MATRICES WITH PRESCRIBED OFF-DIAGONAL ELEMENTS

BY
SHMUEL FRIEDLAND

Abstract

It is shown that there exists an $n \times n$ matrix all of whose eigenvalues and offdiagonal elements are prescribed. The number of such matrices is finite.

1. Introduction

It was shown by Mirsky [2] that for any $2 n-1$ complex numbers $\lambda_{1}, \cdots, \lambda_{n}$, b_{1}, \cdots, b_{n-1} there exists an n-square matrix with eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$ and $n-1$ its main diagonal entries equal to b_{1}, \cdots, b_{n-1}. Recently it was proved by D. London and H. Minc [1] that the restriction of the $n-1$ prescribed entries to the main diagonal is unnecessary. In this paper we show that all $n^{2}-n$ offdiagonal elements can be prescribed, that is, there exists a matrix with these elements all of whose eigenvalues are prescribed. We also show that the number of $n \times n$ matrices with prescribed eigenvalues and all off-diagonal elements is finite. Similar results hold for other Schur matrix functions. This is done by proving preliminary theorems on solvability of certain systems of polynomials equations that may be of interest by itself.

2. Preliminary results

Denote by $K\left[x_{1}, \cdots, x_{n}\right]$ the polynomial ring of n indeterminates over an algebraically closed field K. Let

$$
\begin{equation*}
f_{i}\left(x_{1}, \cdots, x_{n}\right)=x_{i}^{m_{i}}+P_{i}\left(x_{1}, \cdots, x_{n}\right), \quad i=1, \cdots, n, \tag{1}
\end{equation*}
$$

where

$$
\operatorname{deg} P_{t}\left(x_{1}, \cdots, x_{n}\right)<m_{i}, \quad i=1, \cdots, n
$$

Denote by $I\left[f_{1}, \cdots, f_{n}\right]$ the ideal generated by f_{1}, \cdots, f_{n}.

Theorem 1. Let $P\left(x_{1}, \cdots, x_{n}\right)$ be a nonzero polynomial of the form

$$
\begin{equation*}
P\left(x_{1}, \cdots, x_{n}\right)=\Sigma a_{i_{1}} \ldots i_{n} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}, \quad 0 \leqq i_{1}<m_{1}, \cdots, 0 \leqq i_{n}<m_{n} \tag{2}
\end{equation*}
$$ then $P\left(x_{1}, \cdots, x_{n}\right)$ is not in $I\left[f_{1}, \cdots, f_{n}\right]$.

Proof. First we notice that every polynomial $Q\left(x_{1}, \cdots, x_{n}\right)$ of n indeterminates x_{1}, \cdots, x_{n} can be written as a polynomial expression $Q^{*}\left(x_{1}, \cdots, x_{n}, f_{1}, \cdots, f_{n}\right)$ of $x_{1}, \cdots, x_{n}, f_{1}, \cdots, f_{n}$, that is a sum of monomials of the form

$$
\begin{equation*}
A x_{1}^{j_{1}} \cdots x_{n}^{j_{n}} f_{1}^{s_{1}} \cdots f_{n}^{s_{n}}, \quad 0 \leqq j_{1}<m_{1}, \cdots, 0 \leqq j_{n}<m_{n} . \tag{3}
\end{equation*}
$$

This can be done in a finite number of steps: for each $x_{i}^{m_{i} t_{i}+q_{t}}\left(0 \leqq t_{i}, 0 \leqq q_{i}<m_{t}\right)$ we substitute the expression $\left(f_{i}-P_{i}\right)^{t_{i}} x_{i}^{q_{i}}$ which is of a lower degree in the x_{i}. The polynomial $Q^{*}\left(x_{1}, \cdots, x_{n}, f_{1}, \cdots, f_{n}\right)$ is uniquely determined. To prove this it is enough to show that every nonzero polynomial $Q^{*}\left(x_{1}, \cdots, x_{n}, f_{1}, \cdots, f_{n}\right)$, i.e., a sum of monomials of the form (3), is transformed by substitutions (1) to a nonzero polynomial $\tilde{Q}\left(x_{1}, \cdots, x_{n}\right)$. From all terms of $Q^{*}\left(x_{1}, \cdots, x_{n}, f_{1}, \cdots, f_{n}\right)$ pick a term of the form (3) for which the sum

$$
\left(s_{1} m_{1}+j_{1}\right)+\left(s_{2} m_{2}+j_{2}\right)+\cdots+\left(s_{n} m_{n}+j_{n}\right)
$$

is maximal. Denote this maximal sum by m. Now, using Eqs. (1) we find that the degree of $\widetilde{Q}\left(x_{1}, \cdots, x_{n}\right)$ is not greater than m. Let us compute the coefficient of a monomial

$$
x_{1}^{s_{1} m_{1}+j_{1}} \cdots x_{n}^{s_{n} m_{n}+j_{n}}
$$

of degree m appearing in $\tilde{Q}\left(x_{1}, \cdots, x_{n}\right)$. Since a sum $\left(s_{1} m_{1}+j_{1}\right)+\cdots+\left(s_{n} m_{n}+j_{n}\right)$ is maximal this term came only from an appropriate term

$$
x_{1}^{j_{1}} \cdots x_{n}^{j_{n}} f_{1}^{s_{1}} \cdots f_{n}^{s_{n}}, \quad 0 \leqq j_{1}<m_{1}, \cdots, 0 \leqq j_{n}<m_{n},
$$

in $Q^{*}\left(x_{1}, \cdots, x_{n}, f_{1}, \cdots, f_{n}\right)$. Thus the coefficients of the two monomials are equal and the degree of $\widetilde{Q}\left(x_{1}, \cdots, x_{n}\right)$ is exactly m.

Now it is clear that $Q\left(x_{1}, \cdots, x_{n}\right)$ belongs to $I\left[f_{1}, \cdots, f_{n}\right]$ if and only if $Q^{*}\left(x_{1}, \cdots, x_{n}, f_{1}, \cdots, f_{n}\right)$ is a sum of monomials of the form (3) satisfying the inequality:

$$
1 \leqq s_{1}+\cdots+s_{n}
$$

We observe that for a polynomial $P\left(x_{1}, \cdots, x_{n}\right)$

$$
P\left(x_{1}, \cdots, x_{n}\right)=\sum a_{i_{1} \cdots i_{n}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}, \quad 0 \leqq i_{1}<m_{1}, \cdots, 0 \leqq i_{n}<m_{n}
$$

we have the identity

$$
P\left(x_{1}, \cdots, x_{n}\right)=P^{*}\left(x_{1}, \cdots, x_{n}, f_{1}, \cdots, f_{n}\right)
$$

Since P^{*} is unique we can conclude that $P\left(x_{1}, \cdots, x_{n}\right)$ cannot belong to $I\left[f_{1}, \cdots, f_{n}\right]$.
Theorem 2. The n polynomial equations

$$
\begin{equation*}
x_{i}^{m_{i}}+P_{i}\left(x_{1}, \cdots, x_{n}\right)=0, \quad i=1, \cdots, n \tag{4}
\end{equation*}
$$

where the degree of each $P_{i}\left(x_{1}, \cdots, x_{n}\right)$ is smaller than m_{i}, are solvable over an algebraically closed field K. The number of solutions of the system (4) is finite.

Proof. The solvability of system (4) follows immediately from Hilbert's Nullstellensatz [5] and from Theorem 1. Suppose that $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right)$ is a solution of system (4). Then each ξ_{i} satisfies

$$
\xi_{i}^{m_{i}}=-P_{i}\left(\xi_{1}, \cdots, \xi_{n}\right), \quad i=1, \cdots, n
$$

Since the degree of $P_{i}\left(\xi_{1}, \cdots, \xi_{n}\right)$ is less than m_{i} every polynomial $Q\left(\xi_{1}, \cdots, \xi_{n}\right)$ can be expressed as a polynomial of the form

$$
Q\left(\xi_{1}, \cdots, \xi_{n}\right)=\Sigma a_{i_{1} \cdots i_{n}} \xi_{1}^{i_{1}} \cdots \xi_{n}^{i_{n}}, \quad 0 \leqq i_{1}<m_{1}, \cdots, 0 \leqq i_{n}<m_{n}
$$

Thus the polynomial ring $K\left[\xi_{1}, \cdots, \xi_{n}\right]$ is at most of dimension $m=m_{1} m_{2} \cdots m_{n}$. Therefore the $m+1$ elements

$$
1, \xi_{i}, \xi_{i}^{2}, \cdots, \xi_{i}^{m}
$$

are linearly dependent. That means that each ξ_{i} satisfies a nontrivial polynomial equation:

$$
a_{0}^{(i)} \xi_{i}^{m}+a_{1}^{(i) \xi_{i}^{m-1}}+\cdots+a_{m}^{(i)}=0, \quad i=1, \cdots, n
$$

This concludes the proof of Theorem 2.

3. Main result

Let $A=\left(a_{i j}\right)_{1}^{n}$ be an n-square matrix over an algebraically closed field K. Suppose that the $n^{2}-n$ off-diagonal elements are prescribed. Let $x_{i}=a_{i i}$, $i=1, \cdots, n$ and denote the n elementary symmetric polynomials of x_{1}, \cdots, x_{n} by $\sigma_{1}, \cdots, \sigma_{n}$.

Let $\lambda_{1}, \cdots, \lambda_{n}$ be prescribed eigenvalues of A. The existence of such a matrix A is equivalent to the solvability of n polynomial equations:

$$
\sigma_{i}\left(x_{1}, \cdots, x_{n}\right)+R_{i}\left(x_{1}, \cdots, x_{n}\right)=\sigma_{i}\left(\lambda_{1}, \cdots, \lambda_{n}\right), \quad i=1, \cdots, n
$$

where the degree of each $R_{i}\left(x_{1}, \cdots, x_{n}\right)$ is smaller than i (in fact for $i \geqq 2$ the degree of each R_{i} is not greater than $i-2$).

We prove the following result:
Theorem 3. The system of n polynomial equations of the form

$$
\begin{equation*}
\sigma_{i}\left(x_{1}, \cdots, x_{n}\right)+Q_{i}\left(x_{1}, \cdots, x_{n}\right)=0, \quad i=1, \cdots, n \tag{5}
\end{equation*}
$$

where the degree of each Q_{i} is less than i, is solvable over an algebraically closed field K. The number of solutions of the system (5) is finite.

Proof. We notice first that each x_{i} satisfies

$$
\begin{equation*}
x_{i}^{n}-\sigma_{1} x_{i}^{n-1}+\sigma_{2} x_{i}^{n-2}+\cdots+(-1)^{n} \sigma_{n}=0 \quad, \quad i=1, \cdots, n \tag{6}
\end{equation*}
$$

Define

$$
g_{i}=(-1)^{i-1}\left(\sigma_{i}+Q_{i}\right), \quad i=1, \cdots, n
$$

and

$$
f_{i}=x_{i}^{n}+Q_{1} x_{i}^{n-1}-Q_{2} x_{i}^{n-2}+\cdots+(-1)^{n-1} Q_{n}, \quad i=1, \cdots, n
$$

Clearly each f_{i} is a polynomial of the form

$$
f_{i}\left(x_{1}, \cdots, x_{n}\right)=x_{1}^{n}+P_{i}\left(x_{1}, \cdots, x_{n}\right)
$$

such that the degree of P_{i} is less than n. Using the definitions of $g_{1}, \cdots, g_{n}, f_{1}, \cdots, f_{n}$ and the equations (6) we have the equalities

$$
\begin{equation*}
f_{i}=x_{i}^{n-1} g_{1}+x_{i}^{n-2} g_{2}+\cdots+g_{n}, \quad i=1, \cdots, n \tag{7}
\end{equation*}
$$

In order to express g_{1}, \cdots, g_{n} as functions of f_{1}, \cdots, f_{n} we compute the inverse of the matrix $\left(x_{i}^{n-j}\right)_{i, j=1}^{n}$ whose determinant is equal to the Vandermonde determinant

$$
W=\prod_{1 \leqq i<j \leqq n}\left(x_{i}-x_{j}\right)
$$

Then the polynomial $W g_{k}$:

$$
W g_{k}=\sum_{r=1}^{n} u_{k r} f_{r}
$$

where each $u_{k r}$ is a polynomial in x_{1}, \cdots, x_{n}, belongs to $I\left[f_{1}, \cdots, f_{n}\right]$ for $k=1, \cdots, n$. Assume, to the contrary, that the n polynomials g_{1}, \cdots, g_{n} have no root in common.

From Hilbert's Nullstellensatz we deduce that

$$
1=\sum_{i=1}^{n} v_{i} g_{i}
$$

where v_{1}, \cdots, v_{n} are polynomials over the field K. If we multiply both sides of this equality by W we see that the polynomial W belongs to the ideal $I\left[f_{1}, \cdots, f_{n}\right]$.

This contradicts Theorem 1. From Theorem 2 we can also conclude that the number of different solutions of the systems (5) is finite, since from (7) each f_{i} belongs to $I\left[\begin{array}{lll}g_{1} & \cdots & g_{n}\end{array}\right]$.

The following result follows immediately.
Theorem 4. Let $a_{i j} i \neq j, i, j=1, \cdots, n$, and $\lambda_{1}, \cdots, \lambda_{n}$ be prescribed elements from an algebraically closed field K. Then there exists an n-square matrix over this field with eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$ and whose (i, j) entry is equal to $a_{i j}, i \neq j$, $i, j=1, \cdots, n$. The number of such matrices is finite.

4. Remarks

In [3] De Oliveira extended Mirsky's result to permanents. He showed that there exists an $n \times n$ matrix A with prescribed $n-1$ diagonal elements and prescribed polynomial per $(\lambda I-A)$. We generalize Theorem 4 in a similar manner to a result involving Schur matrix functions.

Let G be a subgroup of S_{n}, the symmetric group of degree n, and let χ be a character of G over an algebraically closed field. K, i.e., a notrivial multiplicative homomorphism of G into K. The generalized matrix function d_{χ}^{G}, introduced by I. Schur [4], associated with G and χ is a function on n-square matrices over K whose value for the matrix $X=\left(x_{i j}\right)_{1}^{n}$ is defined by the formula

$$
d_{\chi}^{G}(X)=\sum_{\sigma \in G} \chi(\sigma) \sum_{i=1}^{n} x_{i \sigma(i)}
$$

Define the generalized characteristic roots $\lambda_{1}, \cdots, \lambda_{n}$ of matrix A associated with tbe function d_{χ}^{G} as the roots of the polynomial

$$
d_{x}^{G}(\lambda I-A)=0
$$

where I is the unit matrix of order n.
Suppose that all generalized characteristic roots and $n^{2}-n$ off-diagonal elements of an n-square matrix are given. The product

$$
\left(\lambda-a_{11}\right)\left(\lambda-a_{22}\right) \cdots\left(\lambda-a_{n n}\right)
$$

appears in the equation $d_{x}^{G}(\lambda I-A)$ for any group G and any character χ. The existence of a matrix with prescribed $n^{2}-n$ off-diagonal elements and prescribed generalized roots is equivalent to the solvability of n polynomial equations of the form (5). According to Theorem 3 we have

ThEOREM 5. Let $a_{i j}, i \neq j, i, j=1, \cdots, n$ and $\lambda_{1}, \cdots, \lambda_{n}$ be prescribed elements
from an algebraically closed field K. Then there exists an n-square matrix over this field with generalized eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$ and whose (i, j) entry is equal to $a_{i j}, i \neq j, i, j=1, \cdots, n$. The number of such matrices is finite*.

References

1. D. London and H. Minc, Eigenvalues of matrices with prescribed entries, Technion Preprint, MT-80, May 1971.
2. L. Mirsky, Matrices with prescribed characteristic roots and diagonal elements, J. London Math. Soc. 33 (1958), 14-21.
3. G. N. de Oliveira, A conjecture and some problems on permanents, Pacific J. Math. 32 (1970), 495-499.
4. I. Schur, Über endliche gruppen und hermitesche formen, Math. Z. 1 (1918), 184-201.
5. Van der Waerden, Modern Algebra, Vol. II, Fredrick Ungar Publishing Co., 1950.

Techion - Israel Institute of Technology, Haifa

* The author wishes to thank Professors D. London and H. Minc for their helpful remarks.

