
Matrix Analysis (Lecture 4)

Yikun Zhang∗

April 26, 2018

Abstract

In the last lecture, we investigate properties of unitary matrices,
introduce a special class of unitary matrices called Householder ma-
trices, and leverage the norm preservation property of a Householder
matrix (transformation) to deduce the important QR factorization. In
this lecture, unitary similarity helps transform any given matrix into
another matrix with a special form. Among all those special forms
the Schur triangularization (or Schur form) is the most fundamentally
useful result that embraces tremendous applications in elementary ma-
trix analysis, either simplify calculations of some summary items of a
matrix, or deduce other theorems that are related to eigenvalues of a
matrix. In addition, a necessary and sufficient condition will be stated
without proof.

1 Unitary Similarity (Page 94-98, Page 35)

Unitary similarity, like similarity, corresponds to a change of basis, but of
a special type—it corresponds to a change from one orthonormal basis to
another. We first summarize the definitions of unitary similarity as well as
its real variation, real orthogonal similarity, into a formal statement.

Definition 1.1. Let A,B ∈Mn be given.
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(a) We say that A is unitarily similar to B if there is a unitary U ∈ Mn

such that A = U∗BU . If U may be taken to be real (and hence is real
orthogonal), then A is said to be real orthogonally similar to B.

(b) We say that A is unitarily diagonalizable if it is unitarily similar to
a diagonal matrix; A is real orthogonally diagonalizable if it is real
orthogonally similar to a diagonal matrix.

Since unitary similarity is a special type of similarity, by Observation 1.2
in Lecture 2, we have an analogous observation.

Observation 1.2. Unitary similarity is an equivalence relation.

There are many necessities of two matrices to be unitarily similar. One
obvious condition is that the Euclidean norms of their entries must be iden-
tical.

Theorem 1.3. Let U ∈ Mn and V ∈ Mm be unitary, let A = [aij] ∈ Mn,m

and B = [bij] ∈Mn,m, and suppose that A = UBV . Then

n,m∑
i,j=1

|bij|2 =

n,m∑
i,j=1

|ai,j|2.

In particular, this identity is satisfied if m = n and V = U∗, that is, if A is
unitarily similar to B.

Proof. For any A = [aij] ∈Mn,m, a direct computation shows that trAA∗ =

trA∗A =
n,m∑
i,j=1

|ai,j|2, so it suffices to prove that trB∗B = trA∗A. Using the

fact that trAB = trBA, we compute that trA∗A = tr(UBV )∗(UBV ) =
tr(V ∗B∗U∗UBV ) = tr(V ∗B∗BV ) = tr(B∗BV V ∗) = trB∗B.

Unitary similarity implies similarity but not conversely. Consider the

matrices A =

[
1 1
0 2

]
and B =

[
3 1
−2 0

]
. They are similar via a matrix S =[

3 2
2 1

]
, that is, S−1AS = B. However, A and B are by no means unitarily

similar to each other, since
2∑

i,j=1

|aij|2 = 6 6= 14 =
2∑

i,j=1

|bi,j|2. Therefore, the

unitary similarity equivalence relation partitions Mn into finer equivalence
classes than the similarity equivalence relation.
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Theorem 1.3 provides a necessary but not sufficient condition for two
given matrices to be unitarily similar. It can indeed be augmented with
additional identities that collectively do provide necessary and sufficient con-
ditions. A key role is played by the following simple notion. Let s, t be two
given noncommuting variables. Any finite formal product of nonnegative
powers of s and t

W (s, t) = sm1tn1sm2tn2 · · · smktnk , m1, n1, ...,mk, nk ≥ 0 (1)

is called a word in s and t. The length of the word W (s, t) is the nonnegative
integer m1 + n1 +m2 + n2 + · · ·+mk + nk, i.e., the sum of all the exponents
in the word.
If A ∈Mn is given, we define a word in A and A∗ as

W (A,A∗) = Am1(A∗)n1Am2(A∗)n2 · · ·Amk(A∗)nk .

Since the powers of A and A∗ need not commute, it may not be possible to
simplify the expression of W (A,A∗) by rearranging the terms in the product.

Suppose that A is unitarily similar to B ∈ Mn, that is, A = UBU∗ for
some unitary U ∈Mn. For any word W (s, t) we have

W (A,A∗) = (UBU∗)m1(UB∗U)n1 · · · (UBU∗)mk(UB∗U∗)nk

= UBm1U∗U(B∗)n1U∗ · · ·UBmkU∗U(B∗)nkU∗

= UBm1(B∗)n1 · · ·Bmk(B∗)nkU∗

= UW (B,B∗)U∗

soW (A,A∗) is unitarily similar toW (B,B∗). Thus, trW (A,A∗) = trW (B,B∗).
Particularly, if we take the word W (s, t) = st, we obtain the identity in The-
orem 1.3. If one considers all possible words W (s, t), this will give rise to
infinitely many necessary conditions for two matrices to be unitarily similar,
which, surprisingly, are also sufficient.

Theorem 1.4 (Specht). Two matrices A,B ∈ Mn are unitarily similar if
and only if

trW (A,A∗) = trW (B,B∗) (2)

for every word W (s, t) in two noncommuting variables.

Specht’s theorem 1.4 can be used to show that two matrices are not
unitarily similar by exhibiting a specific word that violates the identity (2).
However, the applications of Specht’s theorem 1.4 in determining whether two
given matrices are unitarily similar are limited to some special situations.
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Example 1.5. Let A ∈ Mn and B,C ∈ Mm be given. Then B and C are
unitarily similar if and only if any one of the following conditions is satisfied:

(a)

[
A 0
0 B

]
and

[
A 0
0 C

]
are unitarily similar.

(b) B ⊕ · · · ⊕ B and C ⊕ · · · ⊕ C are unitarily similar if both direct sums
contain the same number of direct summands.

(c) A⊕B⊕· · ·⊕B and A⊕C⊕· · ·⊕C are unitarily similar if both direct
sums contain the same number of direct summands.

For (a), we know that trW
([A 0

0 B

]
,

[
A∗ 0
0 B∗

])
= tr

([W (A,A∗) 0
0 W (B,B∗)

])
=

trW (A,A∗)+trW (B,B∗) and similarly, trW
([A 0

0 C

]
,

[
A∗ 0
0 C∗

])
= trW (A,A∗)+

trW (C,C∗). By Theorem 1.4, we conclude that

B ∼ C ⇐⇒ trW (B,B∗) + trW (C,C∗)

⇐⇒ trW
([A 0

0 B

]
,

[
A∗ 0
0 B∗

])
= trW

([A 0
0 C

]
,

[
A∗ 0
0 C∗

])
⇐⇒

[
A 0
0 B

]
∼
[
A 0
0 C

]
.

Likewise, for (b), we have trW (B⊕· · ·⊕B,B∗⊕· · ·⊕B∗) = n · trW (B,B∗)
and trW (C ⊕ · · · ⊕ C,C∗ ⊕ · · · ⊕ C∗) = n · trW (C,C∗).
For (c), we also have trW (A⊕B⊕· · ·⊕B,A∗⊕B∗⊕· · ·⊕B∗) = trW (A,A∗)+
n ·trW (B,B∗) and trW (A⊕C⊕· · ·⊕C,A∗⊕C∗⊕· · ·⊕C∗) = trW (A,A∗)+
n · trW (C,C∗).
We can apply Theorem 1.4 and deduce (b) and (c) in a similar fashion.

In practice, it is useless to show that two given matrices are unitarily
similar via Specht’s theorem 1.4 because infinitely many conditions must be
verified. Fortunately, a refinement of Specht’s theorem 1.4 ensures that it
suffices to check the trace identities (2) for only finitely many words, which
can provide a practical criterion to assess unitary similarity of matrices of
small size.

Theorem 1.6. Let A,B ∈Mn be given.
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(a) A and B are unitarily similar if and only if the identity (2) is satisfied
for every word W (s, t) in two noncommuting variables whose length is
at most

n

√
2n2

n− 1
+

1

4
+
n

2
− 2.

(b) If n = 2, A and B are unitarily similar if and only if the identity (2)
is satisfied for the 3 words W (s, t) = s; s2, and st.

(c) If n = 3, A and B are unitarily similar if and only if the identity (2)
is satisfied for the 7 words W (s, t) = s, s2, st; s3, s2t; s2t2; and s2t2st.

(d) If n = 4, A and B are unitarily similar if and only if the identity (2)
is satisfied for the 20 words in the following table:

s s2, st
s3, s2t s4, s3t, s2t2, stst
s3t2 s2ts2t, s2t2st, t2s2ts
s3t2st s3t2s2t, s3t3st, t3s3ts
s3ts2tst, s2t2sts2t s3t3s2t2

Two real matrices are unitarily similar if and only if they are real orthog-
onally similar. Thus, the criteria in Theorem 1.4 and 1.6 are also necessary
and sufficient for any two real matrices A and B to be real orthogonally sim-
ilar.

For computational or theoretical reasons, it is often convenient to trans-
form a given matrix by unitary similarity into another matrix with a special
form. Here are two examples.

Example 1.7 (Unitary similarity to a matrix with equal diagonal entries).
Let A = [aij] ∈Mn be given. We claim that there is a unitary U ∈Mn such
that all the main diagonal entries of U∗AU = B = [bij] are equal; if A is
real, then U may be taken to be real orthogonal. If this claim is true, then
trA = trB = nb11, so every main diagonal entry of B is equal to the average
of the main diagonal entries of A.

We begin by considering the complex case and n = 2. With loss of
generality, we assume that trA = 0, since we can replace A ∈ M2 by A −
(1

2
trA)I. Then the two eigenvalues of A are ±λ for some λ ∈ C. We wish

to determine a unit vector u such that u∗Au = 0. If λ = 0, let u be any
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unit vector such that Au = 0. If λ 6= 0, let w and z be any unit eigenvectors
associated with the distinct eigenvalues ±λ. Let x(θ) = eiθw + z, which is
nonzero for all θ ∈ R since w and z are linearly independent. Compute
x(θ)∗Ax(θ) = λ(eiθw + z)∗(eiθw − z) = 2iλIm(eiθz∗w). If z∗w = eiφ|z∗w|,
then x(−φ)∗Ax(−φ) = 0. Take u = x(−φ)

||x(−φ)||2 .

Now let v ∈ C2 be any unit vector that is orthogonal to u and let U = [u v].
Then U is unitary and U∗AU)11 = u∗Au = 0. But tr(U∗AU) = tr(AUU∗) =
tr(A), so (U∗AU)22 = 0 as well.

Now suppose that n = 2 and A is real. If the diagonal entries of A = [aij]

are not equal, consider the plane rotation matrix Uθ =

[
cos θ − sin θ
sin θ cos θ

]
. A

calculation reveals that the diagonal entries of UθAU
T
θ are equal if (cos2 θ −

sin2 θ)(a11 − a22) = (2 sin θ cos θ)(a12 + a21), so equal diagonal entries are
achieved if θ ∈ (0, π

2
) is chosen so that cot 2θ = a12+a21

a11−a22 .
We have now shown that any 2-by-2 complex matrix A is unitarily similar

to a matrix with both diagonal entries equal to the average of the diagonal
entries of A; if A is real, the similarity may be taken to be real orthogonal.

Now suppose that n > 2 and define f(A) = max{|aii − ajj| : i, j =

1, 2, ..., n}. If f(A) > 0, let A2 =

[
aii aij
aji ajj

]
for a pair of indices i, j for

which f(A) = |aii−ajj| (there could be several pairs of indices for which this
maximum positive separation is attained; choose any one of them). Preceding
arguments guarantee that there is a unitary U2 ∈M2 (or real orthogonal if A
is real) such that U∗2A2U2 has both main diagonal entries equal to 1

2
(aii+ajj).

Construct U(i, j) ∈Mn from U2 in the same way that a plane rotation matrix
U(θ; i, j) was constructed from a 2-by-2 plane rotation in Example 2.18 of
Lecture 3. The unitary similarity U(i, j)∗AU(i, j) affects only entries in rows
and columns i and j, so it leaves unchanged every main diagonal entry of
A except the entries in positions i and j, which it replaces with the average
1
2
(aii + ajj). For any k 6= i, j the triangle inequality ensures that

|akk −
1

2
(aii + ajj)| = |

1

2
(akk − aii) +

1

2
(akk − ajj)|

≤ 1

2
|aii − akk|+

1

2
|akk − ajj|

≤ 1

2
f(A) +

1

2
f(A) = f(A)

with equality only if the scalars akk−aii and akk−ajj both lies on the same ray
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in the complex plane and |akk−aii| = |akk−ajj|. These two conditions imply
that aii = ajj, so it follows that |akk − 1

2
(aii + ajj)| < f(A) for all k 6= i, j.

Thus, the unitary similarity we have just constructed reduces by one the
finitely many pairs of indices k, ` for which f(A) = |akk − a``|. Repeat the
construction, if necessary, to deal with any such remaining pairs and achieve
a unitary U (real if A is real) such that f(U∗AU) < f(A).

Finally, consider the compact set R(A) = {U∗AU : U ∈ Mn is unitary}
(Every entry of U∗AU is bounded by ||A||; ∀Bk ∈ R(A), k = 1, 2, ..., lim

k→∞
Bk =

lim
k→∞

U∗kAUk = U∗AU = B ∈ R(A), where the limits are taken entry-wisely,

so R(A) is closed). Since f is a continuous nonnegative-valued function on
R(A), it achieves its minimum value there, that is, there is some B ∈ R(A)
such that f(A) ≥ f(B) ≥ 0 for all A ∈ R(A). If f(B) > 0, we have seen
that there is a unitary U (real if A is real) such that f(B) > f(U∗BU). This
contradiction shows that f(B) = 0, so all the diagonal entries of B are equal.

Example 1.8 (Unitary similarity to an upper Hessenberg matrix). A matrix
B = [bij] ∈ Mn is said to be in upper Hessenberg form or to be an upper
Hessenberg matrix if bij = 0 for all i > j + 1:

b11 F
b21 b22

b32

. . .

. . .
. . .

0 bn−1,n bnn


Let A = [aij] ∈ Mn be given. The following construction shows that A is
unitarily similar to an upper Hessenberg matrix with nonnegative entries in
its first subdiagonal.

Let a1 be the first column of A, partitioned as aT1 = [a11 ξ
T ] with ξ ∈

Cn−1. Let U1 = In−1 if ξ = 0; otherwise, use Theorem 2.21 in Lecture 3 to
construct U1 = U(||ξ||2e1, e1) ∈ Mn−1, a unitary matrix that takes ξ into a
positive multiple of e1. Form the unitary matrix V1 = I1 ⊕ U1 and observe
that the first column of V1A is the vector [a11 ||ξ||2 0]T . Moreover,

B1 = V1AV
∗

1 =

 a11 F[
||ξ||2

0

]
A2

 , A2 ∈Mn−1,
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where B1 is also unitarily similar to A. Similarly, let a
(2)
1 be the first column

of A2, partitioned as a
(2)
1 = [a

(2)
11 ηT ] with η ∈ Cn−2. Let U2 = In−2 if η = 0;

otherwise, use Theorem 2.21 in Lecture 3 again to form U2 = U(||η||2e1, η) ∈
Mn−2. Let V2 = I2 ⊕ U2 and let B2 = V2B1V

∗
2 ; the first column of B1

is undisturbed, while the first column of A2 is taken to be a vector whose
entries below the second are all zero and whose second entry is nonnegative.

After n − 2 of these reductions, we obtain an upper Hessenberg matrix
Bn−2 that is unitarily similar to A and has nonnegative subdiagonal entries
except perhaps for the entry in position (n, n− 1); a final unitary similarity
via In−1 ⊕ [eiθ] may be necessary to rotate it to be nonnegative.

2 Unitary and real orthogonal triangulariza-
tions (Page 101-106, Page 31-32, 1.3.P33)

We have transformed a given matrix by unitary similarity into another matrix
with equal diagonal entries or an upper Hessenberg matrix with nonnegative
entries in its first subdiagonal. Now we are supposed to transform any square
matrix A via unitary similarity into a triangular matrix whose diagonal en-
tries are the eigenvalues of A, in any prescribed order. This triangularization
technique, though rather simple in its proof, brings about great influences
on other ramifications of matrix analysis, which we will discuss in detail in
subsequent lectures.

Theorem 2.1 (Schur form; Schur triangularization). Let A ∈ Mn have
eigenvalues λ1, ..., λn in any prescribed order and let x ∈ Cn be a unit vector
such that Ax = λ1x.

(a) There is a unitary U = [x u2 · · · un] ∈Mn such that U∗AU = T = [tij]
is upper triangular with diagonal entries tii = λi, i = 1, ..., n.

(b) If A ∈ Mn(R) has only real eigenvalues, then x may be chosen to be
real and there is a real orthogonal Q = [x q2 · · · qn] ∈Mn(R) such that
QTAQ = T = [tij] is upper triangular with diagonal entries tii = λi, i =
1, ..., n.

Proof. Let x be a normalized eigenvector of A associated with the eigenvalue
λ1, that is, x∗x = 1 and Ax = λ1x. Let U1 = [x u2 · · · un] be any unitary
matrix whose first column is x. Here we give two different constructions of
U1:
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• one may take U1 = U(x, e1) as in Theorem 2.21 of Lecture 3

• Write x = [x1 y
T ]T , where x1 ∈ C and y ∈ Cn−1. Choose θ ∈ R

such that eiθx1 ≥ 0 and define z = eiθx = [z1 ζ
T ]T , where z1 ∈ R is

nonnegative and ζ ∈ Cn−1. Consider the Hermitian matrix

Vx =

[
zi ζ∗

ζ −I + 1
1+z1

ζζ∗

]
.

U1 = e−iθVx is a unitary matrix whose first column is the given vector
x.

Then

U∗1AU1 = U∗1 [Ax Au2 · · · Aun] = U∗1 [λ1x Au2 · · · Aun]

=


x∗

u∗2
...
u∗n

 [λ1x Au2 · · · Aun]

=


λ1x

∗x x∗Au2 · · · x∗Aun
λ1u

∗
2x
... A1

λ1u
∗
nx

 =

[
λ1 F
0 A1

]

because the columns of U1 are orthonormal. The eigenvalues of the submatrix
A1 = [u∗iAuj]

n
i,j=2 ∈ Mn−1 are λ2, ..., λn. If n = 2, we have achieved the

desired unitary triangularization. If not, let ξ ∈ Cn−1 be a unit eigenvector
of A1 associated with λ2, and perform the preceding reduction on A1. If
U2 ∈Mn−1 is any unitary matrix whose first column is ξ, then we have seen
that

U∗2A1U2 =

[
λ2 F
0 A2

]
Let V2 = I1 ⊕ U2 and compute the unitary similarity

(U1V2)∗AU1V2 = V ∗2 U
∗
1AU1V2 =

λ1 F F
0 λ2 F
0 0 A2


Continue this reduction to produce unitary matrices Ui ∈Mn−i+1, i = 1, ..., n−
1 and unitary matrices Vi ∈ Mn and unitary matrices Vi = (Ii−1 ⊕ Ui) ∈
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Mn, i = 2, ..., n− 1. The matrix U = U1V2V3 · · ·Vn−1 is unitary and U∗AU is
upper triangular.

If all the eigenvalues of A ∈ Mn(R) are real, then all of the eigenvectors
and unitary matrices in the preceding algorithm can be chosen to be real.

Remark. Applying Theorem 2.1 to AT , we conclude that there is a unitary
matrix U ∈ Mn such that U∗ATU is upper triangular. Let V = Ū , which is
also unitary, and thus V ∗AV = UTAŪ = (U∗ATU)T is lower triangular.

Example 2.2. If the eigenvalues of A are reordered and the corresponding
upper triangularization in Theorem 2.1 is performed, the entries of T above
the main diagonal can be different. Consider

T1 =

1 1 4
0 2 2
0 0 3

 , T2 =

2 −1 3
√

2

0 1
√

2
0 0 3

 , U =
1√
2

1 1 0
1 −1 0

0 0
√

2


Then U is unitary and T2 = UT1U

∗.

Corollary 2.3 (Schur’s inequality; defect from normality). If A = [aij] ∈
Mn has eigenvalues λ1, ..., λn and is unitarily similar to an upper triangular
matrix T = [tij] ∈ Mn, the diagonal entries of T are the eigenvalues of A in
some order. Then

n∑
i=1

|λi|2 =
n∑

i,j=1

|aij|2 −
∑
i<j

|tij|2 ≤
n∑

i,j=1

|aij|2 = tr(AA∗) (3)

with equality if and only if T is diagonal.

Proof. By Theorem 2.1, there exists a unitary matrix U ∈ Mn such that
T1 = U∗AU is upper triangular with diagonal entries λ1, ..., λn. Since T is
unitarily similar to A, it is also unitarily similar to T1. Using the fact that
untarily similar matrices have the same characteristic polynomial, we con-
clude that the diagonal entries of T are λ1, ..., λn in some order.

Applying Theorem 1.3 to A and T , we know that
n∑
i=1

|λi|2 +
∑
i<j

|tij|2 =

n∑
i,j=1

|aij|2. Therefore,

n∑
i=1

|λi|2 =
n∑

i,j=1

|aij|2 −
∑
i<j

|tij|2 ≤
n∑

i,j=1

|aij|2 = tr(AA∗)

with equality if and only if tij = 0, 1 ≤ i < j ≤ n, that is, T is diagonal.
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Lemma 1.20 in Lecture 2 tells us that there is a common eigenvector for
every matrix in a commuting family. This result serves as the fundamental
building block for a useful extension of Theorem 2.1: A commuting family
of complex matrices can be reduced simultaneously to upper triangular form
by a single unitary similarity.

Theorem 2.4. Let F ⊆ Mn be a nonempty commuting family. There is a
unitary U ∈Mn such that U∗AU is upper triangular for every A ∈ F .

Proof. Return to the proof of Theorem 2.1. Exploiting Lemma 1.20 in Lec-
ture 2 at each step of the proof in which a choice of an eigenvector (and
unitary matrix) is made, choose a unit eigenvector that is common to every
A ∈ F and construct a unitary matrix that has this common eigenvector as
its first column; it deflates (via unitary similarity) every matrix in F in the
same way. Similarity preserves commutativity, and a partitioned multipli-

cation calculation reveals that, if two matrices of the form

[
A11 A12

0 A22

]
and[

B11 B12

0 B22

]
commute, then A22 and B22 commute also. We conclude that all

ingredients in the U of Theorem 2.1 may be chosen in the same way for all
members of a commuting family.

Remark. In Theorem 2.1 we may specify the main diagonal of T (that is,
we may specify in advance the order where the eigenvalues of A appear as
the deflation progresses), but Theorem 2.4 makes no such claim. At each
stage of the deflation, the common eigenvector used is associated with some
eigenvalue of each matrix in F , but we may not be able to specify which
one. We must take the eigenvalues as they come, according to the common
eigenvectors guaranteed by Lemma 1.20 in Lecture 2.

In Theorem 2.1, if a real matrix A has any non-real eigenvalues, there
is no hope of reducing it to upper triangular form T by a real similarity
because some main diagonal entries of T (eigenvalues of A) would be non-
real. However, we can make a compromise and reduce A to a real upper
quasitriangular form by a real orthogonal similarity; conjugate pairs of non-
real eigenvalues are associated with 2-by-2 blocks. To prove this result, we
first define the notion of upper quasitriangular matrices and exploit a lemma
for the real Schur form.
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Definition 2.5. A matrix A ∈Mn of the form

A =

A11 F F
. . . F

0 Akk


where Aii ∈ Mni

, i = 1, ..., k,
k∑
i=1

ni = n, and all blocks below the block diag-

onal are zero, is block upper triangular; it is strictly block triangular if, in
addition, all the diagonal blocks are zero blocks.

A block upper triangular matrix where all the diagonal blocks are 1-by-1
or 2-by-2 is said to be upper quasitriangular.

Lemma 2.6. Suppose that A ∈Mn(R) has a non-real eigenvalue λ and write
λ = a + ib with a, b ∈ R and b > 0. Let x be an eigenvector of A associated
with λ and write x = u+ iv with u, v ∈ Rn.

(a) λ̄, x̄ is an eigenpair of A.

(b) u and v are linearly independent.

(c) There exists a nonsingular matrix S ∈ Mn(R) such that S−1AS =[
B F
0 A1

]
, where A1 ∈ Mn−2(R) and B =

[
a b
−b a

]
. Thus, a real

square matrix with a non-real eigenvalue λ is real similar to a 2-by-
2 block upper triangular matrix whose upper left block reveals the real
and imaginary parts of λ.

(d) The multiplicity of each of λ and λ̄ as an eigenvalue of A1 is 1 less
than its multiplicity as an eigenvalue of A.

Proof. (a) Since A ∈ Mn(R), we take complex conjugate on both sides of
Ax = λx and obtain that Āx̄ = Ax̄ = λ̄x̄.
(b) x and x̄ are eigenvectors of A associated with different eigenvalues, since
λ 6= λ̄. By Lemma 1.11 in Lecture 2, x and x̄ are linearly independent.
Suppose that αu + βv = 0 with α, β ∈ R. Substitute u, v with x+x̄

2
, x−x̄

2i
,

respectively. Then we have α(x+x̄
2

) + β(x−x̄
2i

) = (α−iβ
2

)x + (α+iβ
2

)x̄ = 0, so
α− iβ = α+ iβ = 0. Therefore, α = β = 0 and u, v are linearly independent.
(c) Since u, v are linearly independent, we can choose any S1 = [s3 · · · sn]
such that {u, v, s3, ..., sn} is a basis for Rn; S = [u v S1] has linearly inde-
pendent columns, so it is nonsingular. We know that Au+ iAv = Ax = λx =

12
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(a + bi)(u + iv) = (au − bv) + i(bu + av). Equating the real and imaginary

parts of the identity shows that A[u v] = [u v]B, where B =

[
a b
−b a

]
. Thus,

by S−1[u v] =

[
I2

0

]
, we obtain that

S−1AS = S−1
[
A[u v] AS1

]
= S−1

[
[u v]B AS1

]
=

[
B F
0 A1

]
where A1 ∈Mn(R), since all matrices in the preceding identity are real.
(d) By Theorem 1.3 in Lecture 2, we know that similarity preserves the
characteristic polynomial, so pA(t) = pB(t)pA1(t) = (t− λ)(t− λ̄)pA1(t).

Theorem 2.7 (real Schur form). Let A ∈Mn(R) be given.

(a) There is a real nonsingular S ∈Mn(R) such that S−1AS is a real upper
quasitriangular matrix

A1 F
A2

. . .

0 Am

 , each Ai is 1-by-1 or 2-by-2 (4)

with the following properties: (i) its 1-by-1 diagonal blocks display the
real eigenvalues of A; (ii) each of its 2-by-2 diagonal blocks has a special
form that displays a conjugate pair of non-real eigenvalues of A:[

a b
−b a

]
, a, b ∈ R, b > 0, and a± ib are eigenvalues of A (5)

(iii) its diagonal blocks are completely determined by the eigenvalues of
A; they may appear in any prescribed order.

(b) There is a real orthogonal Q ∈ Mn(R) such that QTAQ is a real up-
per quasitriangular matrix with the following properties: (i) its 1-by-1
diagonal blocks display the real eigenvalues of A; (ii) each of its 2-by-
2 diagonal blocks has a conjugate pair of non-real eigenvalues (but no
special form); (iii) the ordering of its diagonal blocks may be prescribed
in the following sense: If the real eigenvalues and conjugate pairs of
non-real eigenvalues of A are listed in a prescribed order, then the real
eigenvalues and conjugate pairs of non-real eigenvalues of the respective
diagonal blocks A1, ..., Am of QTAQ are in the same order.

13
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Proof. (a) Given any real eigenpair, the proof of Theorem 2.1 shows how to
deflate A by a real orthogonal similarity; the deflation produces a real 1-by-1

diagonal block and a deflated matrix of the form

[
λ ∗
0 A1

]
. On the other

hand, given an eigenpair whose eigenvalue is not real, we apply the previous
Lemma 2.6 to deflate A via a real similarity; the deflation produces a real
2-by-2 diagonal block B of the special form (5) and a deflated matrix of

the form

[
B ∗
0 A1

]
. Only finitely many deflations are needed to construct a

nonsingular S such that S−1AS has the asserted upper quasitriangular form.
We can control the order in which the diagonal blocks appear by choosing
each deflation step, a particular eigenvalue and corresponding eigenvector.
(b) Suppose that an ordering of the real and conjugate non-real pairs of
eigenvalues of A has been given, and let S be a nonsingular real matrix such
that S−1AS has the form (5) with diagonal blocks in the prescribed order.
Use QR factorization (Theorem 2.23 in Lecture 3) to factor S as S = QR,
where Q is real orthogonal and R is real and upper triangular. Partition
R = [Rij] conformally to the form (4) and compute S−1AS = R−1QTAQR,
so

QTAQ = R


A1 F

A2

. . .

0 Am

R−1

=


R11A1R

−1
11 F

R22A2R
−1
22

. . .

0 RmmAmR
−1
mm


is upper quasitriangular, its 1-by-1 diagonal blocks are identical to those of
the form (4), and its 2-by-2 diagonal blocks are similar to the corresponding
blocks of the form (4).

As how we generalize Theorem 2.1 to a commuting family, there is also a
commuting families version of the preceding theorem: A commuting family
of real matrices may be reduced simultaneously to a common upper quasitri-
angular form by a single real or real orthogonal similarity. It is convenient to

14
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describe the partitioned structure of the form (4) by saying that it is parti-
tioned conformally to a given quasidiagonal matrix D = Jn1⊕· · ·⊕Jnm ∈Mn,
where Jk denotes the k-by-k all-ones matrix and each nj is either 1 or 2.

Theorem 2.8. Let F ⊆Mn(R) be a nonempty commuting family.

(a) There is a nonsingular S ∈ Mn(R) and a quasidiagonal D = Jn1 ⊕
· · · ⊕ Jnm ∈ Mn such that: (i) for each A ∈ F , S−1AS is a real upper
quasitriangular matrix of the form

A1(A) F
A2(A)

. . .

0 Am(A)

 (6)

that is partitioned conformally to D; (ii) if nj = 2, then for each A ∈ F
we have

Aj(A) =

[
aj(A) bj(A)
−bj(A) aj(A)

]
∈M2(R) (7)

and aj(A)±ibj(A) are eigenvalues of A; and (iii) for each j ∈ {1, ...,m}
such that nj = 2, there is some A ∈ F such that bj(A) 6= 0. If every
matrix in F has only real eigenvalues, then S−1AS is upper triangular
for every A ∈ F .

(b) There is a real orthogonal Q ∈Mn(R) and a quasidiagonal D = Jn1 ⊕
· · · ⊕ Jnm ∈ Mn such that (i) for each A ∈ F , QTAQ is a real upper
quasitriangular matrix of the form (6) that is partitioned conformally
to D, and (ii) for each j ∈ {1, ...,m} such that nj = 2, there is some
A ∈ F such that Aj(A) has a conjugate pair of non-real eigenvalues.
If every matrix in F has only real eigenvalues, then QTAQ is upper
triangular for every A ∈ F .

Proof. (a) Following the inductive pattern of the proof of Theorem 2.4, it
suffices to construct a nonsingular real matrix that deflates (via similarity)
each matrix in F in the same way. Use Lemma 1.2 in Lecture 2 to choose a
common unit eigenvector x ∈ Cn of every A ∈ F . Write x = u + iv, where
u, v ∈ Rn.
There are two possibilities, the first of which is (i) {u, v} is linearly dependent.
In this event, there is a real unit vector w ∈ Rn and real scalars α, β, not
both zero, such that u = αw and v = βw. Then x = (α + iβ)w and
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w = (α + iβ)−1x is a real unit eigenvector of every A ∈ F . Let Q be a
real orthogonal matrix whose first column is w and observe that for every

A ∈ F , QTAQ =

[
λ(A) ∗

0 ∗

]
, where λ(A) is a real eigenvalue of A. The

second possibility is (ii) {u, v} is linearly independent. In this event Lemma
2.6 shows how to construct a real nonsingular matrix S such that for every

A ∈ F , S−1AS =

[
A1(A) ∗

0 ∗

]
, where A1(A) has the form (7). If b1(A) 6= 0,

then a1(A) ± ib1(A) is a conjugate pair of non-real eigenvalues of A. If
b1(A) = 0, however, then a1(A) is a double real eigenvalue of A. If b1(A) = 0
for every A ∈ F (for example, if every matrix in F has only real eigenvalues),
then split the 2-by-2 block into two 1-by-1 blocks.
(b) Let S be a nonsingular real matrix that has the properties in (a), and
let S = QR be a QR factorization (Theorem 2.23 in Lecture 3). In the
same way as in the proof of Theorem 2.7, one shows that Q has the asserted
properties.

Remark. Just as in Theorem 2.4, we cannot control the order of appearance
of the eigenvalues corresponding to the diagonal blocks in the preceding theo-
rem; we have to take the eigenvalues as they come, according to the common
eigenvectors guaranteed by Lemma 1.20 in Lecture 2.

We have shown that any real matrix can be reduced to a real upper
quasitriangular form by a real orthogonal similarity. Now we seek to extend
this result to a larger set S = {A ∈ Mn : AĀ = ĀA}. Equivalently, this is a
set of matrices such that AĀ is real.

Corollary 2.9. Let A ∈ Mn and suppose that AĀ = ĀA. There is a real
orthogonal Q ∈Mn(R) and a quasidiagonal D = Jn1 ⊕ · · · ⊕ Jnm ∈Mn such
that QTAQ ∈ Mn is a complex upper quasitriangular matrix of the form
(6) that is partitioned conformally to D and has the following property: For
each j ∈ {1, ...,m} such that nj = 2, at least one of ReAj or ImAj has a
conjugate pair of non-real eigenvalues. If each of ReA and ImA has only
real eigenvalues, then QTAQ ∈Mn is upper triangular.

Proof. Write A = B+iC, where B and C are real. The hypothesis AĀ = ĀA
indicates that (B + iC)(B − iC) = (B − iC)(B + iC), that is, BC = CB. It
follows from Theorem 2.8 (b) that there exists a real orthogonal Q ∈Mn(R)
and a quasidiagonal D = Jn1 ⊕ · · · ⊕ Jnm ∈ Mn such that each of QTBQ
and QTCQ is a real upper quasitriangular matrix of the form (6) that is
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partitioned conformally to D. Moreover, for each j ∈ {1, ...,m} such that
nj = 2, at least one of Aj(B) or Aj(C) has a conjugate pair of non-real
eigenvalues. It follows that QTAQ = QT (B + iC)Q = QTBQ+ iQTCQ is a
complex upper quasitriangular matrix that is partitioned conformally to D.
If each of B and C has only real eigenvalues, then every nj = 1 and each of
QTBQ and QTCQ is upper triangular.
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