
Matrix Analysis (Lecture 2)

Yikun Zhang∗

April 12, 2018

Abstract

Eigenvalues, eigenvectors, and similarity serve as the main topic
of Chapter 1 of Horn’s book[1]. In the last lecture, we introduced the
origin of similar matrices, which are different basis representations of
a single linear transformation, and scrutinized the existence and cardi-
nality of eigenvalues given a matrix A ∈Mn. At that time, computing
the zeroes of its characteristic polynomial is a fundamental avenue to
uncover eigenvalues and calculate their corresponding algebraic multi-
plicities of A. In this lecture, we are supposed to discuss the properties
of similarity and diagonalizable matrices and their connections with
eigenvalues and eigenvectors in detail. Meanwhile, the concept of left
eigenvectors and geometric multiplicity will be unfolded and utilized
to determine the diagonalizability of a matrix.

1 Similarity (Page 57-69, Page 17, Page 21)

We know that a similarity transformation of a matrix in Mn corresponds
to representing its underlying linear transformation on Cn in another basis.
Thus, studying similarity can be thought of as studying properties that are
intrinsic to one linear transformation or the properties that are common to all
its basis representations. Let us first recall the definition of similar matrices.
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Definition 1.1. Let A,B ∈ Mn be given. B is said to be similar to A if
there exists a nonsingular S ∈Mn such that

B = S−1AS

The transformation A→ S−1AS is called a similarity transformation by the
similarity matrix S.
We say that B is permutation similar to A if there is a permutation matrix
P such that B = P TAP . The relation “B is similar to A” is sometimes
abbreviated to B ∼ A.

Remark. A square matrix P is a permutation matrix if exactly one entry
in each row and column is equal to 1 and all other entries are 0.

Observation 1.2. Similarity is an equivalence relation on Mn; that is, sim-
ilarity is reflexive, symmetric, and transitive.

Proof. (Reflexiveness): A = I−1AI, where I is the identity matrix in Mn.
(Symmetry): If B ∼ A, there exists a nonsingular matrix S such that
B = S−1AS. Thus, A = SBS−1 = (S−1)−1BS−1, showing that A ∼ B.
(Transitiveness): If B ∼ A and C ∼ B, then there exist nonsingular ma-
trices S1, S2 such that B = S−1

1 AS1, C = S−1
2 BS2. Therefore, we find that

C = S−1
2 BS2 = S−1

2 S−1
1 AS1S2 = (S1S2)−1A(S1S2), where S1S2 is still a

nonsingular matrix by computing its determinant. �
Like any equivalence relation, similarity partitions the set Mn into disjoint

equivalence classes. Within each dissimilarity equivalence class, matrices
share many important properties. Here we discuss some of them in detail.

Theorem 1.3. Let A,B ∈Mn. If B is similar to A, then A and B have the
same characteristic polynomial.

Proof. Compute

pB(t) = det(tI −B)

= det(tS−1S − S−1AS) = det(S−1(tI − A)S)

= detS−1 det(tI − A) detS = (detS)−1(detS) det(tI − A)

= det(tI − A) = pA(t)

Remark. Having the same eigenvalues is a necessary but not sufficient

condition for similarity. Consider A =

[
0 1
0 0

]
and B =

[
0 0
0 0

]
, which have
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the same eigenvalues but are not similar. This is because rankA = 1 while
rankB = 0. A necessary condition for similar matrices is that they have the
same rank.

Corollary 1.4. Let A,B ∈Mn and suppose that A is similar to B. Then

(a) A and B have the same eigenvalues.

(b) If B is a diagonal matrix, its main diagonal entries are the eigenvalues
of A.

(c) B = 0 (a diagonal matrix) if and only if A = 0.

(d) B = I (a diagonal matrix) if and only if A = I.

Proof. (a) and (b) follow from Theorem 1.3. (c,d) If A ∼ B, then A =
S−1BS,B = SAS−1, where S is a nonsingular matrix. Then A = 0⇔ B = 0
and A = I ⇔ B = I.

Example 1.5. Suppose that A,B ∈ Mn are similar and let q(t) be a given
polynomial. It turns out that q(A) and q(B) are similar. This is because
B = S−1AS, where S is nonsingular. Assume that q(t) = ant

n + an−1t
n−1 +

· · ·+ a1t+ a0. Then q(A) = anA
n + an−1A

n−1 + · · ·+ a1A+ a0I and

S−1q(A)S = S−1(anA
n + an−1A

n−1 + · · ·+ a1A+ a0I)S

= an(S−1AS)n + an−1(S−1AS)n−1 + · · ·+ a1(S−1AS) + a0I

= anB
n + an−1B

n−1 + · · ·+ a1B + a0I

= q(B).

In particular, we show that A+ αI and B + αI are similar for any c ∈ C by
choosing q(t) = t+ α.

Example 1.6. Let A, S ∈ Mn and suppose that S is nonsingular. Then we
conclude that Sk(S

−1AS) = Sk(A) for all k = 1, ..., n. (Recall that Definition

(3.9) in Lecture 1) states that Sk(A) =
∑

1≤i1<···<ik≤n

k∏
j=1

λij , where λ1, ..., λn are

eigenvalues of A.) This can be deduced from Theorem 1.4, which illustrates
that A and S−1AS have the same eigenvalues. Moreover, since Ek(A) =
Sk(A) (Theorem (3.10) in Lecture 1), we also have Ek(S

−1AS) = Ek(A) for
all k = 1, ..., n. Thus, all the principal minor sums (Definition (3.7)) are
similarity invariants, not just the determinant and trace.
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Since diagonal matrices are especially simple and have very nice proper-
ties, we would like to know which matrices are similar to diagonal matrices.

Definition 1.7. If A ∈ Mn is similar to diagonal matrix, then A is said to
be diagonalizable.

After defining diagonalizable matrices, we would like to figure out an
algorithm to achieve the diagonal form for a given diagonalizable matrix,
which allows for the following theorem.

Theorem 1.8. Let A ∈Mn be given.

(a) A is similar to a block matrix of the form[
Λ C
0 D

]
, Λ = diag(λ1, ..., λk), D ∈Mn−k, 1 ≤ k < n, (1)

where λ1, ..., λk are eigenvalues of A if and only if there are k linearly
independent vectors in Cn, each of which is an eigenvector of A.

(b) The matrix A is diagonalizable if and only if there are n linearly inde-
pendent vectors, each of which is an eigenvector of A.

(c) If x(1), ..., x(n) are linearly independent eigenvectors of A and if S =
[x(1) · · · x(n)], then S−1AS is a diagonal matrix, whose diagonal entries
are all of the corresponding eigenvalues of A.

Proof. (a) Suppose that k < n, the n-vectors x(1), ..., x(k) are linearly inde-
pendent, and Ax(i) = λix

(i) for each i = 1, ..., k. Let Λ = diag(λ1, ..., λk),
let S1 = [x(1) · · · x(n)], and choose any S2 ∈ Mn,n−k such that S = [S1 S2] is
nonsingular. Compute

S−1AS = S−1[Ax(1) · · · Ax(k) AS2] = S−1[λ1x
(1) · · · λkx(k) AS2]

= [λ1S
−1x(1) · · · λkS−1x(k) S−1AS2] = [λ1e1 · · · λkek S−1AS2]

=

[
Λ C
0 D

]
, Λ = diag(λ1, ..., λk),

[
C
D

]
= S−1AS2.

The assertion about the eigenvalues follow from an extension of the charac-
teristic polynomial: pA(t) = pΛ(t)pD(t) if k < n.

Conversely, if S is nonsingular, S−1AS =

[
Λ C
0 D

]
, and we partition S =

[S1 S2] with S1 ∈Mn,k, then S1 has linearly independent columns and

[AS1 AS2] = AS = S

[
Λ C
0 D

]
= [S1Λ S1C + S2D].
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Thus, AS1 = S1Λ, so each column of S1 is an eigenvector of A.
(b,c) If k = n and we have a basis {x(1), ..., x(n)} of Cn such that Ax(i) = λix

(i)

for each i = 1, ..., n, let Λ = diag(λ1, ..., λn) and let S = [x(1) · · · x(n)], which
is nonsingular. Our previous argument shows that S−1AS = Λ. Conversely,
if S is nonsingular and S−1AS = Λ, then AS = SΛ, so each column of S is
an eigenvector of A. In addition, pA(t) = pΛ(t) when k = n shows that all
the diagonal entries of Λ are corresponding eigenvalues.

Remark. Theorem 1.8 furnishes us a plausible but somehow inefficient ap-
proach to diagonalize a diagonalizable matrix: align n linearly independent
eigenvectors of A ∈ Mn by columns to construct the similarity matrix S.
However, except for some small matrices, this is not a practical computa-
tional procedure. In practice, there are miscellaneous algorithms aiming at
different types of matrices. Here we introduce a numerical method to comput-
ing the greatest eigenvalue and corresponding eigenvector, power iteration,
which is commonly used when A is sparse.

Example 1.9 (Power Iteration Algorithm[2]). Assume that A has an eigen-
value that is strictly greater in magnitude than its other eigenvalues and the
initial vector b0 has a nonzero component in the direction of an eigenvector
associated with the dominant eigenvalue. Then the recursive sequence

bk+1 =
Abk
||Abk||

converges to an eigenvector associated with the dominant eigenvalue. To
obtain the dominant eigenvalue (spectral radius), we resort to the Rayleigh
quotient

ρ(A) =
bTkAbk
bTk bk

=
bTk+1bk

bTk bk
.

The Matlab code for the power iterative algorithm can be found on the course
website. In two-dimensional case[3], we randomly simulate n = 200 points
within the square {(x, y) : |x| ≤ 1, |y| ≤ 1} and apply a linear transformation[

2 −1
−1 2

]
to each of them iteratively. The eigenvalues of A are λ1 = 1, λ2 = 3

and the associated eigenvectors are (1, 1)T , (1,−1)T , respectively. It turns out
that the resulting points converge to the direction of the principal eigenvector
(1,−1)T as the number of iterative times increases. In a similar fashion, we
can determine the principal eigenvector of A−1. See Figure 1 for details.

Here we briefly sketch the proof of the correctness of the algorithm.
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(b) Iterations with A−1

Figure 1: Visualization of Original Simulated Points (red asterisk points)
and the Resulting Points Operated by A (blue dotted points).

Proof. Recall that a matrix A ∈ Mn is similar to its Jordan normal form,
namely, a block diagonal matrix

J =

J1

. . .

Jp


where each block Ji is a square matrix of the form

Ji =


λi 1

λi
. . .
. . . 1

λi


and λi ∈ σ(A), i = 1, ..., p. Thus, A can be decomposed into A = V JV −1,
where V is nonsingular and the first column of V is an eigenvalue of A corre-
sponding to the dominant eigenvalue, says λ1. Since the dominant eigenvalue
of A is unique, the first Jordan block of J is the 1-by-1 matrix [λ1]. Since V
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is nonsingular, we write the starting vector b0 as a linear combination of the
columns of V , i.e.,

b0 = c1v1 + c2v2 + · · ·+ cnvn.

By assumption, b0 has a nonzero component in the direction of an eigenvector
associated with the dominant eigenvalue, so c1 6= 0. The recurrence relation
for bk+1 can be rewritten as

bk+1 =
Abk
||Abk||

=
Ak+1b0

||Ak+1b0||

=
(V JV −1)k+1b0

||(V JV −1)k+1b0||
=

V Jk+1V −1b0

||V Jk+1V −1b0||

=
V Jk+1V −1(c1v1 + c2v2 + · · ·+ cnvn)

||V Jk+1V −1(c1v1 + c2v2 + · · ·+ cnvn)||

=
V Jk+1(c1e1 + c2e2 + · · ·+ cnen)

||V Jk+1(c1e1 + c2e2 + · · ·+ cnen)||

=
( λ1

|λ1|

)k+1

· c1

|c1|
·
v1 + 1

c1
V ( 1

λ1
J)k+1(c2e2 + · · ·+ cnen)

||v1 + 1
c1
V ( 1

λ1
J)k+1(c2e2 + · · ·+ cnen)||

The expression above simplifies as k →∞, since

( 1

λ1

J
)k+1

=


[1] (

1
λ1
J2

)k+1

. . . (
1
λ1
Jm

)k+1

→


1
0

. . .

0

 ,

where we use the fact that the eigenvalues of 1
λ1
Ji are less than 1 in magni-

tude, so
(

1
λ1
Ji

)k+1

→ 0, i = 1, ..., p, as k →∞.

It follows that as k →∞
1

c1

V
( 1

λ1

J
)k+1

(c2e2 + · · ·+ cnen)→ 0.

Therefore, bk+1 can be written in a form that emphasizes its relationship with
v1 when k is large, i.e.,

bk+1 =
( λ1

|λ1|

)k+1 c1

|c1|
·
v1 + 1

c1
V ( 1

λ1
J)k+1(c2e2 + · · ·+ cnen)

||v1 + 1
c1
V ( 1

λ1
J)k+1(c2e2 + · · ·+ cnen)||

= eiφk+1
c1

|c1|
v1

||v1||
+rk+1,
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where eiφk+1 =
(
λ1
|λ1|

)k+1

and ||rk+1|| → 0 as k →∞.

The sequence {bk} is bounded, so it contains a convergent subsequence. Note
that the eigenvector corresponding to the dominant eigenvalue is only unique
up to a scalar, so although the sequence {bk} may not converge, bk is nearly
an eigenvector of A for large k.

In particular, if A is diagonalizable, it can be decomposed into A =
V ΛV −1, where Λ is diagonal and the columns of V , v1, ..., vn, are linearly
independent eigenvectors of A. Suppose that λ1 is the dominant eigenvalue.
The initial vector b0 can be written into

b0 = c1v1 + c2v2 + · · ·+ cmvm.

(If b0 is chosen randomly with uniform probability, then c 6= 0 with proba-
bility 1.) Now,

Akb0 = c1A
kv1 + c2A

kv2 + · · ·+ cnA
kvn

= c1λ
k
1v1 + c2λ

k
2v2 + · · ·+ cmλ

k
nvn

= c1λ
k
1

(
v1 +

c2

c1

(λ2

λ1

)k
v2 + · · ·+ cn

c1

(λn
λ1

)k
vn

)
→ c1λ

k
1v1,

as k →∞. Hence bk converges to (a multiple of) the eigenvector v1.

Remark. (a) The convergent rate of the algorithm is determined by the
ratio

∣∣λ2
λ1

∣∣, where λ2 denotes the second dominant eigenvalue;
(b) If the set of all linearly independent eigenvectors associated with the

dominant eigenvalue has the cardinality more than 1, then the resulting vec-
tor of the power iteration algorithm would be the linear combination of these
eigenvectors in the list. Equivalently, if we randomly generate many points
(or vectors) within the vector space, the points after iterations will spread
out the space spanned by the eigenvectors corresponding to the dominant
eigenvalues.

A previous Example (1.5) illuminates that the polynomial evaluation on
matrices preserves similarity. Likewise, we can show that it also preserves
diagonalizability.

8



Matrix Analysis and its Applications, Spring 2018 (L2) Yikun Zhang

Example 1.10. Let q(t) be a given polynomial. If A is diagonalizable,
then there exists a nonsingular matrix S such that D = S−1AS is diagonal.
Assume q(t) = ant

n + · · ·+ a1t+ a0. Then

S−1q(A)S = S−1(anA
n + an−1A

n−1 + · · ·+ a1A+ a0I)S

= an(S−1AS)n + an−1(S−1AS)n−1 + · · ·+ a1(S−1AS) + a0I

= anD
n + an−1D

n−1 + · · ·+ a1D + a0I,

which is diagonal. However, the converse does not hold. Consider

[
0 1
0 0

]
and

q(t) = t2 +1. Then q(A) = I2 is diagonal, while A is not diagonalizable, since
there is only one linearly independent eigenvector (1, 0)T associated with its
unique eigenvalue.

Diagonalizability is assured if all the eigenvalues are distinct. The basis
for this fact is the following important lemma about some of the eigenvalues.

Lemma 1.11. Let λ1, ..., λk be k ≥ 2 distinct eigenvalues of A ∈ Mn (that
is, λi 6= λj if i 6= j and 1 ≤ i, j ≤ k), and suppose that x(i) is an eigenvector
associated with λi for each i = 1, ..., k. Then the vectors x(1), ..., x(k) are
linearly independent.

Proof. Suppose that α1x
(1) + α2x

(2) + · · ·+ αkx
(k) = 0, where α1, ..., αk ∈ C.

Let B1 = (A− λ2I)(A− λ3I) · · · (A− λkI) (the product omits A− λ1I).
Since x(i) is an eigenvector associated with the eigenvalue λi for each i =
1, ..., n, we have B1x

(i) = (λi − λ2)(λi − λ3) · · · (λi − λk)x(i), which is zero if
2 ≤ i ≤ k (one of the factors is zero) and nonzero if i = 1 (no factor is zero
and x(1) ≤ 0). Thus,

0 = B1(α1x
(1) + α2x

(2) + · · ·+ αkx
(k))

= α1B1x
(1) + α2B1x

(2) + · · ·+ αkB1x
(k)

= α1B1x
(1) + 0 + · · ·+ 0 = α1B1x

(1),

which ensures that α1 = 0 since B1x
(1) 6= 0. Repeat this argument for each

j = 2, ..., k, defining Bj by a product like that defining B1, but in which the
factor A−λjI is omitted. For each j we find that αj = 0, so α1 = · · · = αk = 0
and hence x(1), ..., x(k) are linearly independent.

Theorem 1.12. If A ∈Mn has n distinct eigenvalues, then A is diagonaliz-
able.
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Proof. Let x(i) be an eigenvector associated with the eigenvalue λi for each
i = 1, ..., n. Since all the eigenvalues are distinct, Lemma 1.11 ensures that
the vectors x(1), ..., x(n) are linearly independent. Theorem 1.8 then ensures
that A is diagonalizable.

Remark. Having distinct eigenvalues is sufficient for diagonalizability, but
certainly, it is not necessary. The simplest counterexample is the identity
matrix In. Also, in Lecture 1, Example 2.3 shows that Jn whose entries are
all equal to 1 has n linearly independent eigenvectors but σ(Jn) = {n, 0}.

In general, matrices A,B ∈Mn do not commute, but if A and B are both
diagonal, they always commute. The latter assumption can be generalized
to a concept called simultaneous diagonalizability.

Definition 1.13. Two matrices A,B ∈ Mn are said to be simultaneously
diagonalizable if there is a single nonsingular S ∈Mn such that S−1AS and
S−1BS are both diagonal.

Proposition 1.14. If A,B ∈ Mn are simultaneously diagonalizable, then
they commute.

Proof. By definition, there exists a nonsingular matrix S such that D1 =
S−1AS,D2 = S−1BS, where D1, D2 are diagonal. Then

AB = (SD1S
−1)(SD2S

−1) = SD1D2S
−1

= SD2D1S
−1 = (SD2S

−1)(SD1S
−1)

= BA,

where we use the fact that diagonal matrices always commute.

Surprisingly, the converse of Proposition 1.14 is also true and the proof
requires the following lemma.

Lemma 1.15. Let B1 ∈ Mn1 , ..., Bd ∈ Mnd
be given and let B be the direct

sum

B =

B1 0
. . .

0 Bd

 = B1 ⊕ · · · ⊕Bd

Then B is diagonalizable if and only if each of B1, ..., Bd is diagonalizable.
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Proof. (⇐) If for each i = 1, ..., d there is a nonsingular Si ∈ Mni
such that

S−1
i BiSi is diagonal, and if we define S = S1⊕· · ·⊕Sd, then one checks that
S−1BS is diagonal.
(⇒) We proceed by induction. There is nothing to prove for d = 1. Suppose
that d ≥ 2 and that the assertion has been established for direct sums with
d− 1 or fewer direct summands. Let C = B1⊕ · · ·⊕Bd−1, n = n1 + · · ·+nd,
and m = nd. Let S ∈Mn+m be nonsingular and such that

S−1BS = S−1(C ⊕Bd)S = Λ = diag(λ1, λ2, ..., λn+m).

Rewrite this identity as BS = SΛ. Partition S = [s1 s2 · · · sn+m] with

si =

[
ξi
ηi

]
∈ Cm+n, ξi ∈ Cn, ηi ∈ Cm, i = 1, 2, ..., n+m

Then Bsi = λisi implies that Cξi = λiξi and Bdηi = λiηi for i = 1, 2, ..., n+m.
The row rank of [ξi · · · ξn+m] ∈ Mn,n+m is n because this matrix comprises
the first n rows of the nonsingular matrix S. Thus, its column rank is also n,
so the list ξ1, ..., ξn+m contains a linearly independent list of n vectors, each
of which is an eigenvector of C. Theorem 1.8 ensures that C is diagonalizable
and the induction hypothesis ensures that its direct summands B1, ..., Bd−1

are all diagonalizable. The row rank of [η1 · · · ηn+m] ∈ Mm,n+m is m, so the
list η1, ..., ηn+m contains a linearly independent list of m vectors; Theorem
1.8 enables that Bd is diagonalizable as well.

Now we are prepared to prove the converse of Proposition 1.14 and sum-
marize both directions into the following theorem.

Theorem 1.16. Let A,B ∈Mn be diagonalizable. Then A and B commute
if and only if they are simultaneously diagonalizable.

Proof. (⇐) It has been proved in Proposition 1.14.
(⇒) Assume that A and B commute. We perform a similarity transformation
S on both A and B that diagonalizes A (but not necessarily B) and groups
together any repeated eigenvalues of A. Denote S−1AS and S−1BS by Ã and
B̃, respectively. If µ1, ..., µd are the distinct eigenvalues of A and n1, ..., nd
are their respective multiplicities, then we may assume that

Ã =


µ1In1 0

µ2In2

. . .

0 µdInd

 , µi 6= µj if i 6= j (2)

11



Matrix Analysis and its Applications, Spring 2018 (L2) Yikun Zhang

Since AB = BA,

ÃB̃ = (S−1AS)(S−1BS) = S−1ABS = S−1BAS = (S−1BS)(S−1AS) = B̃Ã.

Thus, partitioning B̃ conformally to Ã, we obtain that µiBij = Bijµj for
each i, j = 1, ..., d. This equality holds if and only if Bij = 0 whenever i 6= j,
since µi 6= µj. It shows that

B̃ =

B1 0
. . .

0 Bd

 , each Bi ∈Mni
(3)

is a block diagonal conformal to A. Since B is diagonalizable, B̃ is also
diagonalizable and Lemma 1.15 ensures that each Bi is diagonalizable. Let
Ti ∈ Mni

be nonsingular and such that T−1
i BiTi is diagonal for each i =

1, ..., d; let

T =


T1 0

T2

. . .

0 Td

 (4)

Then T−1
i µiIni

Ti = µiIni
, so T−1ÃT = Ã and T−1B̃T are both diagonal.

Therefore, ST is a similarity matrix that can diagonalize both A and B.

Remark. The two matrix partitions are said to be conformal if A ∈Mm,n(F)
and B ∈ Mn,p(F) are partitioned so that the two partitions of {1, ..., n} co-
incide.

We want to have a version of Theorem 1.16 involving arbitrarily many
commuting diagonalizable matrices. Central to our investigation is the notion
of an invariant subspace and the companion notion of a block triangular
matrix.

Definition 1.17. (a) A family F ⊆Mn of matrices is a nonempty finite or
infinite set of matrices; a commuting family is a family of matrices in which
every pair of matrices commutes.
(b) For a given A ∈ Mn, a subspace W ⊆ Cn is A-invariant if Aw ∈ W for
every w ∈ W . (A subspace W ⊆ Cn is trivial if either W = {0} or W = Cn;
otherwise, it is nontrivial.)
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(c) For a given family F ⊆ Mn, a subspace W ⊆ Cn is F -invariant if W is
A-invariant for each A ∈ F .
(d) A given family F ⊆Mn is reducible if some nontrivial subspace of Cn is
F -invariant; otherwise, F is irreducible.

Example 1.18. For A ∈ Mn, each nonzero element of a one-dimensional
A-invariant subspace of Cn is an eigenvector of A. This is because we may
assume that the subspace W is spanned by a nonzero vector x1, i.e., W =
span({x1}). Then for each x ∈ W,x 6= 0, we have x = c1x1, where c1 ∈ C∗.
Since W is A-invariant, there exists an c2 ∈ C such that Ax = c2x =
c2
c1

(c1x1) = x2
x1
x, yielding that x is indeed an eigenvector of A.

Invariant subspaces and block triangular matrices are two sides of the
same valuable coin: The former is the linear algebra side, while the latter is
the matrix analysis side. We now exploit the connection between invariant
subspaces and triangular block matrices.

Proposition 1.19. Suppose that n ≥ 2. A given matrix A ∈ Mn is similar
to a block matrix of the form[

B C
0 D

]
, B ∈Mk, 1 ≤ k ≤ n− 1 (5)

if and only if some nontrivial subspace of Cn is A-invariant. Moreover, if
W ⊆ Cn is a nonzero A-invariant subspace, then some vector in W is an
eigenvector of A. A given family F ⊆ Mn is reducible if and only if there is
some k ∈ {1, ..., n− 1} and a nonsingular S ∈Mn such that S−1AS has the
form (5) for every A ∈ F .

Proof. Let A ∈Mn with n ≥ 2 and suppose that W ⊆ Cn is a k-dimensional
subspace with 1 ≥ k < n. Choose a basis s1, ..., sk of W and let S1 =
[s1 · · · sn] ∈ Mn,k. Choose any sk+1, ..., sn such that s1, ..., sn is a basis for
Cn, let S2 = [sk+1 · · · sn] ∈ Mn,n−k, and let S = [S1 S2]; S has linearly
independent columns, so it is nonsingular.
(⇐) If W is A-invariant, then Asj ∈ W for each j = 1, ..., k, so each Asj is a
linear combination of s1, ..., sk, that is, AS1 = S1B for some B ∈Mk. Thus,
AS = [AS1 AS2] = [S1B AS2] and hence

S−1AS = [S−1S1B S−1AS2] =

[[
Ik
0

]
B S−1AS2

]
=

[
B C
0 D

]
, B ∈Mk, 1 ≤ k ≤ n− 1

(6)

13
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But we can say a little more: We know that B ∈ Mk has an eigenvalue,
so suppose that Bξ = λξ for some scalar λ, and a nonzero ξ ∈ Ck. Then
0 6= S1ξ ∈ W (rankS1 = k and S1ξ is a linear combination of s1, ..., sk) and
A(S1ξ) = (AS1)ξ = S1Bξ = λ(S1ξ), which means that A has an eigenvector
in W .
(⇒) If S = [S1 S2] ∈ Mn is nonsingular, S1 ∈ Mn,k, and S−1AS has the
block triangular form (5), then

AS1 = AS

[
Ik
0

]
= S

[
B C
0 D

] [
Ik
0

]
=
[
S1 S2

] [B
0

]
= S1B,

so the (k-dimensional) span of the columns of S1 is A-invariant.

Remark. Proposition 1.19 is somehow similar to Theorem 1.8, except that
now B in the block matrix form (5) is no longer diagonal in that we are only
given some nontrivial A-invariant subspace of Cn.

Now we digress to talk about a lemma that is at the heart of many
subsequent results.

Lemma 1.20. Let F ⊂ Mn be a commuting family. Then some nonzero
vector in Cn is an eigenvector of every A ∈ F .

Proof. There always exists a nonzero F -invariant subspace, namely, Cn. Let
m = min{dimV : V is a nonzero F -invariant subspace of Cn} and let W be
any given F -invariant subspace such that dimW = m. Let any A ∈ F be
given.
Since W is F -invariant, it is also A-invariant, so Proposition 1.19 ensures
that there is some nonzero x0 ∈ W and some λ ∈ Cn such that Ax0 = λx0.
Consider the subspace WA,λ = {x ∈ W : Ax = λx}. Then x0 ∈ WA,λ,
so WA,λ is a nonzero subspace of W . For any B ∈ F and any x ∈ WA,λ,
F -invariance of W ensures that Bx ∈ W . Using commutativity of F , we
compute

A(Bx) = (AB)x = (BA)x = B(Ax) = B(λx) = λ(Bx),

which shows that Bx ∈ WA,λ. Thus, WA,λ is F -invariant and nonzero, so
dimWA,λ ≥ m. But WA,λ ⊆ W , so dimWA,λ ≤ m and hence W = WA,λ.
What we have shown is that for each A ∈ F , there is some scalar λA such
that Ax = λAx for all x ∈ W , so every nonzero vector in W is an eigenvector
of every matrix in F .

14
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Remark. Indeed, the nonzero F -invariant subspace W in the preceding
proof has dimension 1, i.e., m = dimW = 1. This is because for any x ∈
W,x 6= 0, for any A ∈ F , there exists a scalar λA ∈ C such that Ax = λAx ∈
span({x}), yielding that span({x}) is also an F -invariant subspace. By the
minimality of W , we have dimW ≤ dim span{x}. On the other hand, since
x ∈ W , we also find that span({x}) ⊂ W . Hence dimW = dim span({x}) =
1.

Example 1.21. Suppose that F ⊂ Mn is a commuting family. Then by
Lemma 1.20, there exists a nonzero vector x ∈ W such that it is an eigenvec-
tor of every A ∈ F . If we choose any x2, ..., xn such that S = [x x2 · · · xn] ∈
Mn is nonsingular, then for every A ∈ F

S−1AS = S−1
[
λx Ax2 · · · Axn

]
=

[
λ B
0 C

]
,

which is the block triangular form (5) with k = 1.

Lemma 1.20 concerns commuting families of arbitrary nonzero cardinal-
ity. Our next result shows that Theorem 1.16 can be extended to arbitrary
commuting families of diagonalizable matrices.

Definition 1.22. A family F ⊂ Mn is said to be simultaneously diagonal-
izable if there is a single nonsingular S ∈ Mn such that S−1AS is diagonal
for every A ∈ F .

Theorem 1.23. Let F ⊂ Mn be a family of diagonalizable matrices. Then
F is a commuting family if and only if it is a simultaneously diagonalizable
family.
In particular, for any given A0 ∈ F and for any given ordering λ1, ..., λn of
the eigenvalues of A0, there is a nonsingular S ∈ Mn such that S−1A0S =
diag(λ1, ..., λn) and S−1BS is diagonal for every B ∈ F .

Proof. (⇐) If F is simultaneously diagonalizable, then it is a commuting
family by Proposition 1.14.
(⇒) We prove it by induction on n. If n = 1, there is nothing to prove, since
matrices are just scalars and every family is both commuting and diagonal.
Suppose that n ≥ 2 and that, for each k = 1, 2, ..., n − 1, any commuting
family of diagonalizable matrices in Mk is simultaneously diagonalizable. If
every matrix in F is a scalar matrix, namely, αI, α ∈ C, there is nothing to

15
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prove, since scalar matrices are already diagonal and we simply take S = I.
So, we may assume that A ∈ F is a given diagonalizable matrix in Mn with
distinct eigenvalues λ1, ..., λk and k ≥ 2, that BA = AB for every B ∈ F ,
and that each B ∈ F is diagonalizable. Using the argument in Theorem
1.16, we reduce to the case in which A has the form (2)

A =


λ1In1 0

λ2In2

. . .

0 λkInk

 , λi 6= λj if i 6= j

Since every B ∈ F commutes with A, each B ∈ F has the form (3)

B =

B1 0
. . .

0 Bk

 , each Bi ∈Mni

as in Theorem 1.16. Let B, B̂ ∈ F , so B = B1 ⊕ · · · ⊕ Bk and B̂ = B̂1 ⊕
· · · ⊕ B̂k, in which each of Bi, B̂i has the same size and that size is at most
n − 1. By Lemma 1.15, commutativity and diagonalizability of B and B̂
imply commutativity and diagonalizability of Bi and B̂i for each i = 1, ..., d.
By the induction hypothesis, there are k similarity matrices T1, T2, ..., Tk of
appropriate size, each of which diagonalizes the corresponding block of every
matrix in F . Then the direct sum T1⊕T2⊕· · ·⊕Tk diagonalizes every matrix
in F .

We have shown that there is a nonsingular T ∈ Mn such that T−1BT is
diagonal for every B ∈ F . Then for any given ordering λ1, ..., λk, T

−1A0T =
Pdiag(λ1, ..., λn)P T for some permutation matrix P ,
P T (T−1A0T )P = (TP )−1A0(TP ) = diag(λ1, ..., λn), and (TP )−1B(TP ) =
P T (T−1BT )P is diagonal for every B ∈ F .

Although AB and BA need not be the same (and need not be the same
size even when both products are defined, as A ∈ Mm,n, B ∈ Mn,m and
m 6= n), their eigenvalues are as much the same as possible. Indeed, if A and
B are both square, then AB and BA have exactly the same eigenvalues.

Theorem 1.24. Suppose that A ∈ Mm,n and B ∈ Mn,m with m ≤ n. Then
the n eigenvalues of BA are the m eigenvalues of AB together with n −m
zeroes; that is, pBA(t) = tn−mpAB(t). If m = n and at least one of A or B is
nonsingular, then AB and BA are similar.
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Proof. A computation reveals that[
Im −A
0 In

] [
Im A
0 In

]
=

[
Im 0
0 In

]
= Im+n,

[
Im −A
0 In

] [
AB 0
B 0n

] [
Im A
0 In

]
=

[
0m 0
B BA

]
.

Thus, C1 =

[
AB 0
B 0n

]
and C2 =

[
0m 0
B BA

]
are similar. The eigenvalues

of C1 are the eigenvalues of AB together with n zeroes. The eigenvalues of
C2 are the eigenvalues of BA together with m zeroes. Since the eigenvalues
of C1 and C2 are the same, the first assertion of the theorem follows. The
final assertion follows from the observation that AB = A(AB)A−1 if A is
nonsingular and m = n.

Theorem 1.24 has many applications, several of which emerge in the fol-
lowing lectures. Here we discuss two of them.

Example 1.25 (Eigenvalues of a low-rank matrix). Suppose that A ∈Mn is
factored as A = XY T , where X, Y ∈ Mn,r and r < n. Then the eigenvalues
of A are the same as those of the matrix Y TX ∈ Mr,r, together with n − r
zeroes. For example, consider the all-ones matrix Jn = eeT (Example 2.3 in
Lecture 1). Its eigenvalues are the eigenvalue of the 1-by-1 matrix eT e = [n],
namely, n, together with n−1 zeroes. In fact,the eigenvalues of any matrix of
the form A = xyT with x, y ∈ Cn (rankA is at most 1) are yTx, together with
n − 1 zeroes. The eigenvalues of any matrix of the form A = xyT + zwT =
[x z][y w]T with x, y, z, w ∈ Cn (rankA is at most 2) are the two eigenvalues

of [y w]T [x z] =

[
yTx yT z
wTx wT z

]
∈M2, together with n− 2 zeroes.

In the last lecture, we apply Schur complements of a 2-by-2 block matrix
to deduce the Cauchy’s formula for the determinant of a rank-one pertur-
bation, which is also called Cauchy’s determinant identity. Here we utilize
Theorem 1.24 to yield a more concise derivation.

Example 1.26 (Cauchy’s determinant identity). Let a nonsingular A ∈Mn

17
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and x, y ∈ Cn be given. Denote the ith eigenvalue of A by λi(A). Then

det(A+ xyT ) = (detA)(det(I + A−1xyT ))

= (detA)
n∏
i=1

λi(I + A−1xyT )

= (detA)
n∏
i=1

(1 + λi(A
−1xyT )) (use Observation 2.10 in Lecture 1)

= (detA)(1 + yTA−1x) (use Example 1.25)

= detA+ yT ((detA)A−1)x = detA+ yT (adjA)x.

Cauchy’s identity, det(A+xyT ) = detA+yT (adjA)x, is valid for any A ∈Mn

by Theorem 3.11 in Lecture 1 and continuity (each entry of adjA and detA
are multinomials in the entries of A).

If A ∈Mn is diagonalizable and A = SΛS−1, then aS also diagonalizes A
for any a 6= 0. Thus, a diagonalizing similarity is never unique. Nevertheless,
every similarity of A to a particular diagonal matrix can be obtained from
just one given similarity.

Theorem 1.27. Suppose that A ∈ Mn is diagonalizable, let µ1, ..., µd be its
distinct eigenvalues with respective multiplicities n1, ..., nd, let S, T ∈ Mn be
nonsingular, and suppose that A = SΛS−1, where Λ is a diagonal matrix of
the form (2). Then

(a) A = TΛT−1 if and only if T = S(R1⊕· · ·⊕Rd) in which each Ri ∈Mni

is nonsingular.

(b) If S = [S1 · · · Sd] and T = [T1 · · · Td] are partitioned conformally to
Λ, then A = SΛS−1 = TΛT−1 if and only if for each i = 1, ..., d, the
column space of Si is the same as the column space of Ti.

(c) If A has n distinct eigenvalues and S = [s1 · · · sn] and T = [t1 · · · tn]
are partitioned according to their columns, then A = SΛS−1 = TΛT−1

if and only if there is a nonsingular diagonal matrix R = diag(r1, ..., rn)
such that T = SR if and only if, for each i = 1, ..., n, the column si is
a nonzero scalar multiple of the corresponding column ti.

Proof. (a) We have SΛS−1 = TΛT−1 if and only if (S−1T )Λ = Λ(S−1T ) if
and only if S−1T is block diagonal conformal to Λ, that is, if and only if
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S−1T = R1⊕ · · · ⊕Rd and each Ri ∈Mni
is nonsingular. (See the argument

in Theorem 1.16)
(b) Observe that Ti = SiRi, i = 1, ..., d and Ri’s are nonsingular by (a). This
indicates that Ti is in the column space of Si and alternatively, Si is in the
column space of Ti, since Si = TiR

−1
i for each i = 1, ..., d. The converse

follows from (a).
The assertion (c) is a special case of (a) and (b).

Up to now, our discussions of similarity focus on matrices over the com-
plex numbers C. If, for instance, real matrices are similar via a complex
matrix, are they similar via a real matrix? Is there a real version of Theo-
rem 1.23 for commuting real matrices? The following lemma is the key to
answering such questions.

Lemma 1.28. Let S ∈Mn be nonsingular and let S = C+iD, where C,D ∈
Mn(R). There is a real number τ such that T = C + τD is nonsingular.

Proof. If C is nonsingular, take τ = 0. If C is singular, consider the polyno-
mial p(t) = det(C + tD), which is not a constant (degree zero) polynomial,
since p(0) = detC = 0 6= detS = p(i). Since p(t) has only finitely many
zeroes in the complex plane, there is a real τ such that p(τ) 6= 0, so C + τD
is nonsingular.

Theorem 1.29. Let F = {Aα : α ∈ I} ⊂ Mn(R) and G = {Bα : α ∈
I} ⊂ Mn(R) be given families of real matrices. If there is a nonsingular
S ∈Mn such that Aα = SBαS

−1 for every α ∈ I, then there is a nonsingular
T ∈Mn(R) such that Aα = TBαT

−1 for every α ∈ I. In particular, two real
matrices that are similar over C are similar over R.

Proof. Let S = C + iD be nonsingular, where C,D ∈ Mn(R). Lemma 1.28
ensures that there is a real number τ such that T = C + τD is nonsingular.
The similarity Aα = SBαS

−1 is equivalent to the identity Aα(C + iD) =
AαS = SBα = (C + iD)Bα. Equating the real and imaginary parts of this
identity shows that AαC = CBα and AαD = DBα, i.e., Aα(τD) = (τD)Bα,
so AαT = TBα and Aα = TBαT

−1.

An immediate consequence of the preceding theorem is a real version of
Theorem 1.23.
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Corollary 1.30. Let F = {Aα : α ∈ I} ⊂ Mn(R) be a family of real
diagonalizable matrices with real eigenvalues. Then F is a commuting family
if and only if there is a nonsingular real matrix T such that T−1AαT = Λα

is diagonal for every A ∈ F . In particular, for any given α0 ∈ I and for
any given ordering λ1, ..., λn of the eigenvalues of Aα0, there is a nonsingular
T ∈ Mn(R) such that T−1Aα0T = diag(λ1, ..., λn) and T−1AαT is diagonal
for every α ∈ I.

Proof. (⇒) Apply Theorem 1.29 to the families F = {Aα : α ∈ I} and
G = {Λα : α ∈ I} and use Theorem 1.23 for simultaneous diagonalizability.
(⇐) Utilize Proposition 1.16.

Our final theorem in this section about similarity shows that the only
relationship between the eigenvalues and main diagonal entries of a complex
matrix is that their respective sums should be equal.

Theorem 1.31 (Mirsky). Let an integer n ≥ 2 and complex scalars λ1, ..., λn
and d1, ..., dn be given. There is an A ∈ Mn with eigenvalues λ1, ..., λn and

main diagonal entries d1, ..., dn if and only if
n∑
i=1

λi =
n∑
i=1

di. If λ1, ..., λn and

d1, ..., dn are all real and have the same sums, there is an A ∈ Mn(R) with
eigenvalues λ1, ..., λn and main diagonal entries d1, ..., dn.

Proof. (⇒) We know that trA = E1(A) = S1(A) for any A ∈Mn (Theorem
3.10 in Lecture 1), which establishes the necessity of the stated condition.
(⇐) If k ≥ 2 and if λ1, ..., λk and d1, ..., dk are any given complex scalars such

that
k∑
i=1

λi =
k∑
i=1

di, we claim that the upper bidiagonal matrix

T (λ1, ..., λk) =


λ1 1

λ2
. . .
. . . 1

λk

 ∈Mk

is similar to a matrix with diagonal entries d1, ..., dk; that matrix has the

property asserted. Let L(s, t) =

[
1 0

s− t 1

]
, so L(s, t)−1 =

[
1 0

t− s 1

]
. Con-
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sider first the case k = 2, so λ1 + λ2 = d1 + d2. Compute the similarity

L(λ1, d1)T (λ1, λ2)L(λ1, d1)−1 =

[
1 0

λ1 − d1 1

] [
λ1 1
0 λ2

] [
1 0

d1 − λ1 1

]
=

[
d1 F
F λ1 + λ2 − d1

]
=

[
d1 F
F d2

]
where we use the hypothesis λ1 + λ2 − d1 = d1 + d2 − d1 = d2. This verifies
our claim for k = 2.

We proceed by induction. In order to clarify the inductive procedures, we

first work on the inductive step k = 2 ⇒ k = 3. If
3∑
i=1

λi =
3∑
i=1

di, compute

the similarity

[
L(λ1, d1) 0

0 1

]λ1 1 0
0 λ2 1
0 0 λ3

[L(d1, λ1) 0
0 1

]

=

 d1 1 0
(d1 − λ1)(λ2 − d1) λ1 + λ2 − d1 1

0 0 λ3


=

[
d1 F
F D

]
,

(7)
where D = T (λ1 + λ2 − d1, λ3). By the preceding argument (induction
hypothesis) on k = 2, we can apply the similarity transformation S−1 =[
1 0
0 L(d3, λ3)

]
on the resulting matrix (7), since

L(d3, λ3)DL(d3, λ3)−1 =

[
1 0

d3 − λ3 1

] [
λ1 + λ2 − d1 1

0 λ3

] [
1 0

λ3 − d3 1

]
=

[
d2 F
F d3

]
.

This completes our claim from k = 2 to k = 3.

Assume that our claim has been proved for some k ≥ 2 and that
k+1∑
i=1

λi =

k+1∑
i=1

di. Partition T (λ1, ..., λk+1) = [Tij]
2
i,j=1, where T11 = T (λ1, λ2), T12 =
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E2, T21 = 0, and T22 = T (λ3, ..., λk+1), with E2 = [e2 0 · · · 0] ∈ M2,k−1 and
e2 = [0 1]T ∈ C2. Let L = L(λ1, d1)⊕ Ik−1 and compute
LT (λ1, ..., λk+1)L−1

=

[
L(λ1, d1) 0

0 Ik−1

] [
T (λ1, λ2) E2

0 T (λ3, ..., λk+1)

] [
L(d1, λ1) 0

0 Ik−1

]

=

[d1 F
F λ1 + λ2 − d1

]
E2

0 T (λ3, ..., λk+1)


=

[
d1 F
F T (λ1 + λ2 − d1, λ3, ..., λk+1)

]
=

[
d1 F
F D

]
The sum of the eigenvalues of D = T (λ1 + λ2 − d1, λ3, ..., λk+1) ∈ Mk is
k+1∑
i=1

λi − d1 =
k+1∑
i=1

di − d1 =
k+1∑
i=2

di, so the induction hypothesis ensures that

there is a nonsingular S ∈ Mk such that the diagonal entries of SDS−1 are

d2, ..., dk+1. Then

[
1 0
0 S

] [
d1 F
F D

] [
1 0
0 S

]−1

=

[
d1 F
F SDS−1

]
has diagonal

entries d1, d2, ..., dk+1.
If λ1, ..., λn and d1, ..., dn are all real, all of the matrices and similarities

in the preceding constructions are real by Theorem 1.29.

2 Left and right eigenvectors and geometric
multiplicity (Page 75-80, Page 6)

The eigenvectors of a matrix are important not only for their role in diag-
onalization but also for their utility in a variety of applications. For exam-
ple, Principal Component Analysis (PCA) is a statistical eigenvector-based
method to fit an n-dimensional ellipsoid to the data, where each axis of the
ellipsoid represents a principal component and all principal components are
linearly correlated[4]. However, all the eigenvectors of a matrix may not span
the whole vector space in some cases. In this section we characterize these
defective situations by introducing the concept of geometric multiplicity of an
eigenvalue. Moreover, the connections between left and right eigenvalues of
a matrix will also be investigated. We begin with an important observation
about eigenvalues.
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Observation 2.1. Let A ∈ Mn. (a) The eigenvalues of A and AT are the
same. (b) The eigenvalues of A∗ are the complex conjugates of the eigenvalues
of A.

Proof. Since det(tI − AT ) = det(tI − A)T = det(tI − A), we have pAT (t) =
pA(t), so pAT (λ) = 0 if and only if pA(λ) = 0. Similarly, pA∗(t) = det(tI −
A∗) = det(tI − Ā)T = det(tI − Ā) = det(t̄I − A) = pA(t̄).

Proposition 2.2. Let A ∈Mn. The set of all eigenvectors associated with a
particular eigenvalue λ ∈ σ(A), together with the zero vector, is a subspace
of Cn.

Proof. If x, y ∈ Cn are both eigenvectors of A associated with the eigenvalue
λ and any α ∈ C, then A(αx + y) = αAx + Ay = λ(αx + y), showing that
αx+y is also an eigenvector of A. The set of all eigenvectors associated with
λ, together with the zero vector, is closed under the operations of vector
addition and scalar multiplication and is thus a subspace of Cn.

The subspace described in the preceding proposition is the null space of
A−λI, that is, the solution set of the homogeneous linear system (A−λI)x =
0. By the rank-nullity theorem, i.e., dim(rangeA) + dim(nullspaceA) =
rankA + nullityA = n, we conclude that the dimension of this subspace is
n− rank(A−λI). In reality, we have a formal terminology for this subspace.

Definition 2.3 (eigenspace). Let A ∈Mn. For a given λ ∈ σ(A), the set of
all vectors x ∈ Cn satisfying Ax = λx is called the eigenspace of A associated
with the eigenvalue λ, denoted by Vλ = {x ∈ Cn : Ax = λx}. Every nonzero
element of this eigenspace is an eigenvector of A associated with λ.

Example 2.4. Even though A and AT have the same eigenvalues, their
eigenspaces associated with a given eigenvalue can be different. For example,

let A =

[
2 3
0 4

]
. Then the (one-dimensional) eigenspace of A associated with

the eigenvalue 2 is spanned by

[
1
0

]
, while the eigenspace of AT associated

with the eigenvalue 2 is spanned by

[
1
−3

2

]
.

Example 2.5. The eigenspace of A associated with an eigenvalue λ is an
A-invariant subspace, since for any x ∈ Vλ we still have Ax = λx ∈ Vλ.
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Conversely, an A-invariant subspace need not be an eigenspace of A, like {0}
and Cn. As for a nontrivial counterexample, let Vλ1 , Vλ2 be two eigenspace of
A, where λ1 6= λ2. The direct sum V = Vλ1 ⊕Vλ2 is an A-invariant subspace,
since for any x ∈ V , we can factorize x into x = y + z, where y ∈ Vλ1
and z ∈ Vλ2 , and thus Ax = A(y + z) = λ1y + λ2z ∈ V . Nevertheless,
V = Vλ1 ⊕ Vλ2 can never be an eigenspace of A.

It is easy to check that a minimal A-invariant subspace (an A-invariant
subspace that contains no strictly lower-dimensional, nonzero A-invariant
subspace) W is the span of a single eigenvector of A, i.e., dimW = 1.

To formalize the dimension of an eigenspace of a matrix and characterize
its diagonalizability, we make the following definitions.

Definition 2.6. Let A ∈Mn and let λ be an eigenvalue of A.

(a) The dimension of the eigenspace of A associated with λ is the geometric
multiplicity of λ.

(b) The multiplicity of λ as a zero of the characteristic polynomial of A is
the algebraic multiplicity of λ.

If the term multiplicity is used without qualification in reference to λ, it
means the algebraic multiplicity. We say that λ is simple if its algebraic
multiplicity is 1; it is semisimple if its algebraic and geometric multiplicities
are equal.

Example 2.7. We have the following statements about the respective ma-
trices and their eigenvalue λ = 1:

(a) A1 =

[
1 0
0 2

]
: geometric multiplicity = algebraic multiplicity = 1; λ is

simple.

(b) A2 =

[
1 0
0 1

]
: geometric multiplicity = algebraic multiplicity = 2; λ is

semisimple.

(c) A3 =

[
1 1
0 1

]
: geometric multiplicity = 1; algebraic multiplicity = 2.

It can be very useful to think of the geometric multiplicity of an eigen-
value λ of A ∈Mn in more than one way: It is the dimension of the nullspace
of A − λI, which is equal to n − rank(A − λI). Meanwhile, it is the max-
imum number of linearly independent eigenvectors associated with λ. The
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inequality between the geometric and algebraic multiplicity of an eigenvalue
can be deduced from two different viewpoints.

On one hand, Theorem 3.12 in Lecture 1 states that for any λ ∈ σ(A)
its algebraic multiplicity k satisfies k ≥ n − rank(A − λI), which is the
corresponding geometric multiplicity, with the equality for k = 1.

On the other hand, Theorem 1.8 in this lecture points out that A is similar

to a block matrix

[
Λ C
0 D

]
with Λ = diag(λ, ..., λ) ∈ Mm, D ∈ Mn−m if A

has totally m linearly independent eigenvectors associated with λ. Then the
characteristic polynomial of A becomes pA(t) = pΛ(t)pD(t) and pD(λ) may
still be 0, yielding that the algebraic multiplicity of λ ≥ m = its geometric
multiplicity. If the algebraic multiplicity is 1, then pA(t) = (t− λ)pD(t) and
pD(λ) 6= 0, so there exists an x ∈ Cn, x 6= 0 such that Ax = λx.

Furthermore, information about eigenvalues of principal submatrices can
refine the basic observation that the algebraic multiplicity of an eigenvalue
cannot be less than its geometric multiplicity.

Theorem 2.8. Let A ∈ Mn and λ ∈ C be given, and let k ≥ 1 be a given
positive integer. Consider the following three statements:

(a) λ is an eigenvalue of A with geometric multiplicity at least k.

(b) For each m = n − k + 1, ..., n, λ is an eigenvalue of every m-by-m
principal submatrix of A.

(c) λ is an eigenvalue of A with algebraic multiplicity at least k.

Then (a) ⇒ (b) ⇒ (c). In particular, the algebraic multiplicity of an eigen-
value is at least as great as its geometric multiplicity.

Proof. (a)⇒(b): If λ is an eigenvalue of A with geometric multiplicity at
least k, then rank(A − λI) ≤ n − k. Assume that m > n − k. Then every
m-by-m minor of A−λI is zero. In particular, every principal m-by-m minor
of A−λI is zero, so every m-by-m principal submatrix of A−λI is singular.
Thus, λ is an eigenvalue of every m-by-m principal submatrix of A.
(b)⇒(c): If λ is an eigenvalue of every m-by-m principal submatrix of A
for each m ≥ n − k + 1, then every principal minor of A − λI of size at
least n − k + 1 is zero, so each principal minor sum Ej(A − λI) = 0 for all
j ≥ n− k + 1 (Definition 3.7 in Lecture 1). Since

pA−λI(t) = tn−E1(A−λI)tn−1+· · ·+(−1)n−1En−1(A−λI)t+(−1)nEn(A−λI)
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and p
(k)
A−λI(0) = k!(−1)n−kEn−k(A− λI), k = 0, 1, ..., n− 1, we find that

p
(i)
A−λI(0) = 0 for i = 0, 1, ..., k − 1.

But pA−λI(t) = pA(t + λ), so p
(i)
A (λ) = 0 for i = 0, 1, ..., k − 1; that is, λ is a

zero of pA(t) with multiplicity at least k.

Definition 2.9. Let A ∈Mn.

(a) A is defective if the geometric multiplicity of some eigenvalue of A is
strictly less than its algebraic multiplicity.

(b) A is nondefective if the geometric multiplicity of each eigenvalue of A
is the same as its algebraic multiplicity.

(c) A is nonderogatory if each eigenvalue of A has geometric multiplicity
1; otherwise, it is derogatory.

A matrix is diagonalizable if and only if it is nondefective; it has distinct
eigenvalues if and only if it is nonderogatory and nondefective.

Up to now, we only come across the right eigenvector, that is, left multi-
plication by a matrix has the same effect as scalar multiplication. Symmet-
rically, we have the following definition.

Definition 2.10. A nonzero vector y ∈ Cn is a left eigenvector of A ∈ Mn

associated with an eigenvalue λ of A if y∗A = λy∗.

Remark. (a) When the context does not require distinction we continue to
call x an eigenvector.
(b) Given a right eigenvector of A associated with an eigenvalue λ, we can
always obtain a left eigenvector of A associated with λ. By Observation 2.1,
λ ∈ σ(A) if and only if λ̄ ∈ σ(A∗). Thus, we find that A∗y = λ̄y, i.e.,
y∗A = λy∗.

Example 2.11. Consider A =

[
−i 0
1 −i

]
, y =

[
1
0

]
. A direct computation

shows that y∗A = −iy∗ and y is a left eigenvector of A associated with −i.

Example 2.12. Let x ∈ Cn be nonzero, let A ∈ Mn and suppose that
Ax = λx. If x∗A = µx∗, then λ = µ. This is because µx∗x = (x∗A)x =
x∗Ax = x∗(Ax) = x∗(λx) = λx∗x and x∗x 6= 0.
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Moreover, a left eigenvector y associated with an eigenvalue λ of A ∈Mn

is a right eigenvector of A∗ associated with λ̄, since y∗A = λy∗ implies that
(y∗A)∗ = A∗y = λ̄y. Likewise, ȳ is a right eigenvector of AT associated with
λ.

One should not dismiss left eigenvectors as merely a parallel theoretical
alternative to right eigenvectors. Each type of eigenvector can convey differ-
ent information about a matrix, and it can be very useful to know how the
two types of eigenvectors interact.

Example 2.13. Suppose that A ∈ Mn is diagonalizable, S is nonsingular,
and S−1AS = Λ = diag(λ1, ..., λn). Partition S = [x1 · · · xn] and (S−1)∗ =
S−∗ = [y1 · · · yn] according to their columns. The identity AS = SΛ tells
us that each column xj of S is a right eigenvector of A associated with
the eigenvalue λj. Furthermore, S−1A = ΛS−1 indicates that (S−∗)∗A =
Λ(S−∗)∗, so each column yj of S−∗ is a left eigenvector of A associated with
the eigenvalue λj. Finally, y∗jxj = 1 for each j = 1, ..., n and y∗i xj = 0
whenever i 6= j, where we use the fact that

S−1S =

y
∗
1
...
y∗n

 [x1 · · · xn
]

= In.

We next examine a version of the results in the foregoing example 2.13
for matrices that are not necessarily diagonalizable.

Theorem 2.14. Let A ∈Mn, nonzero vectors x, y ∈ Cn, and scalars λ, µ ∈
C be given. Suppose that Ax = λx and y∗A = µy∗.

(a) If λ 6= µ, then y∗x = 0. This is called the principle of biorthogonality.

(b) If λ = µ and y∗x 6= 0, then there is a nonsingular S ∈ Mn of the form
S = [x S1] such that S−∗ = [y/(x∗y) Z1] and

A = S

[
λ 0
0 B

]
S−1, B ∈Mn−1. (8)

Conversely, if A is similar to a block matrix of the form (8), then it has a
nonorthogonal pair of left and right eigenvectors associated with the eigen-
value λ.
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Proof. (a) By Ax = λx and y∗A = µy∗, we manipulate y∗Ax in two ways:

y∗Ax = y∗(λx) = λ(y∗x)

= (µy∗)x = µ(y∗x).

Since λ 6= µ, λy∗x = µy∗x only if y∗x = 0.
(b) Suppose that Ax = λx, y∗A = λy∗, and y∗x 6= 0. If we replace y by
y/(x∗y), we may assume that y∗x = 1. Let the columns of S1 ∈ Mn,n−1 be
any basis for the orthogonal complement (see Definition 2.3 in Lecture 3) of
y (so y∗S1 = 0) and consider S = [x S1] ∈ Mn. Suppose that Sz = 0 and
z = [z1 ζ

T ]T with ζ ∈ Cn−1. Then

0 = y∗Sz = y∗(z1x+ S1ζ) = z1(y∗x) + (y∗S1)ζ = z1

so z1 = 0 and 0 = Sz = S1ζ, which implies that ζ = 0 since S1 has full
column rank. We conclude that S is nonsingular. Partition S−∗ = [η Z1]
with η ∈ Cn and compute

In = S−1S =

[
η∗

Z∗1

] [
x S1

]
=

[
η∗x η∗S1

Z∗1x Z∗1S1

]
=

[
1 0
0 In−1

]
which contains four identities. The identity η∗S1 = 0 implies that η is or-
thogonal to the orthogonal complement of y, so η = αy for some scalar α.
The identity η∗x = 1 tells us that η∗x = (αy)∗x = ᾱ(y∗x) = ᾱ = 1, so η = y.
Using the identities η∗S1 = y∗S1 = 0 and Z∗1x = 0 as well as the eigenvector
properties of x and y, we calculate the similarity

S−1AS =

[
y∗

Z∗1

]
A
[
x S1

]
=

[
y∗Ax y∗AS1

Z∗1Ax Z∗1AS1

]
=

[
(λy∗)x (λy∗)S1

Z∗1(λx) Z∗1AS1

]
=

[
λ(y∗x) λ(y∗S1)
λ(Z∗1x) Z∗1AS1

]
=

[
λ 0
0 Z∗1AS1

]
which verifies (8).

Conversely, suppose that there is a nonsingular S such that A = S([λ]⊕
B)S−1. Let x be the first column of S, let y be the first column of S−∗,
and partition S = [x S1] and S−∗ = [y Z1]. The (1,1) entry of the identity
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S−1S = In shows that y∗x = 1, that is, x is nonorthogonal to y. The first
column of the identity

[Ax AS1] = AS = S([λ]⊕B) = [λx S1B]

tells us that Ax = λx; and the first row of the identity[
y∗A
Z∗1A

]
= S−1A = ([λ]⊕B)S−1 =

[
λy∗

BZ∗1

]
tells us that y∗A = λy∗.

The eigenvalues of a matrix are unchanged by similarity, while its eigen-
vectors transform under similarity in a simple way.

Theorem 2.15. Let A,B ∈ Mn and suppose that B = S−1AS for some
nonsingular S. If x ∈ Cn is a right eigenvector of B associated with an
eigenvalue λ, then Sx is a right eigenvector of A associated with λ. If y ∈ Cn

is a left eigenvector of B associated with λ, then S−∗y is a left eigenvector of
A associated with λ.

Proof. If Bx = λx, then S−1ASx = λx, or A(Sx) = λ(Sx). Since S is
nonsingular and x 6= 0, Sx 6= 0, and hence Sx is an eigenvector of A. If
y∗B = λy∗, then y∗S−1AS = λy∗, or (S−∗y)∗A = λ(S−∗y)∗ and S−∗y 6= 0
since y 6= 0.

An eigenvalue λ with geometric multiplicity 1 can have algebraic multi-
plicity 2 or more, but this can happen only if the left and right eigenvectors
associated with λ are orthogonal. If λ has algebraic multiplicity 1, however,
then it has geometric multiplicity 1; left and right eigenvectors associated
with λ can never be orthogonal. Our approach to these results relies on the
following lemma.

Lemma 2.16. Let A ∈ Mn, λ ∈ C, and nonzero vectors x, y ∈ Cn be given.
Suppose that λ has geometric multiplicity 1 as an eigenvalue of A, Ax = λx,
and y∗A = λy∗. Then there is a nonzero γ ∈ C such that adj(λI−A) = γxy∗.

Proof. We have rank(λI−A) = n−1. On one hand, by the identity adj(λI−
A)·(λI−A) = det(λI−A)·I = 0, we know that n−rank adj(λI−A) ≥ n−1,
i.e., rank adj(λI − A) ≤ 1. On the other hand, since rank(λI − A) = n− 1,
some (n− 1)-by-(n− 1) principal submatrices are nonzero and rank adj(λI−
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A) ≥ 1. Thus, rank adj(λI − A) = 1, that is, adj(λI − A) = ξη∗ for some
nonzero ξ, η ∈ Cn.
But (λI − A)(adj(λI − A)) = det(λI − A)I = 0, so (λI − A)ξη∗ = 0 and
(λI − A)ξ = 0, which implies that ξ = αx for some nonzero scalar α. Using
the identity (adj(λI − A))(λI − A) = 0, we also have that ξη∗(λI − A) = 0
and η∗(λI − A) = 0, namely, η = βy for some nonzero scalar β. Thus,
adj(λI − A) = αβ̄xy∗ and choose γ = αβ̄.

Theorem 2.17. Let A ∈Mn, λ ∈ C, and nonzero vectors x, y ∈ Cn be given.
Suppose that λ is an eigenvalue of A, Ax = λx and y∗A = λy∗.

(a) If λ has algebraic multiplicity 1, then y∗x 6= 0.

(b) If λ has geometric multiplicity 1, then it has algebraic multiplicity 1 if
and only if y∗x 6= 0.

Proof. In both cases (a) and (b), λ has geometric multiplicity 1 (Theorem
3.12 in Lecture 1); the preceding lemma tells us that there is a nonzero γ ∈ C
such that adj(λI−A) = γxy∗. Then pA(λ) = 0 and p′A(λ) = tr adj(λI−A) =
γy∗x (Proposition 3.8 in Lecture 1). In (a) we assume that the algebraic
multiplicity is 1, so p′A(λ) 6= 0 and hence y∗x 6= 0. In (b) we assume that
y∗x 6= 0, so p′A(λ) 6= 0 and hence the algebraic multiplicity is 1.
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