = { C i :  i E 9) c M ,  to hace the property that if 
x  # 0 and C i x  = i i x  for all i E 9 then lli( = llj( for all i, j E 3 

(al) Y = { A , ,  A , ) ,  where A,  = A,  
(a2) 9 = {A,?,, A2Al) ,  where A,  and A,  commute 
(a3) V = { A , A , ,  A ,A , ) ,  where A ,  and A ,  concommute 
(bl) 9 = { A , ,  AT), where A,  is normal 
(b2) 9 = { A ,  A,, A ,A , ) ,  where A,  and A, are Hermitian and A ,  A,  

commutes with A2Al  
(b3) Y = {A,A,,  A , A , ) ~  where A ,  and A, are symmetric and A,& 

commutes with A 2 A ,  
(c) 9 = { A , ,  A, ) ,  where Ix*A,xl = Ix*A2xl for all X E  Cn 
(dl) 9 = { A , ,  A , ) ,  where A ,  + A,  has only real eigenvalues and 

A ,  - A, has only imaginary eigenvalues 
(d2) 9 = { A , ,  A, ) ,  where A ,  + A2 is Hermitian and A ,  - A,  is skew- 

Hermit ian 
(el) 9 = { A , ,  A2) ,  where A ,  - Az is nilpotent 
(e2) 9 = {A ,A , ,  A 2 A l ) ,  where A,  and A ,  are simultaneously 

triangularizable 
(e3) Y = {A,A, ,  A,A,) ,  where Al and A,  are simultaneously con- 

triangularizable 

Each of the conditions in the proposition not only implies the stated 
eigenvalue property, but also has the property that it is inherited under 
any unitary partial triangularization. That is, if 9 is any one of the cited 
families with the corresponding conditions, and if U is a unitary matrix 
such that UAiU* has the form 

then each A: inherits the corresponding property, and hence the family 
9' formed from A; and A; (and their successors from further unitary 
reductions) has the equimodular eigenvalue property. This is exactly the 
situation one needs for a successful simultaneous unitary triangular- 
ization and it is the reason why some sort of unitarily inheritable 
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property is assumed in each of our simultaneous unitary triangular- 
ization theorems. 

4. SIMULTANEOUS TRIANGULARIZATION OF A 
FAMILY BY UNITARY SIMILARITY 

If 9 = { A , :  i E 4)  c M, is a given family, a well-known sufficient 
condition for 9 to be simultaneously unitarily triangularizable is that 9 
be commutative. Weaker conditions are sufficient for t h s  same con- 
clusion, however. 

The key observation is that if A,, A,, . . . , A, E M ,  are any k upper 
triangular matrices, then for any permutation TC of the integers 
1, 2,. . . , k, the difference of products A,A, . . . A ,  - A,(,,&(,, . . . A,(,, 
always has a zero main diagonal and hence is nilpotent. Thus, if a family 
{ A , )  is simultaneously triangularizable, every difference of products 
Ail A ,  . . . Aik - Ah, l ,Ah l l l  . . . must be nilpotent. In the following 
lemma, we use this necessary condition to find a sequence of sufficient 
conditions for a given family to have a common eigenvector, and then 
use the common eigenvector to construct the desired common unitary 
similarity. The case k = 2 of the Lemma parallels the statement and 
proof of Lemma 3.1; the case k = 1 is just the classical sufficient 
condition that the family .F is commutative. 

LEMMA 4.1 Let 9 = { A , :  i E Y) c M ,  be a gicen family, let k be a given 
positive integer, assume that the family of all possible k-fold products 
9, = { A i I ~ , ,  . . . Aik: i,, i,, . . . , i, E .8) is cornmutatice, and assume that 
the difference of products A,, A ,  . . . Aik - Aii(,,AirrI2, . . . Ah,k, is nilpotent 
for everj! i,, i,, . . . , i, E .P and ecery permutation n of the integers 
1,2, . . . , k. Then every hen-zero .F-invariant subspace of S of @" contains 
a common eigenvector for .% i.e. there is some nonzero s E S such that 
A,x = i i x  for all i E .A 

Proof Let S c @" be a given nonzero .F-invariant subspace, which 
must therefore also be ??,-invariant. Since (e, is commutative, there is a 
common (nonzero) eigenvector x E S for gk. If k = 1, we are done, so 
assume k 3 2. Suppose Ail A,, . . . Aikx = ibil 2 . . .  for all i,, i,, . . . , i, E .A 
By the nilpotence assumption, every eigenvalue of the difference 
A .  1 1  A .  12 . . . A .  'X - A .  '-"Ill  A .  h12) . . . Ailk, is zero, and since i i , j . . . i  - ~ . i ~ I , k 1 2 1 . . . k l k ,  
is the eigenvalue of this difference associated with the common 



282 Y.  P. HONG AND R. A. HORN 

eigenvector x, we have the identity 

'"i, i2. . .h = *&,,,&c21...inckl 

for all i,, i,, . . . , i, E 4 and every permutation n. (4.2) 

There are two cases to consider: 

(a) Afx = 0 for all i E & or 
(b) There is some A, E 9 such that Ak,x # 0. 

We shall show that there exists a common eigenvector for .9 in either 
case. 

First consider case (a), in which there are two possibilities: 

(al) Aix = 0 for all i E & or 
(a2) There is some A, E 9 such that A,x # 0. 

In case (al) the vector x itself is a common eigenvector for 9 and we are 
done. 

In case (a2), let m, = max{j: Ajx # 0 for all i E Y ) ,  so that 1 < m, < k 
by assumption, AY+'x = 0 for all i E & and y, = APx # 0 for some 
A, E .Z Then either Ai y, = 0 for all i E P (in which case we are done), or 
Aiy, = AiAPx # 0 for some i E A In the latter case, observe that 

because Afx = 0. Thus m, - max{j: Ajy, # 0 for all i E 4) is finite and 
surely 2k 3 m, 3 1, A71 +'yo = 0 for all i E 9, and y, = Ayly, = 
ATlAPx # 0 for some A, E .F We claim that this process will, after at  
most k - 1 steps, produce a nonzero vector yi = A?yi-, for which 
Aj yi = 0 for all j E & in which case we are done. If not, then for some 
integerpwithl < p < k -  lwesha l lhavem,+m,  +. . .+  mp-, < k, 
m,+m, + . . .  mp-, + m , 3 k ,  and A,".A,".--i . . .AylA?x#O for 
some A,,A, , . . . ,  A , ~ g L e t  q -  k -  (m,+m, + . . .+  mp-,)so that 
1 < q < m,. Notice that A4,A,".--i . . . AYIAP E qk and that 
AqAmp-1 P-1  . . . AYlAPx - Rx # 0 because x is a common eigenvector for P 

qk and 

Because of (4.2) we can permute the terms in the product to obtain 
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Using this fact and the commutativity of Yk, we compute 

But this leads to a contradiction, because i . 2 ~ o x  # 0 and AT + x = 0 by 
construction. Thus, both possibilities have the desired outcome of a 
common eigenvector in case (a). 

The final case to consider is (b), so we assume that A;x = k, .X # 0, 
i, # 0. Let S ,  denote the A-eigenspace of Ak,, i.e. S, = { z  E S: Ak,z = i z )  3 
{x) # iO) .  Let gk,, = {Ak,-'Ai, A ~ - ~ A ~ A , ,  . . . , A ~ A ~ A ~ , - ~ ,  AiAk,-l: 
i E 3) c gk. The vector xis a common eigenvector for gk,,, and because 
of (4.2) we know that A~,-~A~AP,- 'X  = pix for p = 1,2, .  . . , k and all 
i E 4 i.e. the eigenvalue does not depend on p because of the assumed 
permutation property. Now define 

and notice that S 2 S, 2 S o  =, {x) # (0). We claim that So is invariant 
under To show this, let z E So be given. I f  p = 1, then 

If k >, p >, 2, then we can use the commutativity of Yk to compute 
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These two calculations show that So is invariant under A:-'. Thus, there 
exists an eigenvector for A$- l in So, i.e. there is a nonzero vector w E So 
such that A:-'w = pw, and p # 0 because 1.w = A$w = A0A:-'w = 
Aopw = pAow and; # 0. But thenpiw = AiA$-'w = Aipw = pAiw and 
Aiw = (p , /p)w for all i E & so w is a common eigenvector for 3 . 
THEOREM 4.4 Let 9 = { A , :  i E 9) c M ,  be a given family, let k be a 
gicen positive integer, and assume that the $inzily Vk = {Ai ,  Ail . . . Aik: i , ,  
i2, . . . , i, E 4) of all k-fold products j?om .9 is commutative. There exists 
a unitary U E M ,  such that UAiU* is upper triangular for all i E Y if and 
only if the dijference of products Ail A ,  . . . Aik - Aa, l ,Aa, l l  . . . A .  k ( k ~  is 
nilpotent for every i l ,  i2, . . . , ik E .Y and euery permutation n of the 
integers 1,2, . . . , k. 

Proof The necessity of the nilpotence condition has already been 
observed. To show its sufficiency, invoke Lemma 4.1 with S = @" to 
produce a common eigenvector x for E which we may assume is a unit 
vector and satisfies A,x = %,x for all i E A Let U E M, be a unitary 
matrix with first column x, so that 

We could now proceed to reduce the family F = (A: :  i E .Y) in the same 
way if .F' inherited from 9 the properties that 9' = (A:,  A;, . . . A! 11 - 
A'. A: b 1 2 1  . . . A\,k,) is commutative and A:, A:; . . . Aik - A',,,IAX,,, . . . A',,k, 
is nilpotent for all i,,  i,, . . . , i, E .f and all permutations n. It is a 
straightforward computation to verify both of these properties, as in the 
proof of Theorem 3.6. . 

The kinship of this result with Theorem 3.6 is particularly apparent in 
the case k = 2, which we state separately for emphasis. 

COROLLARY 4.5 Let .F = { A i :  i E :Y) c M ,  be a gicen ,family and 
assume that the family 9, = { A i A j :  i, j E 9) is commutatice. There exists 
a unitary U E M ,  such that WALL'* is upper triangulur for ull i E .P i f  und 
onljl if euery member of the family A' - jAiAj - AjAi :  i , j  E 9) is 
nilpotent. 

The Corollary, and hence the Theorem, is stronger than the classical 
theorem on simultaneous unitary triangularization, which assumes that 
.F is commutative. Consider the following example of a non- 
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commutative 9: 

Thus, 9, = {A: ,  A,A2, A 2 A l ,  A;}  is commutative. 
There may be a temptation to hope that commutativity of the family 

9, for some, perhaps large, value of k might be necessary as well as 
sufficient for simultaneous unitary triangularization of 9 in Theorem 
4.4, but this is not true. Consider the family 

for which 

Since 

the family 9, is not commutative for any k 3 1. 
For completeness, we give an example [suggested by the referee] 

which shows that commutativity of the family 9, for k 2 is, by itself, 
insufficient to imply simultaneous unitary triangularizability of the 
family 3 i . e .  commutativity of 9, does not imply that the elements of -Y 
are nilpotent. For any k 3 2, let A = Jk(0) be the k-by-k Jordan block 
with zero eigenvalue and let B = E, , , ,  where EiSj  denotes the k-by-k 
matrix with a 1 in the i, j position and zero everywhere else. Then 3, = 

10, E l , , ,  E2,,, . . . , E,,,) is commutative, but A"'B - BAk-' = 
E l , ,  - E,,, is not nilpotent. 

The conditions we have given in Theorem 4.4 are merely sufficient for a 
given family of matrices to be simultaneously unitarily triangularizable. 
Necessary and sufficient conditions have been known since the work of 
McCoy [ 5 ]  in 1936; see [I, 41 for a more recent perspective and further 
references. 
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5. SIMULTANEOUS TRIANGULARIZATION OF TWO 
FAMILIES BY UNITARY CONGRUENCES 

We wish to generalize Theorems 3.6 and 4.4 to cover the case of two 
families of matrices ( A , )  and { B j )  that are to be reduced simul- 
taneously tb upper triangular form by unitary consimilarity and unitary 
similarity, respectively. That is, we want to have a single unitary matrix 
U such that every U A i U r  and U B j  U* is upper triangular. Our first step 
is to obtain a version of Lemmata 3.1 and 4.1 that covers this combined 
situation. 
LEMMA 5.1 Let .F = {A,:  i E 9) c M ,  and X = { B j :  j E 8) c Mn be 
given families. Assume that every nonzero 9-conintlariant subspace of Cn 
contains a common coneigenvector for and that ecery nonzero .F- 
invariant subspace of @" contains a common eigenoector for .X Assume 
also that 

(a) B, has only real eigenaalues for all j E and 
(b) A,B, = B,A, for all i E Y and all j E $ 

Then every nonzero F-invariant subspace S of C" contains a nonzero 
vector x such that A , i  = i , x  for all i E Y and B,x = pJx  for all j E A i.e. 
there exists a nonzero rector in S that is a common coneigenvector for 9 
as well as a common eigent'ector for K 

Proof Let S be a nonzero #-invariant subspace, and let w be a 
common eigenvector for A' in S, i.e. 0 # w E S is such that B, w = pJ w for 
all j E # Each pJ is real by assumption (a). Let S' denote the (necessarily 
nonzero) subspace of S consisting of all the common eigenvectors of i/C; 
with the same eigenvalues as w, i.e. 

s S' r n r x :  B ~ X  = p j ~ )  { w )  # 10). 
1 t P  

It is evident that Sf is X-invariant, but we claim that it is 3-coninvariant -- -- 

as well. If x E S', BjAi.i = ~ ~ 4 . 7  = A i ( B j x )  = A i ( p j x )  = p j ( A i i )  
because of the assumptions that AiBj  = B j A i  and each pj is real. This 
says that A i x  E Sf for all i E .P, i.e. S' is 9-coninvariant. The hypotheses 
guarantee that there is a common coneigenvector for 3 in S', and this is 
the desired vector. 

Our main result says that, subject to three conditions, the two families 
3 and 3~ are jointly simultaneously unitarily contriangularizable and 
triangularizable, respectively, if and only if they are separately simul- 
taneously contriangularizable and simultaneously triangularizable, 
respectively. 
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THEOREM 5.2 Let F = {A , :  i~ P) c M ,  and 3Y = ( B  : J 5 2) c M ,  
be given families, let k be a g~ven posltme integer, let 9 = b ,~ , :  I ,  j t I), 
and let 3 = { B , , B ,  . . B,: 1 1 ,  1 2 ,  . . . , l k  E 9'). Assume that 

(1) Each of 9 and Tk is a commuting family, 
(2) Bj has only real eigenvalues for all j E and 
( 3 )  AiBj = BjAi  for all i E 4 and all j E $ 

Then there exists a unitary U t M ,  such that UAiUT is upper triangular 
for all i E P and UBjU* is upper triangular for all j E 2 i f  and only i f  

(a) has only nonnegatioe eigenvalues for all i-t 3 
(b) AiAj  + A ~ A ~  has only real eigenvalues and AiAj  - A ~ A ~  has only 

imaginary eigenualues for all i, j E .< and 
(c) Bj,  Bj2 . . . Bj, - B .  BjnlZ1 . . . Bj,Xl is nilpotent for all j,, j2,  . . . , 

J n ~ u  

j, E & and every permutation oj. the integers 1,2, .  . . , k. 

Proof The necessity of conditions (a), (b), and (c) is easily checked; it 
also follows from Theorems 3.6 and 4.4. To establish the sufficiency of 
these three conditions it suffices to show, as in the proofs of Theorems 3.6 
and 4.4, that there is some nonzero x t  En that is both a common 
coneigenvector for 9 and a common eigenvector for and Lemmata 
5.1, 3.1, and 4.1 guarantee the existence of such an x. rn 

An important special case is the one in which the family F consists of 
complex symmetric matrices and X consists of Hermitian matrices. In 
this case, assumption (2) and conditions (a) and (b) are automatically 
satisfied. 

COROLLARY 5.3 Let .F = { A , :  i E f) c M ,  be a given family of 
syinmetric matrices, let f = { B  : j g,f) c M ,  be a gitlen family of 
Hermitian malrices, and let (C. = ( A ~ A ] :  i, j t PI. There exists a unitary 
U E M ,  such that Cr,4,UT is diagonal for all 1 E .f and UB, U* is diagonal 
for allj E f i f  and only if each of 9 and Y? is a commuting family and B, A ,  
is symmetric for all 1 E Y and all J E $ 

Proof The necessity of the stated conditions is easily verified. To 
show that they are also sufficient, we show that they imply the six 
assumptions and conditions in Theorem 5.2. Commutativity of .F is a 
stronger condition than commutativity of in Theorem 5.2, so 
assumption (1) is satisfied and (c) is trivially satisfied since all these 
differences vanish. Because (B jAi )T  = AfB; = AiBj ,  the assumption 
that B j A i  is symmetric is equivalent to (3) when Bj is Hermitian and Ai is 
symmetric. We have already observed that the remaining assumption (2) 
and conditions (a) and (b) are automatically satisfied. Thus, there exists a 
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unitary U E M, such that every UAiUT and UBjU* is upper triangular. 
But an upper triangular symmetric or Hermitian matrix must be 
diagonal, so the assertion is proved. 

If we specialize the Corollary to the case in which the families .3 and 
2 each contain only one element, we obtain a result from [3]: Let 
A, B E  M ,  be given, with A symmetric and B Hermitian. There exists a 
unitary U E M, such that both UAUT and UBU* are diagonal if and 
only if B A  is symmetric, i.e. BA = AB. 
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