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Abstract

We work over a field K of characteristic zero. The Poincaré series for the algebra Cn,2 of GLn-invariants
and the algebra Tn,2 of GLn-concomitants of two generic n × n matrices x and y are computed for n � 6.
Both simply graded and bigraded cases are included. The cases n � 4 were known previously. For C4,2
and C5,2 we construct a minimal set of generators, and give an application to Specht’s theorem on unitary
similarity of matrices.

By identifying the space M2
n of pairs of n × n matrices with Mn ⊗ K2, we extend the action of GLn to

GLn × GL2. For n � 5, we compute the Poincaré series for the polynomial invariants of this action when
restricted to the subgroups GLn × SL2 and GLn × Δ1, where Δ1 is the maximal torus of SL2 consisting of
diagonal matrices.

Five conjectures are proposed concerning the numerators and denominators of various Poincaré series
mentioned above. Some heuristic formulas and open problems are stated.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let K be a field of characteristic 0, Mn = Mn(K) the K-algebra of n × n matrices over K ,
and d a positive integer. The general linear group GLn = GLn(K) acts on the direct product Md

n
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of d copies of Mn by simultaneous conjugation

a · (x1, . . . , xd) = (
ax1a

−1, . . . , axda−1).
This gives rise to an action of GLn on the algebra K[Md

n ] of polynomial functions on Md
n . We

shall view the entries of xk , k = 1, . . . , d , as linear functions on Md
n .

It is a well-known fact, due to Procesi [13] and Razmyslov [14], that the algebra Cn,d =
K[Md

n ]GLn of GLn-invariants in K[Md
n ] is generated by all traces

tr(z1z2 · · · zk), z1, z2, . . . , zk ∈ {x1, . . . , xd}, k � 1.

This assertion remains valid if one imposes the restriction k � n2. For these facts and many other
known properties of Cn,d we refer the reader to one of Refs. [4,6,9] and the papers quoted there.

Similarly, GLn acts on the (noncommutative) algebra of polynomial maps Md
n → Mn. Its

subalgebra consisting of GLn-equivariant maps will be denoted by Tn,d . The algebra Cn,d re-
spectively Tn,d is known as the pure respectively mixed trace algebra of d generic n×n matrices.

By assigning the degree (1,0, . . . ,0) to the entries of the matrix x1, the degree (0,1,0, . . . ,0)

to the entries of x2, etc., one obtains a Zd -gradation of the algebras Cn,d and Tn,d . The total
degree provides these algebras with the ordinary Z-gradation. In this paper we are mostly inter-
ested in the case d = 2. Until further notice, we assume that this is the case and we set x = x1

and y = x2. The simply graded and bigraded Poincaré series for both Cn,2 and Tn,2 have been
explicitly computed for n � 4 (see [1,17–19]).

In Section 2 respectively 3 we give the bigraded respectively simply graded Poincaré series
of Cn,2 and Tn,2 for n = 5,6. For the bigraded case see Theorem 2.2 and Tables 1 and 2. For the
simply graded case see Tables 3 and 4 (and Appendices B and C, respectively). We also show
(see Proposition 2.1) that the Z2-graded algebra Cn,2 has no bigraded system of parameters
if n = 5,6. The numerators of the bigraded Poincaré series of C6,2 and T6,2 have 1169 and
854 terms, respectively. For that reason we do not list them in the paper. They will be posted
elsewhere.

In Section 4 we construct a minimal set of generators (MSG) of C4,2 (see Theorem 4.2)
which consists of 32 elements of the form tr(w(x, y)), where w(x,y) is a word in the matrices x

and y. This problem has been already solved by Drensky and Sadikova [5], but their generators
are not of this simple form. However, they claim that their choice is better suited for finding a
presentation of C4,2, which is apparently still an open problem. We give an application to the
problem of unitary similarity of two complex 4 × 4 matrices.

In Section 5 we construct an MSG, P , for the algebra C5,2. It consists of 173 bihomogeneous
polynomials.

In Section 6 we identify the space Md
n with the tensor product Mn ⊗ Kd and extend the

action of GLn to GLn × GLd by letting GLd act on Kd by multiplication. We denote by C#
n,d

the subalgebra of K[Md
n ] consisting of GLn × SLd -invariant functions. In Table 5 we record the

Poincaré series of C#
n,2, n � 5.

In Section 7 we restrict the action of GLn × SLd to GLn × Δd−1, where Δd−1 is the maxi-
mal torus of SLd consisting of diagonal matrices. We denote by C•

n,d the subalgebra of K[Md
n ]

consisting of GLn × Δd−1-invariant functions. In Table 6 we record the Poincaré series for the
algebras C• , n � 5.
n,2



656 D.Ž. D– oković / Journal of Algebra 309 (2007) 654–671
In Section 8 we propose four conjectures concerning the numerators and denominators of the
Poincaré series of Cn,2 and Tn,2, one more conjecture about the series for C#

n,2 and C•
n,2, and

state an open problem.
Appendix A gives some details concerning the verification that our expression for P(C5,2; s, t)

agrees with Formanek’s expansion in terms of Schur functions (see [1]). Appendix B contains
the table of some low degree coefficients of the Taylor expansions of P(Cn,2; t) for n � 12. We
also make a couple of interesting observations, and indulge in some speculative thinking. Appen-
dix C treats in the same way the Taylor expansions of P(Tn,2; t) for n � 6. We warn the reader
that several assertions and formulae that appear in the last two appendices are of hypothetical
character and are included there only as a suggestion deserving further consideration and study.

2. Bigraded Poincaré series

Let P(Cn,2; s, t) respectively P(Tn,2; s, t) denote the bigraded Poincaré series of Cn,2 respec-
tively Tn,2. These series are given by symmetric rational functions in the two variables s and t .
We can write them in lowest terms as

P(Cn,2; s, t) = N(Cn,2; s, t)
D(Cn,2; s, t) , P (Tn,2; s, t) = N(Tn,2; s, t)

D(Tn,2; s, t) , (2.1)

where we normalize N and D by demanding that they both have constant term 1.
These Poincaré series have been computed by Teranishi [17–19] for n � 4. The formulae

for the case n = 4 were computed independently by Berele and Stembridge [1]. They corrected
several misprints in Teranishi’s formulas in [18].

We have computed explicit formulae for the numerators and denominators for all n � 6. For
n � 5, the numerators N(Cn,2; s, t) respectively N(Tn,2; s, t) are given in Table 1 respectively 2.
For n = 6, the numerators are huge and are posted on the arXiv. These numerators are symmetric
polynomials in s and t , and they satisfy the functional equation

(st)dN
(
Cn,2; s−1, t−1) = N(Cn,2; s, t),

where d is the degree of N(Cn,2; s, t) as a polynomial in s. For that reason there is no need to
write all the terms of N(Cn,2; s, t). This remark also applies to N(Tn,2; s, t).

Proposition 2.1. C5,2 and C6,2 have no bigraded system of parameters.

Proof. Assume that C5,2 has a bigraded system of parameters, say {P1, . . . ,P26}. Since
C5,2 is a Cohen–Macauley algebra, it is a free graded module over the polynomial algebra
K[P1, . . . ,P26]. Consequently, this module has a free bigraded basis, say {Q1 = 1,Q2, . . . ,Qm}.
It follows that

P(C5,2; s, t) =
∑m

j=1 s
e′
j t

e′′
j

∏26
(1 − sd ′

i td
′′
i )

= N(C5,2; s, t)
D(C5,2; s, t) ,
i=1
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Table 1
Numerators N(Cn,2; s, t)
N(C1,2; s, t) = N(C2,2; s, t) = 1, N(C3,2; s, t) = 1 − st + s2t2,

N(C4,2; s, t)= (
1 − st + s2t2)(

1 − st2 − s2t + s2t3 + s3t2 + s2t4 + 2s3t3 + s4t2 + s3t4

+ s4t3 − s4t5 − s5t4 + s6t6)
,

N(C5,2; s, t)=1 − st − 2st2 − 2s2t − st3 − s3t + 3s2t3 + 3s3t2 + 4s2t4 + 7s3t3 + 4s4t2

+ 3s2t5 + 4s3t4 + 4s4t3 + 3s5t2 + s2t6 − 2s3t5 − 5s4t4 − 2s5t3 + s6t2

− 5s3t6 − 13s4t5 − 13s5t4 − 5s6t3 − 4s3t7 − 10s4t6 − 11s5t5 − 10s6t4

− 4s7t3 − 2s3t8 − 2s4t7 + 3s5t6 + 3s6t5 − 2s7t4 − 2s8t3 + 5s4t8 + 18s5t7

+ 27s6t6 + 18s7t5 + 5s8t4 + 4s4t9 + 18s5t8 + 29s6t7 + 29s7t6 + 18s8t5

+ 4s9t4 + 2s4t10 + 8s5t9 + 12s6t8 + 11s7t7 + 12s8t6 + 8s9t5 + 2s10t4

− s5t10 − 11s6t9 − 24s7t8 − 24s8t7 − 11s9t6 − s10t5 − 3s5t11 − 17s6t10

− 40s7t9 − 47s8t8 − 40s9t7 − 17s10t6 − 3s11t5 − s5t12 − 10s6t11 − 24s7t10

− 33s8t9 − 33s9t8 − 24s10t7 − 10s11t6 − s12t5 − s6t12 − s7t11 + 9s8t10

+ 13s9t9 + 9s10t8 − s11t7 − s12t6 + s6t13 + 10s7t12 + 34s8t11 + 54s9t10

+ 54s10t9 + 34s11t8 + 10s12t7 + s13t6 + 6s7t13 + 27s8t12 + 49s9t11

+ 62s10t10 + 49s11t9 + 27s12t8 + 6s13t7 + 5s8t13 + 10s9t12 + 13s10t11

+ 13s11t10 + 10s12t9 + 5s13t8 − 4s8t14 − 19s9t13 − 37s10t12 − 45s11t11

− 37s12t10 − 19s13t9 − 4s14t8 − 2s8t15 − 20s9t14 − 48s10t13 − 72s11t12

− 72s12t11 − 48s13t10 − 20s14t9 − 2s15t8 − · · · − s22t22 + s23t23.

Table 2
Numerators N(Tn,2; s, t)
N(T1,2; s, t) = N(T2,2; s, t) = N(T3,2; s, t) = 1,

N(T4,2; s, t) = 1 + s2t2 + s2t3 + s3t2 + s3t3 + s5t5,

N(T5,2; s, t)=1 − st2 − s2t + s2t2 + 2s2t3 + 2s3t2 + 2s2t4 + 5s3t3 + 2s4t2 + s2t5 + 2s3t4

+ 2s4t3 + s5t2 − s3t6 − 3s4t5 − 3s5t4 − s6t3 − s3t7 − s4t6 + s5t5 − s6t4 − s7t3

+ 4s5t6 + 4s6t5 + s4t8 + 6s5t7 + 12s6t6 + 6s7t5 + s8t4 + 3s5t8 + 6s6t7

+ 6s7t6 + 3s8t5 + s6t8 + s7t7 + s8t6 − s5t10 − 5s6t9 − 9s7t8 − 9s8t7 − 5s9t6

− s10t5 − 4s6t10 − 9s7t9 − 7s8t8 − 9s9t7 − 4s10t6 − s6t11 − 5s7t10 − 5s8t9

− 5s9t8 − 5s10t7 − s11t6 + 3s8t10 + 6s9t9 + 3s10t8 + 4s8t11 + 6s9t10

+ 6s10t9 + 4s11t8 + · · · − s17t18 − s18t17 + s19t19.

where (d ′
i , d

′′
i ) respectively (e′

j , e
′′
j ) is the bidegree of Pi resp Qj . As N(C5,2; s, t) and

D(C5,2; s, t) are relatively prime, we deduce that

m∑
s
e′
j t

e′′
j = N(C5,2; s, t)R(s, t),
j=1
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where R(s, t) is a polynomial in s and t . By setting s = t = 1 in this identity, we obtain the
contradiction m = 0 since N(C5,2;1,1) = 0.

The proof for the algebra C6,2 is similar. �
The denominators D(Cn,2; s, t) and D(Tn,2; s, t) are closely related to the product

Πn(s, t) =
n∏

i=1

(
1 − si

)(
1 − t i

) i−1∏
j=1

(
1 − si−j tj

)min(i,n+1−i)
. (2.2)

Theorem 2.2. For n � 5, N(Cn,2; s, t) and N(Tn,2; s, t) are given by Tables 1 and 2, respectively.
For n = 6 they are posted on the arXiv [3]. For n � 6, D(Cn,2; s, t) and D(Tn,2; s, t) are given
by

D(Cn,2; s, t) = Πn(s, t), n � 5;
D(C6,2; s, t) = (1 − st)Π6(s, t);
D(Tn,2; s, t) = (

1 + s + · · · + sn−1)−1(1 + t + · · · + tn−1)−1
D(Cn,2; s, t).

Proof. By using the well-known Molien–Weyl formula (see [2]), we have:

P(Cn,2; s, t) = 1

(1 − s)n(1 − t)n
· 1

(2πi)n−1

·
∫

|x1|=1

· · ·
∫

|xn−1|=1

∏
1�k�r�n−1

1 − xkxk+1 · · ·xr

ϕk,r

dxn−1

xn−1
· · · dx1

x1
,

where

ϕk,r = (1 − sxkxk+1 · · ·xr)(1 − txkxk+1 · · ·xr) ·
× (

1 − s(xkxk+1 · · ·xr)
−1)(1 − t (xkxk+1 · · ·xr)

−1),
the integration is performed over the unit circles (in the counterclockwise direction), and the
variables s and t have small moduli.

A similar formula is valid for P(Tn,2; s, t). One has just to multiply the above integrand by
the function

n +
n−1∑
r=1

r∑
k=1

(
xkxk+1 · · ·xr + 1

xkxk+1 · · ·xr

)
.

For n = 5 and n = 6 we have computed the two types of integrals by using MAPLE [12]. Each
of the cases n = 6 required about two weeks of computing time on a machine running R10000
CPU at 250 MHz with 8 GB of RAM. �

We have verified independently the low degree (� 25) coefficients in the Taylor expansions
of P(C5,2; s, t) and P(C6,2; s, t) by using a formula due to Formanek (see Appendix A).
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3. Simply graded Poincaré series

Let P(Cn,2; t) denote the simply graded Poincaré series of Cn,2 and P(Tn,2; t) the one for
Tn,2. As P(Cn,2; t) = P(Cn,2; t, t) and P(Tn,2; t) = P(Tn,2; t, t), by setting s = t in the integral
formula for P(Cn,2; s, t) respectively P(Tn,2; s, t) one obtains a valid formula for P(Cn,2; t)
respectively P(Tn,2; t). We can write these rational functions in lowest terms as

P(Cn,2; t) = N(Cn,2; t)
D(Cn,2; t) , P (Tn,2; t) = N(Tn,2; t)

D(Tn,2; t) . (3.1)

N(Cn,2; t) and N(Cn,2; t, t) may differ because the numerator N(Cn,2; t, t) and the denominator
D(Cn,2; t, t) may have a common factor. Similarly, N(Tn,2; t, t) and D(Tn,2; t, t) may have a
common factor. In Tables 3 and 4 we list the numerators and denominators for P(Cn,2; t) and
P(Tn,2; t) for n � 6. For their Taylor coefficients see Appendices B and C, respectively.

4. Generators of the algebra C4,2

Teranishi [17] has constructed an HSOP for the pure trace algebra C4,2:

Theorem 4.1. Let x and y be generic 4 × 4 matrices. Then the traces of the 17 matrices (which
we arrange according to their degrees)

x, y; x2, xy, y2; x3, x2y, xy2, y3;
x4, x3y, x2y2, xy3, y4, xyxy; (

x2y
)2

,
(
y2x

)2

form an HSOP of the algebra C4,2.

Table 3
Numerators N(Cn,2; t) and denominators D(Cn,2; t)
N(C1,2; t) = N(C2,2; t) = 1, D(C1,2; t) = (1 − t)2,

D(C2,2; t) = (1 − t)2(
1 − t2)3, N(C3,2; t) = 1 − t2 + t4,

D(C3,2; t) = (1 − t)2(
1 − t2)4(

1 − t3)4,

N(C4,2; t) = (
1 − t2 + t4)(

1 − t − t3 + t4 + 2t5 + t6 − t7 − t9 + t10)
,

D(C4,2; t) = (1 − t)3(
1 − t2)4(

1 − t3)5(
1 − t4)5,

N(C5,2; t)=1 + 2t − 6t3 − 9t4 + 2t5 + 25t6 + 38t7 + 17t8 − 34t9 − 68t10

− 34t11 + 73t12 + 176t13 + 171t14 + 34t15 − 127t16 − 156t17

− 2t18 + 218t19 + 322t20 + 218t21 − · · · + 2t39 + t40,

D(C5,2; t) = (
1 − t2)6(

1 − t3)8(
1 − t4)6(

1 − t5)6,

N(C6,2; t)=1 − 3t + 3t2 − 3t3 + 3t4 + 4t5 − 2t6 − 8t8 − 8t9 + 11t10 + t11

+ 56t12 − 24t13 + 48t14 − 69t15 − 9t16 + 2t17 + 78t18 + 118t19

+ 223t20 + 23t21 + 158t22 − 182t23 + 221t24 − 42t25 + 600t26

+ 365t27 + 633t28 + 324t29 + 303t30 − 31t31 + 484t32 + 178t33

+ 1055t34 + 518t35 + 1055t36 + · · · − 3t69 + t70,

D(C6,2; t) = (1 − t)5(
1 − t2)3(

1 − t3)6(
1 − t4)9(

1 − t5)7(
1 − t6)7.



660 D.Ž. D– oković / Journal of Algebra 309 (2007) 654–671
Table 4
Numerators N(Tn,2; t) and denominators D(Tn,2; t)
N(T1,2; t) = N(T2,2; t) = N(T3,2; t) = 1, D(T1,2; t) = (1 − t)2,

D(T2,2; t) = (1 − t)4(
1 − t2)

, D(T3,2; t) = (1 − t)4(
1 − t2)4(

1 − t3)2,

N(T4,2; t) = 1 − t + t3 + t5 − t7 + t8,

D(T4,2; t) = (1 − t)5(
1 − t2)4(

1 − t3)5(
1 − t4)3,

N(T5,2; t)=1 + 2t + t2 − 2t3 − t4 + 8t5 + 20t6 + 24t7 + 18t8 + 12t9

+ 20t10 + 44t11 + 76t12 + 94t13 + 85t14 + 58t15 + 44t16

+ 58t17 + · · · + 2t31 + t32,

D(T5,2; t) = (1 − t)2(
1 − t2)6(

1 − t3)8(
1 − t4)6(

1 − t5)4,

N(T6,2; t)=1 − 3t + 4t2 − 4t3 + 4t4 + 3t5 − 6t6 + 11t7 − 12t8 + 12t9

+ 12t10 + t11 + 55t12 − 22t13 + 82t14 + 77t16 + 119t17 + 84t18

+ 234t19 + 160t20 + 227t21 + 312t22 + 207t23 + 507t24 + 301t25

+ 612t26 + 469t27 + 517t28 + 593t29 + 426t30 + 593t31 + · · · − 3t59 + t60,

D(T6,2; t) = (1 − t)7(
1 − t2)3(

1 − t3)6(
1 − t4)9(

1 − t5)7(
1 − t6)5.

However, he did not compute an MSG for C4,2. GL2 acts (via standard representation) on the
2-dimensional space spanned by the matrices x and y. This action induces an action on C4,2,
which was investigated by Drensky and Sadikova [5]. They show that there is an MSG whose
span is a semisimple graded GL2-submodule of C4,2 and they determine the structure of this
module. Its Poincaré polynomial is 2t + 3t2 + 4t3 + 6t4 + 2t5 + 4t6 + 2t7 + 4t8 + 4t9 + t10.
Hence, an MSG consists of 32 polynomials. In their paper they do not list explicitly such a
generating set. We have computed an MSG of C4,2 independently:

Theorem 4.2. The 17 traces mentioned in Theorem 4.1 together with the traces of the following
15 matrices (arranged by their degrees)

x3y2, y3x2; x2y2xy, y2x2yx; x3y2xy, y3x2yx;
x3y2x2y, y3x2y2x, x3y3xy, y3x3yx;
x3yx2yxy, x2y2xyx2y, y2x2yxy2x, y3xy2xyx; x3y3x2y2

form an MSG of C4,2.

Proof. Our proof is computational. We start with the system of parameters from Teranishi’s the-
orem and consider it as the first approximation to the genuine generating set which we want to
construct. Then we compare the Poincaré series of C4,2 with that of its subalgebra generated
by this HSOP. The difference of the former and the latter is a series with nonnegative integer
coefficients. We find the first nonzero term, say ctd . This means that we have to enlarge our
incomplete generating set by additional c generators of degree d . We then select c words in x

and y of length d , whose traces provide these additional generators. We repeat this procedure
with the enlarged set of generators, and continue repeating it until we reach the space of in-
variants of degree 10. After adding the single additional generator in degree 10, we are certain
that we have indeed found the full set of generators. This is a consequence of the well-known
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fact [4, Part A, Theorem 6.1.6], originally due to Procesi [13], which establishes the connection
between the Nagata–Higman theorem and the invariant theory of generic matrices. �
Remark 4.3. The words y3x2yx, y3x2y2x, y2x2yxy2x, y3xy2xyx in Theorem 4.2 can be re-
placed with xyx2y3, xy2x2y3, xy2xyx2y2, xyxy2xy3, respectively.

The total number of generators listed in the theorem is 32. This number as well as the degrees
of the generators are in agreement with the result of Drensky and Sadikova mentioned above.

Let us say that a set W of words in two noncommuting indeterminates x, y is a test set for
Mn(C) if it has the following property: Two matrices a, b ∈ Mn(C) are unitarily similar iff
tr(w(a, a∗)) = tr(w(b, b∗)) holds for all w ∈ W . Such a test set W is minimal if no proper subset
of W is a test set. As a consequence of the above theorem, we obtain the following criterion.

Theorem 4.4. The following 20 words form a test set for M4(C):

x; x2, xy; x3, x2y; x4, x3y, x2y2, xyxy; x3y2; (
x2y

)2
, x2y2xy, y2x2yx;

x3y2xy; x3y2x2y, x3y3xy, y3x3yx; x3yx2yxy, x2y2xyx2y; x3y3x2y2.

Proof. First apply the above remark. Then among the 32 words w(x,y) whose traces generate
the algebra C4,2, given in Theorem 4.2, there are 12 pairs {w1,w2} such that, for any 4 × 4
complex matrix a, tr(w1(a, a∗)) and tr(w2(a, a∗)) are complex conjugates. For instance, {x, y},
{x2, y2} and {x3y2, y3x2} are such pairs. (For the nonpaired words, such as w(x,y) = xyxy, the
trace of w(a,a∗) is always real.) By dropping one of the words from each of these pairs, we
obtain the test set in the theorem. �
5. Generators of the algebra C5,2

Let Mn(0) be the subspace of Mn consisting of matrices of trace 0 and let Cn,2(0) =
K[Mn(0)2]GLn be the corresponding algebra of GLn-invariant polynomial functions on the direct
product Mn(0)2 = Mn(0) × Mn(0). Then one has an isomorphism of Z2-graded algebras

Cn,2 ∼= K[u,v] ⊗ Cn,2(0), (5.1)

where K[u,v] is the polynomial algebra in two variables u and v (see e.g. [13, Section 5]).
Consequently, the problem of constructing an MSG of Cn,2 reduces to the same problem for
Cn,2(0). In the remainder of this section we shall assume that x, y ∈ Mn(0).

In view of the above isomorphism, we have the following obvious relation between the
Poincaré series of these algebras:

P(Cn,2; t) = P(Cn,2(0); t)
(1 − t)2

.

Theorem 5.1. The algebra C5,2(0) has an MSG P consisting of 171 bihomogeneous polynomi-
als. P is the disjoint union of four subsets: Ps , Pk , Pd and P ′

d with cardinals 5, 4, 81 and 81,
respectively. The polynomials f (x, y) ∈ Ps are symmetric (i.e., satisfy f (y, x) = f (x, y)),
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while those in Pk are skew-symmetric. The polynomials in Pd are neither symmetric nor skew-
symmetric. There is a bijection Pd → P ′

d given by f (x, y) → f (y, x). The sets Ps , Pk and Pd

are given below.

Ps consists of the traces of the 5 words: xy, x2y2, xyxy, x3y3, x4y4. Pk consists of the traces
of the following 4 matrices:

x3y3x2y2 − y3x3y2x2,

x2yxy2xyxy − y2xyx2yxyx,

x3y2xyxy2xy − y3x2yxyx2yx,

x4y4x3y3 − y4x4y3x3.

Finally, the set Pd consists of the traces of the following 81 words:

x2; x3, x2y; x4, x3y; x5, x4y, x3y2, x2yxy;
x4y2,

(
x2y

)2
, x2y2xy; x4y3, x4yxy, x3y2xy, x3yxy2;

x4y2xy, x4yx2y, x4yxy2, x3y3xy, x3y2x2y, x2y2xyxy;
x4y2x2y, x4y2xy2, x4yx2y2, x3y3x2y, x3y2xyxy, x3yxyx2y, x3yxyxy2, x2y2xyx2y;
x4y4xy, x4y3xy2, x4y2x3y, x4y2x2y2, x4y2xyxy, x4yx2yxy, x4yxy2xy,

x3y3xyxy, x3y2x2yxy, x3yx2yxy2;
x4y4x2y, x4y4xy2, x4y3x3y, x4y3x2y2, x4y3xyxy, x4y2x2yxy, x4y2xyxy2,

x4yx3yxy, x4yx2y2xy, x4yx2yxy2, x3y2x2y2xy, x3yxyxy2xy;
x4y4x3y, x4y4x2y2, x4y3x3y2, x4y3x2yxy, x4y3xy2xy, x4y2x3yxy, x4y2x2yx2y,

x4y2xy2x2y, x4y2xyx2y2, x4yx3yx2y, x4yx3yxy2, x4yxyxy2xy, x3y3x2yxy2;
x4y4x3y2, x4y4x2yxy, x4y4xy2xy, x4y3x3yxy, x4y3x2y2xy, x4y3(x2y

)2
,

x4y2x3yx2y, x4(y2x2)2
y, x4y2xyxy2xy;

x4y4x3yxy, x4y4x2y2xy, x4y3x3y2xy, x4y3x2yx3y;
x4y4x3y2xy, x4y3x3y2x2y, x4y2x3yx2yxy.

Proof. Shestakov and Zhukavets [15] have shown that any 2-generated associative algebra
(nonunital and over a field of characteristic 0) which satisfies the identity x5 = 0, also satisfies
the identity x1x2 · · ·x15 = 0. Since we are working with only two generic matrices, by invok-
ing a theorem of Procesi [13, Theorem 3.2], we conclude that the algebra C5,2 (and C5,2(0)) is
generated by polynomials of degree at most 15.

Let A denote the unital subalgebra of C5,2(0) generated by 171 polynomials in our set P . We
have verified, using a computer, that for each degree d � 15 the homogeneous component, Ad ,
of A of degree d has the dimension equal to the coefficient of td in the Poincaré series of the
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algebra C5,2(0). As an additional check, we have computed the dimension of A16 and verified
that it is indeed equal to 17 338. �
Remark 5.2. In view of (5.1), an MSG of C5,2 has cardinal 173.

Remark 5.3. One can modify P by replacing each of the four generators tr(w(x, y)−w(y,x)) ∈
Pk with tr(w(x, y)). The only reason for our choice was to make P stable (up to sign) under the
involution which interchanges x and y.

6. Poincaré series for invariants of GLn × SLd

Md
n can be identified with Mn ⊗ Kd . The action of GLn on Md

n corresponds to its action on
this tensor product given by a · (x ⊗v) = axa−1 ⊗v. We can now view Mn ⊗Kd as a module for
the direct product GLn × GLd by letting GLd act on Kd by multiplication. Denote by C#

n,d the

subalgebra of K[Md
n ] consisting of GLn × SLd -invariant functions. This is a subalgebra of Cn,d .

In this section we record (see Table 5) the Poincaré series of the algebras C#
n,2 for n � 5. We

write these Poincaré series as rational functions in lowest terms

P
(
C#

n,2; t
) = N(C#

n,2; t)
D(C#

n,2; t)
,

with usual normalization N(C#
n,2;0) = D(C#

n,2;0) = 1. The numerators are again palindromic.

Table 5
Numerators N(C#

n,2; t) and denominators D(C#
n,2; t)

N
(
C#

2,2; t) = 1, D
(
C#

2,2; t) = (
1 − t4)2, N

(
C#

3,2; t) = 1 + 3t8 + t10 + 3t12 + t20,

D
(
C#

3,2; t) = (
1 − t4)3(

1 − t6)3(
1 − t8)

,

N
(
C#

4,2; t)=1 + 10t8 + 12t10 + 38t12 + 46t14 + 93t16 + 131t18 + 235t20

+ 299t22 + 473t24 + 560t26 + 714t28 + 761t30 + 876t32

+ 830t34 + 876t36 + · · · + 12t58 + 10t60 + t68,

D
(
C#

4,2; t) = (
1 − t4)3(

1 − t6)4(
1 − t8)4(

1 − t10)2(
1 − t12)

,

N
(
C#

5,2; t)=1 + t2 + t4 + t6 + 14t8 + 41t10 + 135t12 + 329t14 + 842t16

+ 1980t18 + 4677t20 + 10386t22 + 22654t24 + 47093t26

+ 94970t28 + 184182t30 + 346523t32 + 629769t34 + 1111589t36

+ 1902191t38 + 3165521t40 + 5120359t42 + 8066607t44

+ 12376177t46 + 18520117t48 + 27035364t50 + 38541637t52

+ 53673328t54 + 73078953t56 + 97307914t58 + 126802726t60

+ 161749890t62 + 202084191t64 + 247338162t66 + 296695937t68

+ 348874713t70 + 402270954t72 + 454898759t74 + 504632564t76

+ 549206297t78 + 586521387t80 + 614654835t82 + 632178319t84

+ 638112785t86 + 632178319t88 + · · · + 14t164 + t166 + t168 + t170 + t172,

D
(
C#

5,2; t)= (
1 + t2 + t4)(

1 − t4)3(
1 − t6)3(

1 − t8)5(
1 − t10)5(

1 − t12)3

· (1 − t14)2(
1 − t16)(

1 − t18)
.
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Once again the Molien–Weyl formula was used. In this case the formula is more complicated:

P
(
C#

n,2; t
) = 1

2πi

∫
|y|=1

(1 − y2)ψ(y)

(1 − ty)n(1 − t
y
)n

dy

y
,

where

ψ(y) = 1

(2πi)n−1

∫
|x1|=1

· · ·
∫

|xn−1|=1

∏
1�k�r�n−1

1 − xkxk+1 · · ·xr

ψk,r

dxn−1

xn−1
· · · dx1

x1
,

ψk,r = (1 − tyxkxk+1 · · ·xr)
(
1 − ty−1xkxk+1 · · ·xr

)
· (1 − ty(xkxk+1 · · ·xr)

−1)(1 − t (yxkxk+1 · · ·xr)
−1).

Computations were easy for n � 4 but hard (lasting several days) for n = 5.
Since C#

5,2 is the algebra of SL2-invariants in C5,2, the coefficient of t2k in the Taylor series

of P(C#
5,2; t) must be the same as the coefficient of the Schur function fk,k in the formula for

P(C5,2; t) displayed in Appendix A. It is easy to check that this is indeed the case for k � 12,
which gives a further confirmation of our formula for P(C#

5,2; t).

7. Poincaré series for invariants of GLn × Δd−1

Restrict the action of GLn × SLd on Md
n to GLn × Δd−1, where Δd−1 is the maximal torus

of SLd consisting of diagonal matrices. Denote by C•
n,d the subalgebra of K[Md

n ] consisting of
GLn × Δn−1-invariant polynomial functions. This is a subalgebra of Cn,d . We record in Table 6
the Poincaré series of C•

n,2 for n � 5. Write these functions as

P
(
C•

n,2; t
) = N(C•

n,2; t)
D(C•

n,2; t)
,

with usual normalization. The numerators are again palindromic.
The functions were computed by using the formula:

P
(
C•

n,2; t
) = 1

2πi

∫
|z|=1

P
(
Cn,2; tz−1, tz

) dz

z
,

where P(Cn,2; s, t) is the bigraded Poincaré series of Cn,2 from Section 2.

8. Conjectures

On the basis of our computations, we propose four conjectures about the numerators
N(Cn,2; s, t) and N(Tn,2; s, t) and the denominators D(Cn,2; s, t) and D(Tn,2; s, t). (See Sec-
tion 2 for the definitions.)

Conjecture 8.1. The denominators D(Cn,2; s, t) and D(Tn,2; s, t) can be written as products of
binomials 1 − satb , where a and b are nonnegative integers.
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Table 6
Numerators N(C•

n,2; t) and denominators D(C•
n,2; t)

N
(
C•

1,2; t) = 1, D
(
C•

1,2; t) = 1 − t2, N
(
C•

2,2; t) = 1 + t4,

D
(
C•

2,2; t) = (
1 − t2)2(

1 − t4)2,

N
(
C•

3,2; t) = 1 + 3t4 + 6t6 + 9t8 + 6t10 + 12t12 + 6t14 + · · · + t24,

D
(
C•

3,2; t) = (
1 − t2)2(

1 − t4)3(
1 − t6)3(

1 − t8)
,

N
(
C•

4,2; t)=1 + 4t4 + 12t6 + 36t8 + 68t10 + 171t12 + 316t14 + 639t16 + 1096t18

+ 1096t18 + 1849t20 + 2794t22 + 4151t24 + 5546t26 + 7229t28 + 8700t30

+ 10085t32 + 10836t34 + 11270t36 + 10836t38 + · · · + 12t66 + 4t68 + t72,

D
(
C•

4,2; t) = (
1 − t2)2(

1 − t4)3(
1 − t6)4(

1 − t8)4(
1 − t10)2(

1 − t12)
,

N
(
C•

5,2; t)=1 + t2 + 5t4 + 20t6 + 76t8 + 227t10 + 692t12 + 1933t14 + 5307t16 + 13752t18

+ 34304t20 + 81525t22 + 186346t24 + 408071t26 + 860437t28 + 1746504t30

+ 3421732t32 + 6474866t34 + 11857662t36 + 21033945t38 + 36195856t40

+ 60479854t42 + 98242554t44 + 155273212t46 + 239019423t48 + 358621723t50

+ 524884888t52 + 749897456t54 + 1046516425t56 + 1427383948t58

+ 1903851664t60 + 2484438301t62 + 3173436196t64 + 3969248353t66

+ 4863282209t68 + 5838905156t70 + 6871421892t72 + 7928353846t74

+ 8971036674t76 + 9956478001t78 + 10840418189t80 + 11580232480t82

+ 12138549745t84 + 12485984964t86 + 12603960344t88 + 12485984964t90

+ · · · + 20t170 + 5t172 + t174 + t176,

D
(
C•

5,2; t)= (
1 − t2)(

1 − t4)3(
1 − t6)4(

1 − t8)5(
1 − t10)5(

1 − t12)3

· (1 − t14)2(
1 − t16)(

1 − t18)
.

Conjecture 8.2. N(Cn,2;1,1) = N(Tn,2;1,1) = 0 for n � 5.

Conjecture 8.3. For all n,

(1 − s)(1 − t)D(Cn,2; s, t) = (
1 − sn

)(
1 − tn

)
D(Tn,2; s, t).

Conjecture 8.4. For all n,

gcd
(
N(Cn,2; t, t),D(Cn,2; t, t)

) = gcd
(
N(Tn,2; t, t),D(Tn,2; t, t)

)
.

All four conjectures are true for n � 6. As all coefficients of N(C#
n,2; t) and N(C•

n,2; t) given
in Sections 6 and 7 are nonnegative, we propose yet another conjecture.

Conjecture 8.5. For all n, N(C#
n,2; t) and N(C•

n,2; t) have nonnegative integer coefficients.

The following interesting problem may have some practical applications.

Problem 8.6. Construct minimal test sets for M4(C) and M5(C).
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Appendix A. Formanek’s formulae

Let d be any positive integer. Denote by μ a partition of a positive integer k and by χμ the
corresponding irreducible complex character of the symmetric group Sk . Define the length, l(μ),
of μ to be the number of parts of μ.

Let Λd denote the ring of symmetric polynomials in d variables, t1, . . . , td . If μ has at most
d parts, we denote by fμ,d ∈ Λd the corresponding Schur function.

Define the Frobenius map Frd to be the additive homomorphism from the direct sum of the
character rings of all Sk’s to Λd by setting Frd(χμ) = fμ,d for each partition μ of k having at
most d parts and Frd(χμ) = 0 otherwise.

We can now state Formanek’s formulae for the algebras Cn,d and Tn,d (see [1]):

P(Cn,d ; t1, . . . , td) =
∑
k�0

Frd
(
θ(k)
n

)
(t1, . . . , td), (A.1)

P(Tn,d ; t1, . . . , td) =
∑
k�0

Frd
(
θ(k+1)
n ↓ Sk

)
(t1, . . . , td), (A.2)

where θ
(k)
n is a particular character of Sk . This character is defined by the formula

θ(k)
n =

∑
μ:l(μ)�n

χμ ⊗ χμ, (A.3)

where ⊗ is the usual tensor product of characters of Sk .
We are mainly interested in the case d = 2. In that case we set s = t1, t = t2, and fμ = fμ,2.

If μ = (p, q) with p � q � 0, then

fμ = fp,q = (st)q
(
sp−q + sp−q−1t + · · · + stp−q−1 + tp−q

)
. (A.4)

If q = 0 we shall write fp = fp,0.
Using GAP [10], we computed the first 26 terms of the series (A.1) when (n, d) = (5,2). The

coefficients of the Schur functions fk−p,p are recorded in Table 7.
By substituting the expressions (A.4) for the Schur functions fμ into this formula, one obtains

an initial chunk of the bivariate Taylor series of P(C5,2; s, t) which agrees with the bivariate
Taylor series of the rational function that we have computed by using the Molien–Weyl formula
(see Theorem 2.2).

The kth summand in (A.1), when written as a linear combination of Schur functions, gives the
decomposition of the character of the representation of GLd on the kth homogeneous component
of Cn,d .

Appendix B. Taylor expansion of P(Cn,2; t)

In this section we first tabulate the coefficients of the Taylor series of P(Cn,2; t) for n � 6
including the terms of degree k � 13. Then we make a couple of observations, and we are lead to
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Table 7
Coefficients of fk−p,p in the expansion of P(C5,2; s, t)
k p = 0,1,2, . . .

0 1;
1 1;
2 2;
3 3, 1;
4 5, 2, 3;
5 7, 5, 6;
6 10, 8, 15, 4;
7 13, 14, 25, 18;
8 18, 20, 44, 37, 24;
9 23, 30, 66, 76, 58;

10 30, 41, 101, 126, 136, 44;
11 37, 57, 142, 207, 246, 163;
12 47, 74, 200, 311, 431, 354, 171;
13 57, 98, 267, 458, 681, 700, 476;
14 70, 124, 357, 640, 1047, 1204, 1080, 388;
15 84, 157, 460, 884, 1517, 1973, 2024, 1277;
16 101, 194, 591, 1177, 2160, 3014, 3534, 2811, 1166;
17 119, 240, 740, 1550, 2957, 4470, 5682, 5427, 3419;
18 141, 290, 924, 1992, 3985, 6352, 8780, 9371, 7592, 2808;
19 164, 351, 1131, 2535, 5232, 8823, 12 921, 15 284, 14 284, 8693;
20 192, 417, 1380, 3167, 6784, 11 909, 18 489, 23 520, 24 781, 18 927, 7344;
21 221, 496, 1658, 3926, 8622, 15 798, 25 625, 34 897, 40 009, 35 929, 21 565;
22 255, 582, 1986, 4796, 10 849, 20 520, 34 778, 49 917, 61 722, 61 801, 46 991, 17 281;
23 291, 682, 2350, 5820, 13 444, 26 294, 46 117, 69 582, 91 235, 100 058, 87 853, 51 694;
24 333, 790, 2772, 6983, 16 519, 33 154, 60 179, 94 507, 130 796, 153 818, 150 865, 111 058, 41 569;
25 377, 915, 3237, 8328, 20 055, 41 349, 77 153, 125 907, 182 080, 227 776, 242 629, 207 439, 120 672;

some speculations concerning certain limits of the algebras Cn,d , which we are going to introduce
now.

Define the Zd -graded algebra C∞,d as the inverse limit of

C1,d ← C2,d ← C3,d ← ·· · .
By adapting a definition of Formanek [8, p. 52], we refer to C∞,d as the pure free trace ring on
d generators. One can next take the direct limit of

C∞,1 → C∞,2 → C∞,3 → ·· ·
to obtain the Z∞-graded algebra C∞,∞, which is the pure free trace ring on countably many
generators x1, x2, x3, . . . . It follows from the Second Fundamental Theorem for invariants of
n × n matrices (see e.g. [8, Theorem 50]) that C∞,∞ is indeed isomorphic to the pure free trace
ring as defined by Formanek.

Let us write cn,2(k) for the coefficients of the Poincaré series

P(Cn,2; t) =
∑
k�0

cn,2(k)tk

and display them in an infinite table (rows indexed by n � 0 and columns by k � 0). As we know
the P(Cn,2; t) for n � 6, we can fill the top portion of Table 8.
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Table 8
The coefficients cn,2(k)

1 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
1 2 3 4 5 6 7 8 9 10 11 12 13
1 2 6 10 20 30 50 70 105 140 196 252 336
1 2 6 14 29 56 107 186 320 530 851 1332 2051
1 2 6 14 34 68 144 276 534 974 1774 3106 5410
1 2 6 14 34 74 159 324 657 1286 2488 4702 8790
1 2 6 14 34 74 166 342 716 1442 2898 5686 11 122

1 2 6 14 34 74 166 350 737 1512 3087 6194 12 376
1 2 6 14 34 74 166 350 746 1536 3168 6416 12 982
1 2 6 14 34 74 166 350 746 1546 3195 6508 13 237
1 2 6 14 34 74 166 350 746 1546 3206 6538 13 340
1 2 6 14 34 74 166 350 746 1546 3206 6550 13 373
1 2 6 14 34 74 166 350 746 1546 3206 6550 13 386
.
.
.

We observed from the top part that apparently each column stabilizes and

lim
n→∞P(Cn,2; t) =

∑
k�0

cn,2(n)tn.

After making this observation, we looked up the diagonal sequence

{
cn,2(n)

}
n�0 = 1,2,6,14,34,74,166, . . .

in the On-Line Encyclopedia of Integer Sequences [16] by entering only these 7 integers. It is
registered there as the sequence A070933, and identified as the sequence of coefficients in the
power series expansion of the infinite product

∏
k�1

1

1 − 2tk
.

The first 30 terms of A070933 are listed in [16]. The above infinite product should be the Poincaré
series of the algebra C∞,2. In the bigraded case it should be replaced with

∏
k�1

1

1 − sk − tk
.

More generally, we expect that the multigraded Poincaré series of C∞,d and C∞,∞ be given
by

P(C∞,d ; t1, . . . , td ) =
∏ 1

1 − tk1 − · · · − tkd
k�1
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and

P(C∞,∞; t1, t2, . . .) =
∏
k�1

1

1 − pk

, (B.1)

respectively, where the pk are the usual power sum symmetric functions:

pk = tk1 + tk2 + · · · .

The latter formula is indeed valid. As explained in [7], it follows from the Procesi–Razmyslov
theorem that

P(Cn,∞; t) =
∑

μ;l(μ)�n

Fr
(
χμ ⊗ χμ

)
.

The Frobenius map Fr is the additive map from the direct sum of the character rings of all Sk’s to
the ring, Λ, of symmetric functions in infinitely many variables t1, t2, . . . . It is defined by setting,
for all partitions μ, Fr(χμ) = fμ ∈ Λ, the Schur function corresponding to the partition μ. By
letting n → ∞, we obtain that

P(C∞,∞; t) =
∑
μ

Fr
(
χμ ⊗ χμ

)
,

where the summation is now over all partitions μ. It remains to observe that the right-hand side
of this formula and the one of (B.1) are equal, see Macdonald’s classic [11, Chapter 1, Section 7,
Example 9(a)].

Another interesting observation is that apparently the second differences

αk = cn,2(n + k) − cn−1,2(n + k) − cn−1,2(n + k − 1) + cn−2,2(n + k − 1)

are independent of n for n � k. The sequence

{αk}k�0 = 1,3,11,33,98,270, . . . (B.2)

has not been recorded so far in [16]. By using the sequence A070933 and the hypothetical rules
mentioned above, we extended the top portion of Table 8 with 6 additional rows. Subsequently,
by using Formanek’s formula, we enlarged the number of columns to 26, i.e., 0 � k � 25. This
made it possible to compute a few more terms of the sequence (B.2):

1,3,11,33,98,270,736,1932,5009,12 727,31 977,79 307,194 947, . . . .

Appendix C. Taylor expansion of P(Tn,2; t)

Here we tabulate, for n � 6 and k � 13, the coefficients of tk in the Taylor expansion of
P(Tn,2; t) and make some interesting observations. Let us define the coefficients dn,2(k) by

P(Tn,2; t) =
∑

dn,2(k)tk
k�0
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Table 9
The coefficients dn,2(k)

1 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
1 2 3 4 5 6 7 8 9 10 11 12 13
1 4 11 24 46 80 130 200 295 420 581 784 1036
1 4 14 38 93 204 419 806 1480 2600 4411 7244 11 579
1 4 14 42 113 278 646 1418 2979 6018 11 752 22 256 41 030
1 4 14 42 118 304 747 1748 3949 8620 18 296 37 818 76 398
1 4 14 42 118 310 779 1876 4382 9948 22 057 47 850 101 844
.
.
.

and display them in an infinite table (rows indexed by n � 0 and columns by k � 0).
By taking the inverse limit of T1,d ← T2,d ← T3,d ← ·· · , one obtains the Zd -graded algebra

T∞,d . By adapting a definition of Formanek [8, p. 52], we refer to T∞,d as the mixed free trace
ring on d generators. One can next take the direct limit of T∞,1 → T∞,2 → T∞,3 → ·· · to obtain
the Z∞-graded algebra T∞,∞, which is the mixed free trace ring on countably many generators
x1, x2, x3, . . . .

There is a close relationship between Tables 8 and 9 from which we deduce that the formula
P(C∞,2; t) = (1 − 2t)P (T∞,2; t) apparently holds. By further heuristic reasoning, one obtains
the hypothetical formulae

P(T∞,d ; t1, . . . , td ) = 1

(1 − t1 − · · · − td )2

∏
k�2

1

1 − tk1 − · · · − tkd

and

P(T∞,∞; t1, t2, . . .) = 1

(1 − p1)2

∏
k�2

1

1 − pk

.

Similarly as in the previous appendix, the second differences of the coefficients dn,2(n + k)

provide yet another sequence: 1,6,27,103,358,1159, . . . .
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