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Abstract. This article offers an accessible but rigorous and essentially self-contained account of some
of the central ideas in compressed sensing, aimed at nonspecialists and undergraduates
who have had linear algebra and some probability. The basic premise is first illustrated by
considering the problem of detecting a few defective items in a large set. We then build
up the mathematical framework of compressed sensing to show how combining efficient
sampling methods with elementary ideas from linear algebra and a bit of approximation
theory, optimization, and probability allows the estimation of unknown quantities with far
less sampling of data than traditional methods.
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1. Introduction. We begin with a simple puzzle to highlight a few key ideas.
Suppose we have 7 gold coins, one of which we suspect is counterfeit and so of a
different mass than the other coins. Given an accurate electronic scale, can we detect
the counterfeit coin by using the scale at most 3 times? If we know how much a gold
coin should weigh (e.g., an American Eagle half-ounce gold coin should weigh 16.966
grams), the following strategy works. Label the coins with numbers 1 through 7. For
the first weighing place coins 1, 3, 5, and 7 on the scale; for the second weighing use
coins 2, 3, 6, and 7; and for the third weighing use coins 4, 5, 6, and 7. We can express
these choices using a 0-1 matrix Φ whose kth row indicates which coins to include in
the kth weighing:

(1.1) Φ =

⎡
⎣ 1 0 1 0 1 0 1

0 1 1 0 0 1 1
0 0 0 1 1 1 1

⎤
⎦

Observe that the kth column encodes the integer k in binary, with the digit in
the kth row corresponding to 2k−1. It’s not hard to see that from the outcome of
these three weighings we can uniquely identify any single bad coin. For example, if
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548 KURT BRYAN AND TANYA LEISE

only the first set’s mass deviates from the nominal value (here, four times the mass of
a good coin), we deduce that coin #1 is the counterfeit. If both the first and second
sets’ mass deviate, we deduce that coin #3 is the counterfeit, and so on. In general,
coding in binary which of the sets’ masses deviate from the nominal value yields the
counterfeit coin’s number. In the case of N coins, a similar strategy can be used to
detect a single counterfeit coin with around n = log2(N) weighings, a considerable
savings over the N measurements required by sequentially weighing each coin.

This strategy is an example of a combinatorial group test, an efficient means of
testing a large number of items in batches in order to identify a small set of atypical
items. For example, in high throughput screening large chemical libraries are tested
on a biological target with the goal of identifying a few active compounds (see [27]
for more on this and other applications).

To illustrate, let us consider the counterfeit coin problem on a somewhat larger
scale. Suppose we have N = 100 coins, numbered from 1 to 100, of which a small
number may be counterfeit. Let the ith component xi of x ∈ R

N denote the deviation
of the ith coin from the nominal mass. Specifically, let’s suppose x13 = −0.3, x37 =
0.44, x71 = −0.33, and all other xi = 0, so that coins 13, 37, and 71 are counterfeits.
We seek to identify the counterfeits by weighing n subsets of the coins, with n � N .
As before, we can form a 0-1 sensing matrix Φ, now n × N , whose kth row encodes
which coins are included in the kth weighing. However, we are no longer assuming
that at most one coin is bad, so it’s not clear that the binary encoding strategy we
used earlier will work. How should we design the sensing matrix?

Structured methods for choosing subsets to test in order to detect multiple de-
viations have been developed [2, 20], but we’ll take a different tack: we’ll choose the
subsets randomly! In the present example we’ll create a sensing matrix Φ by selecting
n = 20 random subsets of coins to weigh. Specifically, let Φ be a 20×100 matrix, each
entry chosen randomly and independently as 0 or 1 with equal probability (e.g., flip
each coin to determine whether to include it in the current weighing). The component
bi of the vector b = Φx is the deviation from nominal of the mass of the ith subset.
Our goal is to recover x from knowledge of Φ and the measurements b.

A matrix Φ with fewer rows than columns, like either sensing matrix above,
leads to an underdetermined system Φx = b which, if consistent, has infinitely many
solutions. In such a situation one commonly regularizes the problem, by imposing
additional conditions on x so that a unique solution x = x∗ exists. The difficulty lies
in finding conditions that guarantee x∗ is the desired solution (and not one of the
infinitely many other solutions to Φx = b). In the present case what we have going
for us is the fact that the correct solution is sparse, that is, most of its components are
zero (since we assume most of the coins are not counterfeit or otherwise defective.)

One common choice for regularizing an underdetermined linear system is to choose
the vector x∗ that satisfies Φx = b and minimizes the standard Euclidean �2 norm
‖x‖2 = (

∑
i x

2
i )

1/2. This is an easy problem to solve with multivariable calculus,
e.g., with Lagrange multipliers. Unfortunately, this type of regularization is quite
inappropriate here: the solution vector x∗ that minimizes ‖x‖2 does not correspond
to a few bad coins, since x∗

i �= 0 for most indices i, as shown in the middle panel of
Figure 1.1. Note, however, that x∗ satisfies Φx∗ = b exactly.

More generally, the minimum �2 norm solution to a linear system Φx = b is
almost never sparse. This is illustrated in the left panel of Figure 1.2, in which the
dashed line is a low-dimensional analogue of the hyperplane representing the set of all
solutions to Φx = b. Imagine increasing the radius of a circle centered at the origin
until it touches the line. This point of contact yields the minimum value of

√
x2
1 + x2

2
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Fig. 1.1 Left: Actual deviations xi in mass. Center: Result of �2 regularization. Right: Result of
�1 regularization.

 

 

{x : Φx = b}

{x : x 0 = 1}

{x : x 2 = c }

 

 

{x : Φx = b}

{x : x 0 = 1 }

{x : x 1 = d}

Fig. 1.2 Left: Two-dimensional analogues of �2 and �0 balls and of Φx = b. Right: Two-
dimensional analogues of �1 and �0 balls and of Φx = b. Here c and d are constants
with c a bit less than d. Note that the set {x : ‖x‖0 = 1} coincides with the coordinate
axes.

among all points on the line and is the solution to Φx = b with minimum �2 norm.
It’s easy to see that for a typical line both components of this point are nonzero.

Since we believe the true solution is sparse, it makes sense to look for solutions to
Φx = b that have the fewest possible nonzero components. Let us define ‖x‖0 as the
number of nonzero components in x, then regularize by seeking a solution to Φx = b
that minimizes ‖x‖0. The quantity ‖x‖0 is sometimes called the “�0 norm,” though
it is not a norm; see Exercise 3. If maximal sparsity is what we want, this is clearly
the way to go. The panels in Figure 1.2 illustrate the idea in R

2: The set of vectors
that have one nonzero component, {x : ‖x‖0 = 1}, coincides with the coordinate
axes. The solution set to Φx = b thus contacts ‖x‖0 = 1 in precisely two locations,
each on a coordinate axis. These solutions are sparser than that obtained via �2

regularization; indeed they are the sparsest possible. Moreover, these ideas extend
to the general problem in which x has multiple nonzero components. Unfortunately,
finding the solution to a linear system Φx = b with the fewest nonzero components
is computationally intractable if the system is large; see [22].

What we need is a regularization technique that promotes sparse solutions yet
remains computationally tractable. Regularizing with the �1 norm, defined as

(1.2) ‖x‖1 =

N∑
i=1

|xi|,

turns out to do the trick! For the underlying intuition see the panel on the right
in Figure 1.2, which shows the graph of an �1 ball in R

2 (|x1| + |x2| = d) that just
contacts the solution set to Φx = b. This point is the minimum �1 norm solution and
agrees with a sparse solution produced by �0 regularization.
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Fig. 1.3 Success rates of �1 regularization for N = 100 coins, as a function of number n of weighings.

Although minimizing ‖x‖1 subject to linear constraints Φx = bmay look difficult,
because |xi| is not differentiable, it turns out that this problem falls into the realm of
convex optimization. Indeed, the problem can be converted to a standard problem in
linear programming, as described in section 3 of [16].

For the 100 coin problem, minimizing ‖x‖1 subject to constraints Φx = b (with
a specific randomly chosen Φ) yields x13 = −0.3, x37 = 0.44, x71 = −0.33, and all
other xi = 0, exactly, as illustrated by the right panel in Figure 1.1! But maybe we
got lucky—after all, the n = 20 subsets were randomly chosen. However, repeating
the above experiment 1000 times (each time choosing a new random Φ) yields 980
successes, each an exact solution. If we increase the number of weighings for each
experiment to n = 25, we obtain a perfect record, 1000 successes in 1000 trials.
Decreasing the number of weighings to n = 15 in each experiment results in 787
perfect solutions in 1000 trials, and n = 10 results in only 141 successes. Figure 1.3
illustrates the situation, for one to five bad coins. As the number of bad coins goes
up, we need more weighings to reliably identify them.

1.1. Overview of Compressed Sensing. The counterfeit coin problem illus-
trates a few key features of compressed sensing (CS): We seek to recover a sparse
vector x ∈ R

N , that is, a vector with most of its components equal to zero, from
measurements made by taking n � N inner products, bi = 〈ri,x〉, where each ri is a
row vector that is typically generated randomly. In the coin problem ri is a random
0-1 vector encoding which coins were used in the ith weighing. In other applications
the ri may have random components drawn from a normal or other distribution. To
recover x we form an n × N matrix Φ from these row vectors ri and then find the
minimum �1 norm solution to the linear system Φx = b.

The field of CS emerged as a hot topic with the publication of seminal papers
in 2006 by Candès, Romberg, and Tao [11] and by Donoho [21] (also see earlier
work [23] by Donoho and Stark). Traditional signal processing based on Shannon’s
information theory focuses on uniform sampling, that is, systematically collecting
data at evenly spaced points on a grid to achieve some desired resolution. Think of
a digital camera taking a high-resolution photograph by recording a value at every
single pixel on a finely spaced grid. This approach takes the pessimistic view that we
know nothing a priori about the data. The leap that propels CS is the realization
that most data, e.g., photos of people or landscapes, have some inherent structure
that we can use to our advantage. This inherent structure can often be viewed as a
type of sparsity. In contrast to the typical megapixel digital camera, a CS-designed
single-pixel camera takes relatively few measurements that are equivalent to sums of
randomly located pixels [24], analogous to our example of using a scale to measure the
total mass of randomly selected subsets of coins. The article [27] provides additional
background and references concerning problems involving sparse approximation and
signal recovery, closely related to and often predating CS.
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COMPRESSED SENSING 551

The key mathematical ideas in CS, as we will show, can be easily understood and
form an elegant theory. It should be noted, however, that developing practical CS
devices is extremely challenging, requiring new sensing technology able to physically
mimic the action of random measurement matrices.

For overviews of CS accessible to a general audience, see [14, 28, 31, 32, 33], as well
as [26], which includes a historical overview. For a wonderful audio demonstration
of CS, see the website [3]. More complete mathematical developments of CS can be
found in [13, 9, 4, 18], to mention a few examples from the rapidly expanding CS
literature. A comprehensive listing of CS-related articles and other materials can be
found at http://dsp.rice.edu/cs.

1.2. The General Setting. In the counterfeit coin problem of section 1 we sought
to recover a sparse vector x ∈ R

N from an underdetermined system Φx = b. In other
settings the vector x may not itself be sparse, but rather it may be the case that
x = Ψs for some n× n orthogonal matrix Ψ and sparse vector s; that is, x may have
a sparse representation in an alternate basis for R

N , spanned by the columns of Ψ.
In this case the information b we collect leads to a system ΦΨs = b, from which we
wish to recover s (and then x). An important topic in CS is that of incoherence, a
lack of correlation between the sensing modality embodied by the rows of Φ and the
basis formed by the columns of Ψ, that facilitates the recovery of sparse signals, a
condition often met when Φ is randomly generated. In the interest of brevity we’ll
focus on the case in which Ψ is the identity matrix—so x is itself sparse—and Φ is
randomly generated in some manner. For more on the notion of incoherence, see [9].

We thus focus on solving a linear system of equations

(1.3) Φx = b,

where the sensing matrix Φ is n × N and n may be much smaller than N . We will
assume that (1.3) is consistent. In this case any solution will not be unique. However,
we’re going to add the additional assumption that the solution vector x is “k-sparse”
for some value of k � n, that is, x has at most k nonzero components. We’ll denote
the set of such vectors in R

N by Σk (the dependence on N will not be explicit). A
few natural questions arise:

1. Does the additional information that the solution is k-sparse nail down a
unique solution? If so, for what relative values of k, n, and N? What condi-
tions on the matrix Φ are sufficient?

2. Under what conditions will minimizing the �1 norm subject to Φx = b be
successful in recovering sparse solutions? Why does it work?

We’ll address each of these in the following sections. Section 2 will develop conditions
guaranteeing uniqueness of k-sparse solutions by examining the null space of Φ and
leads to the “restricted isometry property,” which is the focus of section 3. Section
2 requires familiarity with basic linear algebra, and section 3 assumes knowledge of
elementary probability. The proof that �1 minimization recovers the k-sparse solution
is given in section 4, and we make some final remarks in section 5.

Exercise 1. Suppose that for Φ as in (1.1) we have b1 = 0, b2 = 0.2, and b3 = 0.2,
where b = Φx and xi denotes the deviation of the ith coin from the nominal value.
If we know at most one coin is counterfeit, which one is it? Make up an example
(by making appropriate choices for x) to show that two bad coins cannot be uniquely
identified.

Exercise 2. Is Σk a subspace of RN? Why or why not?
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Exercise 3. Let ‖x‖0 denote the number of nonzero components in the vector x.
Why isn’t this a norm?

Exercise 4. Let Φ =
[
a1 a2

]
be any 1 × 2 (n = 1, N = 2) matrix in which

both entries are nonzero, and consider the equation Φx = b, where x ∈ R
2 and b �= 0

is a scalar. Show that there are always two 1-sparse solutions to Φx = b. Thus we
can’t solve Φx = b uniquely for x in this situation, even under the assumption that x
is 1-sparse.

Exercise 5. Let

Φ =

[
1 1/

√
2 0 −1/

√
2

0 1/
√
2 1 1/

√
2

]
.

(a) Suppose that for some fixed b ∈ R
2 the equation Φx = b has a 1-sparse

solution. Show this solution is unique, and so we can recover any 1-sparse
solution x ∈ R

4.
(b) Let b a vector in R

2. Show that the equation Φx = b can have as many as
six distinct 2-sparse solutions.

Exercise 6. Consider the underdetermined linear equation Φx = b, where Φ is
the matrix in Exercise 5, x ∈ R

4, and b = [0, 3]t (here the superscript t denotes the
transpose).

(a) Verify that the vector x = [0, 0, 3, 0]t is a 1-sparse solution.
(b) Find the minimum norm solution to Φx = b using the �2 norm. (Suggestion:

Solve Φx = b for x1 and x3 in terms of x2 and x4, then express ‖x‖22 in terms
of just x2 and x4 and minimize in these two variables.) What’s the sparsity
of this solution?

(c) Find the minimum norm solution to Φx = b using the �1 norm ‖x‖1 and
the same approach as part (b). Although ‖x‖1 isn’t differentiable, it’s easy
to find the minimum graphically after you’ve expressed ‖x‖1 as a function of
two variables, by plotting ‖x‖1 as a function of x2 and x4.

2. Uniqueness of k-Sparse Solutions. Our first task is to establish conditions
guaranteeing that there is only one k-sparse solution to Φx = b. This gives us some
hope of being able to distinguish it from all of the other solutions.

2.1. The Null Space of Φ. Let x∗ satisfy Φx∗ = b. All other solutions to Φx = b
are of the form x = x∗ + η, where Φη = 0. That is, η is in N (Φ), the null space of
Φ. Let us suppose that x∗ ∈ Σk for some k and examine conditions under which x∗

is certain to be the only k-sparse solution.
Suppose, to the contrary, there is another (distinct) k-sparse solution x∗∗. We

have Φ(x∗ − x∗∗) = 0, that is, x∗ − x∗∗ ∈ N (Φ), but x∗ − x∗∗ is not the zero vector.
Observe that if x∗ and x∗∗ are any vectors in Σk, then x∗ − x∗∗ ∈ Σ2k (Exercise
7). We conclude that if Φx = b has more than one k-sparse solution, N (Φ) must
contain a nonzero 2k-sparse vector. The contrapositive of this statement yields the
next lemma.

Lemma 2.1. Suppose that Σ2k ∩N (Φ) = {0}, that is, all nonzero elements in the
null space of Φ have at least 2k+ 1 nonzero components. Then any k-sparse solution
to Φx = b is unique.

A simple variation on the condition Σ2k ∩ N (Φ) = {0} is given by the following.
Lemma 2.2. The condition Σ2k ∩ N (Φ) = {0} holds if and only if every subset

of 2k columns of Φ is linearly independent.
Proof. Suppose Σ2k ∩ N (Φ) = {0}. Let φj denote the jth column of Φ and let

T ⊆ {1, . . . , N} be any subset of indices with cardinality |T | = 2k. Consider the
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subset {φj : j ∈ T } of 2k columns of Φ. If
∑

j∈T xjφj = 0 for some scalars xj , then
Φx = 0 for the vector x with components xj for j ∈ T and xj = 0 otherwise. Thus
x ∈ Σ2k ∩ N (Φ) = {0}, which implies x = 0. Therefore xj = 0 for all j and so
{φj : j ∈ T } is a linearly independent set.

Conversely, suppose every subset {φj : j ∈ T } of 2k columns of Φ is linearly
independent. Consider any vector x ∈ Σ2k ∩N (Φ) and let T ⊆ {1, . . . , N} be any set
of 2k indices so that if xj �= 0, then j ∈ T (and xj = 0 if j /∈ T ). We use this to form
a subset {φj : j ∈ T } of 2k columns of Φ that satisfies

∑
j∈T

xjφj = Φx = 0,

because x ∈ N (Φ). But {φj : j ∈ T } is linearly independent by assumption, so xj = 0
for every j = 1, . . . , N , that is, x = 0. Therefore Σ2k ∩ N (Φ) = {0}.

Unfortunately, the condition Σ2k ∩ N (Φ) = {0} could be very hard to check for
any given matrix. A brute force approach based on Lemma 2.2 would require us
to check the linear independence of all

(
N
2k

)
subsets of columns for Φ, an essentially

impossible task if N,n, and k are very large. We need to find a better strategy.
Exercise 7. Show that if x∗ and x∗∗ are both in Σk, then any linear combination

c1x
∗ + c2x

∗∗ lies in Σ2k.
Exercise 8. If Σ2k ∩ N (Φ) = {0} holds for an n × N matrix Φ, why must we

have 2k ≤ n? (Hint: Use Lemma 2.2.)
Exercise 9. Let Φ be the matrix from Exercise 5. Verify that the vectors

v1 = [1 −
√
2 1 0]t, v2 = [

√
2 − 1 0 1]t

form a basis for N (Φ), and use this to show that there are no nonzero 2-sparse vectors
in N (Φ).

Exercise 10. Suppose Φ has the property that N (Φ) ∩ Σm = {0} for some m.
(a) Show that if Φ′ = cΦ for some nonzero scalar c, then N (Φ′) ∩ Σm = {0}.
(b) Show that if Φ′ is obtained from Φ by multiplying the jth row of Φ by some

nonzero scalar cj (for one specific value of j), then N (Φ′)∩Σm = {0}. Hint:
Show that if x satisfies Φ′x = 0, then Φx = 0 too.

(c) Use part (b) to show that if Φ′ is obtained from Φ by multiplying each row
of Φ by some nonzero scalar (not necessarily the same for each row), then
N (Φ′) ∩Σm = {0}.

(d) Show that if Φ′ is obtained by multiplying any given column of Φ by a nonzero
scalar d, then N (Φ′) ∩Σm = {0}. Hint: If Φ′ is obtained by multiplying the
jth column of Φ by d and x′ = (x1, x2, . . . , xN ) satisfies Φ′x′ = 0, then
x = (x1, x2, . . . , xj−1, dxj , xj+1, . . . , xN ) satisfies Φx = 0.

(e) Use part (d) to argue that if Φ′ is obtained from Φ by multiplying each column
of Φ by some nonzero scalar (not necessarily the same for each column), then
N (Φ′) ∩Σm = {0}.

2.2. The Restricted Isometry Property. If a brute force approach to verifying
the condition Σ2k ∩ N (Φ) = {0} isn’t feasible, how do we check that it holds in any
specific case, or better yet, build it into the sensing matrix Φ?

The condition Σ2k∩N (Φ) = {0} requires that no nonzero vector x ∈ Σ2k satisfies
Φx = 0. There is no loss of generality in confining our attention to unit vectors (with
respect to the �2 norm), because if x �= 0, then Φx = 0 if and only if Φu = 0, where
u = x/‖x‖2, a unit vector. We thus seek a condition to assure that no unit vector u ∈
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554 KURT BRYAN AND TANYA LEISE

Σ2k satisfies Φu = 0. One simple way to do this is to require that there exist a positive
constant c1 such that for all 2k-sparse unit vectors u we have ‖Φu‖22 ≥ c1. This rules
out Φu = 0, because then ‖Φu‖22 = 0. We’ve thus established the following lemma.

Lemma 2.3. If there exists a positive constant c1 such that c1 ≤ ‖Φu‖22 for all
2k-sparse unit vectors, then Σ2k ∩ N (Φ) = {0}.

A variation on Lemma 2.3 turns out to be useful for analyzing the effectiveness
of �1 minimization for recovering sparse solutions. First, whether or not c1 ≤ ‖Φu‖22
holds, there will always exist some constant c2 > 0 so that ‖Φu‖22 ≤ c2 for all unit
vectors u ∈ Σ2k. The reason is that the mapping x → ‖Φx‖22 is continuous from R

N

to R (Exercise 14) and the set of 2k-sparse unit vectors in R
N is compact (Exercise

15), so ‖Φu‖22 must attain a maximum value on this set. We can take c2 to be this
maximum value. The two conditions can be amalgamated into the statement that
there exist positive constants c1 and c2 so that

(2.1) c1 ≤ ‖Φu‖22 ≤ c2

for all unit vectors u ∈ Σ2k.
From Exercise 10(a), rescaling the matrix Φ by a constant doesn’t change the

condition Σ2k ∩N (Φ) = {0} (or the problem of solving Φx = b, if we rescale b too).
In what follows it will be convenient to multiply (2.1) through by 2/(c1 + c2) and
define δ = (c2 − c1)/(c2 + c1), where we’ll always have 0 ≤ δ ≤ 1. If we redefine
Φ appropriately by multiplying by

√
2/(c1 + c2), then (2.1) yields the equivalent

inequality

(2.2) 1− δ ≤ ‖Φu‖22 ≤ 1 + δ

for the rescaled system with Φ and b both rescaled by a factor
√
2/(c1 + c2).

Note that c1 > 0 excludes the possibility δ = 1. This motivates the following key
definition, introduced by Candès and Tao [12]; see also [7].

Definition 2.4. An n × N matrix Φ satisfies the restricted isometry property
(RIP) of order m if there is some constant δm ∈ (0, 1) such that

(2.3) 1− δm ≤ ‖Φu‖22 ≤ 1 + δm

for all m-sparse unit vectors u ∈ R
N .

With Definition 2.4 we can state the following variation of Lemma 2.3.
Lemma 2.5. If a matrix Φ satisfies the RIP of order 2k for some k ≥ 1, then

Σ2k ∩ N (Φ) = {0} and any k-sparse solution to Φx = b is unique.
Again, the right-hand inequality of (2.3) is not necessary for Σ2k ∩ N (Φ) = {0},

but the size of the constant δm has implications for the effectiveness and stability of
�1 minimization in recovering sparse solutions to Φx = b, as we’ll see in section 4.

Exercise 11. Let Φ = [1/2 4/3].
(a) Show the Φ satisfies the RIP (2.3) of order 1 with constant δ1 = 7/9.
(b) Show that Φ does not satisfy the RIP of order 2. (Remember, we need

δ2 ∈ (0, 1).)
Exercise 12. Show that if a matrix Φ satisfies the RIP of order k, then it also

satisfies the RIP of order j for any positive integer j less than k.
Exercise 13. Use the fact that any vector x ∈ R

N can be written as x = ‖x‖2u,
where u = x/‖x‖2 is a unit vector, to show that Definition 2.4 is equivalent to
requiring that there exist some δm ∈ (0, 1) such that

(2.4) (1 − δm)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δm)‖x‖22
for any m-sparse vector x in R

N (not restricting x to be a unit vector).
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2.3. Interpretation of the RIP. To interpret the RIP (2.4) from a more geometric
perspective, suppose (2.4) holds for the case m = 2k. Let x and x′ be any two vectors
in Σk. From the left inequality in (2.4) we then have

(2.5) ‖Φx− Φx′‖2 = ‖Φ(x− x′)‖2 ≥
√
1− δ2k‖x− x′‖2

since x − x′ ∈ Σ2k. Equation (2.5) shows that the distance between Φx and Φx′ is
always some fraction of the distance between the vectors x and x′ themselves. The
closer δ2k is to zero, the more Φ behaves like an isometry (distance preserving map)
on Σk, keeping elements of Σk well separated under multiplication by Φ. In other
words, the images Φx for x ∈ Σk will be easy to distinguish from each other.

Unfortunately, the RIP itself isn’t really any easier to verify for a given matrix
Φ than the condition that subsets of columns of Φ are independent. However, the
advantage of the RIP is that it can be shown to hold with high probability for large
classes of matrices generated by certain random procedures, so we can be confident
that these matrices will work in a compressed sensing application. We give an example
of such a class of matrices in section 3.

Exercise 14. Prove that the mapping g : RN → R defined by g(x) := ‖Φx‖22 is
continuous.

Exercise 15. Prove that the set Km of m-sparse unit vectors in R
N is compact,

i.e., closed and bounded. Suggestion: Km is clearly bounded, so show that the com-
plement of Km is open (given any vector with at least m+ 1 nonzero components or
that is not a unit vector, show there exists an open neighborhood of that vector that
does not intersect Km).

Exercise 16. Here’s an alternative version of the RIP of Definition 2.4, based
on eigenvalues. First, consider a subset T ⊆ {1, 2, . . . , N}, say with elements Ti and
cardinality |T |. If Φ is n×N , let ΦT be the n×|T | matrix obtained by deleting those
columns of Φ whose index does not lie in T .

(a) Show that the condition that there exists a constant δm ∈ (0, 1) such that

(2.6) (1− δm) ≤ ‖ΦTu‖22 ≤ (1 + δm)

for all subsets T with |T | ≤ m and all unit vectors u ∈ R
|T | is equivalent to

Definition 2.4.
(b) It’s a fact from linear algebra that if M is an n × p matrix and u is a unit

vector in R
p, then

(2.7) λ′ ≤ ‖Mu‖22 ≤ λ′′,

where λ′ and λ′′ are the smallest and largest eigenvalues of the p× p matrix
MtM (MtM is symmetric positive semidefinite, so all eigenvalues are real and
nonnegative; the inequality (2.7) can be proved by writing MtM = QDQt,
where Q is orthogonal). Use this fact to show that the condition of (2.6) in
part (a) is equivalent to the statement that for any set T with |T | ≤ m the
eigenvalues of Φt

TΦT lie in the interval (1− δm, 1 + δm).
(c) Use the condition of part (b) to show that the matrix Φ in Exercise 5 satisfies

the RIP of order 2 with δ2 =
√
2/2 ≈ 0.707. You’ll need to form the 2 × 2

matrix Φt
TΦT for all six subsets T of {1, 2, 3, 4} with |T | = 2 and compute

the eigenvalues; use a computer algebra system or MATLAB.

3. RIP for Normal Random Matrices. Although the RIP may be hard to verify
for any specific matrix, it turns out that matrices constructed via certain random
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processes can be shown to possess the RIP with high probability. This is one reason
why the matrices used in compressed sensing generally involve some kind of random-
ness. Many classes of random matrices have been shown to be suitable. The focus
of this section is to examine one such class, namely, matrices with entries that are
independent normally distributed random variables. The results of this section are
intended to convince the reader that there are in fact matrices that possess the RIP,
but the results are not necessary to understand why �1 minimization works, which is
the topic of section 4.

In the coin problem above we were able to find a small number of defective coins
with high probability, by using only a fraction q = 0.25 of the usually necessary
N = 100 equations. More generally, we seek conditions under which we have a good
chance of identifying a k-sparse vector in R

N using only n = qN (q � 1) linear
equations. The following theorem offers an answer by telling us when the RIP will
hold with high probability for random matrices of certain types.

Theorem 3.1. Let Φ be an n ×N matrix with n = qN for some q ∈ (0, 1) and
entries that are independent samples of a normal random variable with mean 0 and
variance 1/n. For any fixed ε ∈ (0, 1), δ ∈ (0, 1), and n ≥ 12/δ the matrix Φ will
satisfy the RIP of order m with constant δm = δ with probability at least 1− ε if N is
chosen large enough to satisfy the inequality

(3.1) −c0qN + (m+ 1/2) ln(N) + c1 ≤ ln(ε),

where c0 = δ2/144− δ3/1296 > 0 and c1 = m ln(36emδ ) +
1
2 ln(q/π).

In short, for these types of random matrices the RIP of a given order can be made
to hold with probability as close to one as we like, provided k, n, and N stand in a
certain relation to each other.

The focus of the rest of this section is to give a simple proof of Theorem 3.1,
similar to that in [4], which we break up into a few lemmas requiring no more than
elementary probability and calculus. The proof hinges on the concentration inequality
stated in Lemma 3.2.

Exercise 17. Show that for any fixed q, ε, δ in (0, 1), and m ≥ 1, the inequality
(3.1) will hold for all sufficiently large N . With δ = 0.1, ε = 0.01,m = 10, and
q = 0.25, how large must N be for the inequality to be satisfied?

3.1. Showing That the RIP Holds with High Probability. Before stating the
next lemma, we define the following function p(n, ε) that we will use to help bound
the probability that a matrix Φ does not exhibit the desired properties:

(3.2) p(n, ε) =

√
n

π
e−n(ε2/4−ε3/6).

For any fixed ε > 0, the function p(n, ε) can be made arbitrarily (and rapidly) close
to zero by taking n large (see Figure 3.1). In what follows we use the notation P (E)
to denote the probability of an event E.

Lemma 3.2. Let Φ be an n×N matrix whose entries φij are independent samples
of a normal random variable with mean 0 and variance 1/n. For any fixed ε ∈ (0, 1)
and unit vector u ∈ R

N the inequality

P (
∣∣‖Φu‖2 − 1

∣∣ ≥ ε) ≤ p(n, ε)

holds for n ≥ 2/ε. (Note that the result doesn’t actually depend on N .)

D
ow

nl
oa

de
d 

05
/1

8/
14

 to
 1

74
.6

2.
21

8.
22

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPRESSED SENSING 557

0.6 .8 1 1.2 1.4
0

0.5

1

‖Φu‖2

P
ro

po
rt

io
n

 

 

n=2500
n=500
n=100

10
3

10
4

10
5

10
610

−30

10
−20

10
−10

10
0

n

p
(n

,ε
)

 

 

ε = 0.01

ε = 0.02

ε = 0.05

Fig. 3.1 Illustration of Lemma 3.2. Left: A histogram with bin size 0.1 (markers indicate center of
each bin) showing the proportion out of 4,000 normal random matrices Φ of size n × N
for which ‖Φu‖22 falls into each bin of width 0.1, where u is a fixed randomly generated
unit vector and N = 10,000. The marker corresponding to interval [0.95, 1.05] shows the
proportion of matrices Φ that satisfied |‖Φu‖22 − 1| ≤ ε = 0.05: 26% for n = 100, 57% for
n = 500, and 92% for n = 2,500. Right: Graphs of the upper bound p(n, ε) for various
values of ε.

Proof. Fix ε ∈ (0, 1) and let Φ be an n ×N matrix that satisfies the hypotheses
of the lemma. Let u be any fixed unit vector in R

N and set y = Φu, so y ∈
R

n. Recall from elementary probability that if X1, . . . , XN are independent normal
random variables, all with mean μ and variance σ2, then X =

∑
j cjXj has mean

μ
∑

j cj and variance σ2
∑

j c
2
j . It follows that each component yi =

∑N
j=1 φijuj of y

is an independent normal random variable with mean 0 and variance 1/n. Therefore
n‖y‖22 =

∑n
i=1 ny

2
i is a χ2 variable with n degrees of freedom and probability density

function (pdf)

gn(x) =
1

2n/2Γ(n/2)
xn/2−1e−x/2

for x ≥ 0 (see section 3.3 of [29]). Here Γ is the Gamma function, defined for any real
number α > 0 as

(3.3) Γ(α) =

∫ ∞

0

xα−1e−x dx.

For positive integers n, Γ(n) = (n− 1)!, Γ(1/2) =
√
π, and Γ(n+ 1/2) = (2n)!

4nn!

√
π.

The pdf of ‖y‖22 itself is given by

(3.4) fn(x) = ngn(nx) =
(n/2)n/2

Γ(n/2)
xn/2−1e−nx/2.

The mean and variance of ‖y‖22 are 1 and 2/n (Exercise 18), respectively, so as n
increases the quantity ‖y‖22 is more and more strongly “concentrated” near 1 (see
Figure 3.1). However, to prove the lemma we need to quantify the last statement.
Specifically, we have

(3.5) P (
∣∣‖Φu‖2 − 1

∣∣ ≥ ε) =

∫ 1−ε

0

fn(x) dx +

∫ ∞

1+ε

fn(x) dx.

We will estimate the value of each integral on the right in (3.5). To simplify the
notation, we use α = n/2. Note that we are only interested in the case α ≥ 1/ε > 1.
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We begin with the first integral on the right in (3.5). For any α ≥ 1, xα−1e−αx

attains its maximum value on the interval [0,∞) when x = 1 − 1/α ≥ 1 − ε, and is
strictly increasing on the interval (0, 1− 1/α). Thus xα−1e−αx attains its maximum
value on [0, 1− ε] at x = 1 − ε, and this maximum value is M = (1 − ε)α−1e−α(1−ε).
It follows that for α ≥ 1/ε we have

(3.6)

∫ 1−ε

0

xα−1e−αx dx ≤ (1− ε)M = (1 − ε)αe−α(1−ε).

From (3.4) and by using (3.6) with α = n/2 we then have, for n ≥ 2/ε,

(3.7)

∫ 1−ε

0

fn(x) dx ≤ (n/2)n/2

Γ(n/2)
e−n(1−ε)/2(1− ε)n/2.

Applying the bound (see [5])

(3.8)
αα

Γ(α)
≤ eα

√
α√

2π

with α = n/2 ≥ 1 in (3.7) yields

(3.9)

∫ 1−ε

0

fn(x) dx ≤
√
n

2
√
π
enε/2(1 − ε)n/2.

From Exercise 20(d) we have (1− ε)1/ε ≤ e−1−ε/2 for any ε ∈ (0, 1). As a result

(3.10) (1− ε)α = ((1 − ε)1/ε)αε ≤ e(−1−ε/2)αε = e−αεe−αε2/2.

Applying the estimate (3.10) to the bound (3.9) yields

(3.11)

∫ 1−ε

0

fn(x) dx ≤
√
n

2
√
π
e−nε2/4

for n ≥ 2/ε. This gives us the bound we need on the first integral in (3.5).
Now we bound the second integral on the right in (3.5). From Exercise 21,

(3.12) xn/2−1e−nx/2 ≤
(
1 + ε

e

)n/2−1

e−
1+nε/2

1+ε x

for n ≥ 2 and ε > −1. Integrate each side of (3.12) from x = 1+ ε to x = ∞ to obtain

(3.13)

∫ ∞

1+ε

xn/2−1e−nx/2 dx ≤ (1 + ε)n/2e−
n
2 (1+ε)/(1 + nε/2).

From Exercise 20(c) we have (1+ ε)1/ε ≤ e1−ε/2+ε2/3 for ε ∈ (0, 1), so that from (3.13)
and imitating (3.10) we obtain

(3.14)

∫ ∞

1+ε

xn/2−1e−nx/2 dx ≤ e−n/2−nε2/4+nε3/6

1 + nε/2
.

Use α = n/2 in the bound (3.8) with (3.14) to find

(3.15)

∫ ∞

1+ε

fn(x) dx ≤
√
ne−nε2/4+nε3/6

(2 + nε)
√
π

.
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Combining (3.11) and (3.15) yields the estimate in the lemma (noting that enε
3/6 > 1

and 2 + nε > 2).
Exercise 18. Let u be a unit vector in R

N and Φ an n×N matrix whose entries
are sampled from independent normal random variables with mean 0 and variance
1/n. Prove that the expected value of ‖Φu‖22 equals 1 and the variance equals 2/n.

Exercise 19. Let ε = 0.1 in the bound on the right in (3.5). Compute the value of
the function p(n, ε) in Lemma 3.2 (p as defined in (3.2)) for n = 10, 102, 103, 104. How
large must n be before the bound on P (

∣∣‖Φu‖2 − 1
∣∣ ≥ ε) is below 10−12? Repeat for

ε = 0.01.
Exercise 20. Prove that (1 + ε)1/ε ≤ e1−ε/2+ε2/3 for all ε ∈ (0, 1), as follows:
(a) Show that

1− ε/2 + ε2/3− ε3/4 + ε4/5− · · · ≤ 1− ε/2 + ε2/3

for ε ∈ (0, 1). (Look at pairs of terms in the alternating series.)
(b) Find the Taylor series for f(x) = ln(1 + x) about x = 0 and use this to show

that the left side of the displayed inequality in part (a) is the Taylor series
for the real-analytic function g defined by

g(ε) =

{
ln(1 + ε)/ε, ε �= 0,
1, ε = 0.

(c) Exponentiate g(ε) ≤ 1− ε/2 + ε2/3 to obtain the desired inequality.
(d) Imitate (a)–(c) to show that (1 − ε)1/ε ≤ e−1−ε/2 for all ε ∈ (0, 1) by using

the Taylor series for

g̃(ε) =

{
ln(1 − ε)/ε, ε �= 0,
1, ε = 0.

Exercise 21. Prove that if α ≥ 1 and ε > −1, then

(3.16) xα−1e−αx ≤
(
1 + ε

e

)α−1

e−
1+αε
1+ε x

for all x ≥ 0. Hint: Define the function

g(x) =

(
1 + ε

e

)α−1

xα−1e((1+αε)/(1+ε)−α)x

(g(x) is just the left side of (3.16) divided by the right side). Then show that g(x) > 0
for x > 0, that

lim
x→0+

g(x) = lim
x→∞ g(x) = 0,

and that g has a unique critical point (a maximum) at x = 1+ε, with value g(1+ε) = 1.

3.2. Extending Lemma 3.2. Lemma 3.2 holds only for a fixed unit vector u,
but we need a version of that lemma’s inequality that holds simultaneously for all m-
sparse unit vectors, with high probability. The argument that follows—in particular,
Lemmas 3.3 and 3.5—is an adaptation of similar arguments in [4].

Consider a subset T ⊂ {1, 2, . . . , N} with |T | = m. For any such subset T =
{T1, . . . , Tm} let XT denote the set of all vectors x ∈ R

N that are m-sparse, with
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xi = 0 if i �∈ T . Let UT denote the set of all unit vectors in XT . Our goal in what
follows is to extend the central inequality of Lemma 3.2 so that it holds for allm-sparse
unit vectors simultaneously, with high probability. We’ll do this by first showing that
for any fixed T the inequality holds with high probability on a finite subset AQ ⊂ UT

(Lemma 3.3) and then extend the result to hold for all vectors u ∈ UT (Lemma
3.5). We then prove Theorem 3.1 by extending the result to hold for all such sets T
(simultaneously), and thereby all m-sparse vectors.

In Lemmas 3.3 and 3.5 we assume that Φ is an n × N matrix whose entries are
independent samples of a normal random variable with mean 0 and variance 1/n.

Lemma 3.3. For any fixed subset T ⊂ {1, 2, . . . , N} with |T | = m, δ ∈ (0, 1), any
subset AQ ⊂ UT with cardinality Q = |AQ| < ∞, and n ≥ 2/δ, the inequality

1− δ ≤ ‖Φu‖22 ≤ 1 + δ

holds simultaneously for all u ∈ AQ with probability greater than 1−Qp(n, δ).
Proof. In Lemma 3.2 let’s choose ε = δ, so that for any δ ∈ (0, 1) and fixed vector

pk ∈ AQ we have that
∣∣‖Φpk‖22 − 1

∣∣ ≥ δ holds with probability less than p(n, δ),
defined in (3.2), when n ≥ 2/δ. Equivalently, the inequality

(3.17) 1− δ ≤ ‖Φpk‖22 ≤ 1 + δ

holds with probability at least 1 − p(n, δ), or fails to hold with probability at most
p(n, δ).

Recall Boole’s inequality, also called the “union bound” [17]:

(3.18) P (E1 ∪ E2 ∪ · · · ∪ EQ) ≤ P (E1) + · · ·+ P (EQ),

where the Ek are any events, which need not be independent. Let Ek denote the
event that inequality (3.17) fails to hold for the point pk, where 1 ≤ k ≤ Q. We
conclude from (3.18) that the probability of (3.17) failing to hold for at least one of
the pk is less than Qp(n, δ). This means that the probability that (3.17) does in fact
hold simultaneously for all pk ∈ AQ is greater than or equal to 1−Qp(n, δ), which is
exactly the probability specified in the lemma.

The following lemma tells us how to obtain a specific suitable subset AQ ⊂ UT

for our purposes, through a bound for the covering number of the unit sphere [34].
Lemma 3.4. For each ε ∈ (0, 1) and positive integer m ≥ 2, there exists a subset

AQ(ε) of the unit sphere Sm−1 = {u ∈ R
m : ‖u‖2 = 1} with at most Q(ε) := (3/ε)m

points that satisfies the following property: for every u ∈ Sm−1 there exists p ∈ AQ(ε)
such that ‖u− p‖2 < ε.

Proof. Fix ε ∈ (0, 1) and an integer m ≥ 2. Inductively construct the set AQ as
follows: Begin by choosing any p1 ∈ Sm−1. After choosing pk, choose pk+1 ∈ Sm−1

such that ‖pk+1 − pj‖2 ≥ ε for j = 1, . . . , k. Continue selecting points until no
further such points can be found; the process will stop at some finite number Q of
points because Sm−1 is compact (every open cover has a finite subcover). Define
AQ = {p1, . . . ,pQ}. We claim that for all u ∈ Sm−1, there exists pk ∈ AQ such that
‖u− pk‖ < ε; otherwise, there would exist pQ+1 ∈ Sm−1 such that ‖pQ+1 − pk‖ ≥ ε
for k = 1, . . . , Q, contradicting the stopping condition. Balls Bε/2(pk) of radius ε/2

centered at the points in AQ are disjoint, while the union ∪Q
k=1Bε/2(pk) lies in the

ball B1+ε/2(0). The total volume of the union must be less than the volume of the
containing ball, so Q · Vol(Bε/2) ≤ Vol(B1+ε/2). Since Vol(Br) = rmVol(B1) in R

m,
Q ≤ (1 + 2/ε)m = ((ε + 2)/ε)m ≤ (3/ε)m.
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Lemma 3.3 asserts that 1− δ ≤ ‖Φu‖22 ≤ 1+ δ holds with high probability for all
u ∈ AQ. The next lemma extends this to all u ∈ UT by using the set AQ = AQ(ε)
from Lemma 3.4 with ε = δ/4 (but note the norm in (3.19) below is not squared).

Lemma 3.5. For any fixed subset T ⊂ {1, 2, . . . , N} with |T | = m, δ ∈ (0, 1), and
n ≥ 4/δ, the inequality

(3.19) 1− δ ≤ ‖Φu‖2 ≤ 1 + δ

holds simultaneously for all u ∈ UT with probability greater than p̃ = 1−Q(δ/4)p(n, δ/2).
Proof. For a fixed Φ define a constant B (which will be a random variable that

depends on Φ) as

(3.20) B = −1 + sup
u∈UT

‖Φu‖2.

Actually, since UT is compact in R
N and the mapping x → ‖Φx‖2 is continuous (see

Exercises 14 and 15), we can replace “sup” with “max.” This also makes it clear that
B < ∞. From (3.20) we obviously have ‖Φu‖2 ≤ 1 +B for any u ∈ UT .

If x ∈ XT with x �= 0, then u = x/‖x‖2 ∈ UT . The inequality ‖Φu‖2 ≤ 1 +B is
equivalent to the inequality

(3.21) ‖Φx‖2 ≤ (1 +B)‖x‖2.

We will show that B ≤ δ with probability at least p̃, yielding the right-side inequality
in (3.19).

To do this, let u ∈ UT . Fix a set AQ(δ/4) as in Lemma 3.4 and choose a point
pk ∈ AQ(δ/4) so that ‖u−pk‖2 ≤ δ/4. The vector u−pk ∈ XT , so the bound (3.21)
applies to show ‖Φ(u−pk)‖2 ≤ (1+B)δ/4. Applying Lemma 3.3 (using δ/2 in place
of δ), we have ‖Φpk‖2 ≤ √

1 + δ/2 ≤ (1+δ/2) with probability at least p̃ for n ≥ 4/δ.
As a result, with probability at least p̃ we have

‖Φu‖2 = ‖Φpk +Φ(u− pk)‖2
≤ ‖Φpk‖2 + ‖Φ(u− pk)‖2 (by the triangle inequality)

≤ (1 + δ/2)‖pk‖2 + (1 +B)δ/4 (using (3.21))

≤ 1 + δ/2 + (1 +B)δ/4 (because ‖pk‖2 = 1)

= 1 + (3/4 +B/4)δ.(3.22)

Equivalently, we have ‖Φu‖2 > 1 + (3/4 + B/4)δ with probability less than 1 − p̃.
Since ‖Φu‖2 ≤ 1 + B we conclude that 1 + (3/4 + B/4)δ < 1 + B with probability
less than 1− p̃, or equivalently, 1 +B ≤ 1+ (3/4+B/4)δ with probability at least p̃.
A little rearrangement yields B ≤ 3δ

4−δ for δ ∈ (0, 1) with probability at least p̃; since
3δ
4−δ ≤ δ for δ ∈ (0, 1), we obtain B ≤ δ with probability at least p̃, which verifies the
right-side inequality in (3.19).

To demonstrate the left-side inequality in (3.19) start with

‖Φpk‖2 ≤ ‖Φ(pk − u)‖2 + ‖Φu‖2

from the triangle inequality. Rearrange to obtain ‖Φu‖2 ≥ ‖Φpk‖2 − ‖Φ(pk − u)‖2.
Then again from Lemma 3.3 (using δ/2 in place of δ), with probability at least p̃ we
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have

‖Φu‖2 ≥ ‖Φpk‖2 − ‖Φ(pk − u)‖2
≥ (1− δ/2)− (1 +B)‖pk − u‖2
≥ (1− δ/2)− (1 +B)

δ

4

≥ (1− δ/2)− (1 + δ)
δ

4

= 1− 3

4
δ − 1

4
δ2,(3.23)

where we’ve applied the bound (3.21) to pk −u and used ‖pk‖2 = 1 and ‖pk −u‖2 ≤
δ/4. It’s easy to see that 3δ/4+ δ2/4 < δ for δ ∈ (0, 1), so that 1− 3

4δ− 1
4δ

2 > 1− δ.
From this and (3.23) we obtain ‖Φu‖2 ≥ 1− δ with probability at least p̃ for n ≥ 4/δ,
which is the left-side inequality in (3.19).

3.3. Finishing the Proof of Theorem 3.1. We can now show that if n = qN
(that is, we have N unknowns but want to use a fraction q of the usual requirement
of N equations), then we can recover an m-sparse solution with high probability if N
is large enough.

Proof of Theorem 3.1. Fix a subset T ⊂ {1, 2, . . . , N} with |T | = m and let
x ∈ XT , x �= 0. Applying Lemma 3.5 to the vector u = x/‖x‖2 with δ replaced by
δ/3 shows that

(3.24) (1− δ/3)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + δ/3)‖x‖2
holds with probability greater than 1−Q(δ/12)p(n, δ/6), that is, fails with probability
less than Q(δ/12)p(n, δ/6), assuming now that n ≥ 12/δ. If we square each entry in
(3.25) and note that 1− δ ≤ (1− δ/3)2 and (1+ δ/3)2 ≤ 1+ δ for δ ∈ (0, 1), we obtain

(3.25) (1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22,
again, with probability greater than 1−Q(δ/12)p(n, δ/6).

Now consider the set of all subsets T ∈ {1, 2, . . . , N} with |T | = m; there are
(
N
m

)
such subsets. If we let ET denote the event that (3.25) fails to hold on XT , then
P (ET ) ≤ Q(δ/12)p(n, δ/6) as remarked above. We again employ Boole’s inequality
(3.18) to conclude that the probability P0 of (3.25) failing on at least one of the sets
T is bounded as follows:

(3.26) P0 ≤
(
N

m

)
Q(δ/12)p(n, δ/6) ≤

(
36eN

mδ

)m√
n

π
e−n(δ2/144−δ3/1296),

where we used the classic bound
(
N
m

) ≤ (
eN
m

)m
(see Exercise 22). Finally, let’s fix

n = qN for some q ∈ (0, 1). In this case the right side of (3.26) yields

(3.27) P0 ≤ Nm+1/2

(
36e

mδ

)m√
q

π
e−qN(δ2/144−δ3/1296).

For any fixed choice of δ ∈ (0, 1), q ∈ (0, 1), and m ≥ 1 the right side of (3.27)
goes to 0 as N → ∞, which shows that the probability of (3.25) failing can be made
arbitrarily small by taking N sufficiently large. In fact, if we choose ε ∈ (0, 1) and take

the log of both sides of the inequality Nm+1/2
(
36e
mδ

)m√
q
π e

−qN(δ2/144−δ3/1296) ≤ ε, we
obtain inequality (3.1).

Exercise 22. Show that
(
N
m

) ≤ (
eN
m

)m
. Suggestion: Observe that

(
N
m

) ≤ Nm

m! and

log(m!) =
∑m

x=1 log x ≥ ∫m

1
log xdx.
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t = 0 t = −x1/n1*

Fig. 4.1 Graph of function qη(t) = |x∗
1 + tη1|+ |t|∑N

j=2 |ηj | for the case η1 �= 0.

4. Finding Sparse Solutions with �1 Minimization. We now turn to a more
quantitative analysis of why �1 minimization successfully recovers sparse signals. Let’s
start with the simple case of a nonzero 1-sparse vector x∗ that satisfies Φx∗ = b, where
Φ is an n×N matrix that satisfies the RIP of order 3 with constant δ. If it turns out
that x∗ is the unique solution to the optimization problem

(4.1) min ‖x‖1 subject to Φx = b,

then we have a reasonable way of recovering x∗ from the measurement vector b, for
(4.1) can be cast as a standard linear programming problem [16].

The key again lies in considering the properties of the null space N (Φ), because
all solutions to Φx = b have the form x∗ + η for some η ∈ N (Φ). If for each nonzero
η ∈ N (Φ) the function qη(t) = ‖x∗+ tη‖1 has a unique global minimum at t = 0, then
x∗ will be the unique solution of (4.1). To see this, suppose Φx∗∗ = b with x∗∗ �= x∗.
Let η = x∗∗ − x∗ �= 0 and note η ∈ N (Φ). Then ‖x∗∗‖1 = qη(1) > qη(0) = ‖x∗‖1.

Let us thus examine conditions under which qη(t) = ‖x∗ + tη‖1 is guaranteed to
have a unique global minimum at t = 0. Fix any nonzero η = (η1, . . . , ηN ) ∈ N (Φ).
Without loss of generality, assume that x∗ = (x∗

1, 0, . . . , 0). If η1 = 0, then qη(t) =

|x∗
1| + |t|∑N

j=2 |ηj | is clearly minimized globally at t = 0. Now suppose η1 �= 0, in

which case we must examine the function qη(t) = |x∗
1 + tη1| + |t|∑N

j=2 |ηj |, whose
graph will look like that shown in Figure 4.1.

There are 2 critical points where a global minimum can occur: t = 0 and t =
−x∗

1/η1. We require qη(0) < q(−x∗
1/η1), which can be rewritten

(4.2) |η1| <
N∑
j=2

|ηj |.

We’ll show that if the RIP of order 3 holds for Φ with δ3 sufficiently small, inequality
(4.2) must hold for any η ∈ N (Φ). We’ll also finally make use of the upper bound
part of the RIP. The argument that follows is a distillation of that in [18].

For a fixed η ∈ N (Φ) define the set T1 to consist of the indices of the two
components largest in magnitude from the set {η2, . . . , ηN}, define T2 to consist of
the indices of the next two largest components, and so on through Ts, which will
contain indices of the smallest one or two elements (depending on whether N is even
or odd). Let T = {1} ∪ T1 and let T c be its complement, ∪s

j=2Tj. Let ηTj ∈ R
N be

the vector η but with all components set to zero except those corresponding to indices
in Tj . Observe that 0 = Φη = ΦηT + ΦηT c , so ΦηT = −ΦηT c . Also, ηT is 3-sparse.
Since Φ satisfies the RIP of order 3 for some constant δ (and so also of order 2 by
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Exercise 12), we have

|η1| ≤ ‖ηT ‖2 (since ‖ηT ‖22 = |η1|2 + ‖ηT1‖22)
≤ 1√

1− δ
‖ΦηT ‖2 (using RIP of order 3, left side of (2.4))

=
1√
1− δ

‖ΦηT c‖2 (since ‖ΦηT ‖2 = ‖ΦηT c‖2)

≤ 1√
1− δ

s∑
j=2

‖ΦηTj‖2 (by the triangle inequality)

≤
√
1 + δ√
1− δ

s∑
j=2

‖ηTj‖2 (using RIP of order 2, right side of (2.4)).(4.3)

If i ∈ Tj+1 and Tj = {k1, k2}, then |ηi| ≤ |ηk1 | and |ηi| ≤ |ηk2 |, and so |ηi| ≤
1
2 (|ηk1 |+ |ηk2 |) = 1

2‖ηTj‖1. We use this to bound the �2 norm of ηTj+1 by the �1 norm
of ηTj ,

(4.4) ‖ηTj+1‖2 =
√
η2i1 + η2i2 ≤

√
1

4
‖ηTj‖21 +

1

4
‖ηTj‖21 =

1√
2
‖ηTj‖1.

Combining (4.3) and (4.4) yields

(4.5) |η1| ≤
√
1 + δ√
1− δ

s∑
j=2

‖ηTj‖2 ≤
√
1 + δ√

2(1− δ)

s−1∑
j=1

‖ηTj‖1 ≤
√
1 + δ√

2(1− δ)

N∑
j=2

|ηj |,

which gives us (4.2) if we have
√
1+δ√

2(1−δ)
< 1, that is, δ < 1

3 . Therefore �
1 minimization

is guaranteed to exactly recover 1-sparse solutions if Φ satisfies the RIP of order 3
with constant δ3 < 1/3.

The following theorem generalizes this result [18] (see [8] for an alternative pre-
sentation).

Theorem 4.1. Let Φ be an n×N matrix that satisfies the RIP of order 3k with
constant δ3k < 1

3 . Then solving the �1 minimization problem (4.1) exactly recovers
k-sparse signals.

Indeed, this result can be proved with a straightforward extension of the argument
above, based on considering the function qη(t) = ‖x∗ + tη‖1, where x∗ is a k-sparse
solution to Φx∗ = b, and defining the sets Tj to consist of 2k-tuples of indices.

Theorems 3.1 and 4.1 are not sharp—the method works in many cases that don’t
satisfy the conditions in these theorems. For example, in a simulation using k = 3,
q = 0.25, ε = 0.05, and N = 100 we successfully recovered 3-sparse solutions in 1000
of 1000 trials with random normal matrices Φ, while Theorem 3.1 suggests we need
N ≥ 8.78 × 105. A practical rule of thumb is that n ≥ 4k, that is, q ≥ 0.25, is
often sufficient for �1 minimization to recover a k-sparse signal [12], and much effort
has been directed at obtaining sharper theoretical results. For readers interested in
numerically exploring some examples, [10] provides helpful MATLAB code. See [25]
for background on linear programming and [16] for development of basis pursuit as a
means of efficient �1 minimization.

An estimate similar to that of Lemma 3.2 can be derived in the case that the
entries of Φ are ±1 signed Bernoulli variables, and so results analogous to Theorems
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3.1 and 4.1 also hold; see [1]. We should point out, however, that for 0-1 Bernoulli
matrices like those used in the coin problem the RIP estimates are not quite as good,
as shown in [15] and discussed in [6].

Exercise 23. Why didn’t we assume Φ satisfies the RIP of order 2 in the simple
1-sparse solution scenario above? Redo the analysis under the assumption of the RIP
of order 2, with |Tj | = 1, and show that it requires δ > 1.

5. Beyond Sparse Signal Recovery. Actual signals are rarely sparse, as we’ve
been assuming. As a generalization we say that x is “k-compressible” if x has k
components that are “much larger” in magnitude than the remaining N − k com-
ponents. This might be the case in the coin problem if most of the coins are “ac-
ceptable,” say lie within a small error tolerance ±0.001 grams, but there are a few
really off-mass coins that differ significantly from nominal. Many signals arising in
applications are compressible in this sense, for example, photos taken by a digital
camera. The CS algorithm recovers such signals almost as well as simply keeping the
largest components—but without doing the extensive sensing that would be necessary
to identify all of the components in order to determine which are the largest [18].

The CS algorithm can also be adapted to work for noisy signals, in which case
the �1 minimization problem becomes

min ‖x‖1 subject to ‖Φx− b‖2 ≤ ε,

where ε bounds the amount of noise. This still produces good estimates in a compu-
tationally efficient manner and the problem remains stable, in that small errors in b
have relatively little effect on the solutions produced by our algorithm [14].

The applications of CS are continually expanding, including medical imaging,
communications, analog-to-information conversion, geophysical data analysis, com-
pressive radar, and genetic screening, among others. For example, CS can greatly
reduce scan times and potentially increase resolution of magnetic resonance imaging
[30]. CS microarrays combine group testing and CS principles to accurately identify
genetic sequences, e.g, to detect pathogens in a water sample [19]. CS has also been
used to image the rupture process of a main shock in an earthquake [35]. Many other
applications are being developed (see http://dsp.rice.edu/cs). All in all, CS is proving
to be a powerful and flexible paradigm and will continue to be an exciting field of
mathematical research that extends into many other disciplines.
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