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Abstract

Linear algebra and matrix analysis have long played a fundamen-
tal and indispensable role in fields of science. Many modern research
projects in applied science rely heavily on the theory of matrix. Mean-
while, matrix analysis and its ramifications are active fields for re-
search in their own right. In this course, we aim to study some fun-
damental topics in matrix theory, such as eigen-pairs and equivalence
relations of matrices, scrutinize the proofs of essential results, and
dabble in some up-to-date applications of matrix theory. Our lecture
will maintain a cohesive organization with the main stream of Horn’s
book[1] and complement some necessary background knowledge omit-
ted by the textbook sporadically.

1 Introduction

We begin our lectures with Chapter 1 of Horn’s book[1], which focuses on
eigenvalues, eigenvectors, and similarity of matrices. In this lecture, we re-
view the concepts of eigenvalues and eigenvectors with which we are familiar
in linear algebra, and investigate their connections with coefficients of the
characteristic polynomial. Here we first outline the main concepts in Chap-
ter 1 (Eigenvalues, Eigenvectors, and Similarity).

∗School of Mathematics, Sun Yat-sen University
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1.1 Change of basis and similarity (Page 39-40, 43)

Let V be an n-dimensional vector space over the field F, which can be R, C,
or even Z(p) (the integers modulo a specified prime number p), and let the
list B1 = {v1, v2, ..., vn} be a basis for V. Any vector x ∈ V can be represented
as x = α1v1+· · ·+αnvn because B1 spans V . This representation of x in B1 is
unique, since if there were some other representation of x = β1v1 + · · ·+βnvn
in the same basis, then

0 = x− x = (α1 − β1)v1 + · · ·+ (αn − βn)vn

from which it follows that αi − βi = 0 because the list B1 is independent.
Thus, given the basis B1, the linear mapping

x → [x]B1 =

α1
...
αn

 , in which x = α1v1 + · · ·+ αnvn

from V to Fn is well-defined, one-to-one, and onto.
The scalars αi are called the coordinates of x with respect to the basis B1,
and the column vector [x]B1 is the unique B1-coordinate representation of x.

We now move on to talk about linear transformations on different bases
and properties of change-of-basis matrices. Let T : V → V be a given linear
transformation. The action of T on any x ∈ V is determined by its action
on the basis B1, i.e., the n vectors Tv1, ..., T vn. This is because any x ∈ V
has a unique representation x = α1v1 + · · ·+ αnvn and

Tx = T (α1v1 + · · ·+ αnvn) = α1Tv1 + · · ·+ αnTvn

by linearity of T . Thus the value of Tx is clear once [x]B1 is known.

What happen if we change the basis of V ? Can we explicitly uncover the
representation of T in terms of two given bases?
Let B2 = {w1, ..., wn} also be a basis for V (either different from or the same
as B1) and suppose that the B2-coordinate representation of Tvj is

[Tvj]B2 =

t1j...
tnj

 , where j = 1, 2, ..., n.
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Then, for any x ∈ V , we have

[Tx]B2 =

[ n∑
j=1

αjTvj

]
B2

=
n∑
j=1

αj[Tvj]B2 =
n∑
j=1

αj

t1j...
tnj

 =

t11 . . . t1n
...

. . .
...

tn1 . . . tnn


α1

...
αn


What we have shown is that [Tx]B2 =B2 [T ]B1 [x]B1 . The n-by-n array [tij]
depends on T and on the choice of the bases B1 and B2, but it does not
depend on x.

Definition 1.1. The B1-B2 basis representation of T is defined to be

B2 [T ]B1 =

t11 . . . t1n
...

. . .
...

tn1 . . . tnn

 =
[
[Tv1]B2 . . . [Tvn]B2

]
.

In the important special case where B2 = B1, we have B1 [T ]B1, which is called
the B1 basis representation of T .

Consider the identity linear transformation I : V → V defined by Ix = x
for all x.

Definition 1.2. The matrix B2 [I]B1 is called the B1 − B2 change of basis
matrix, where I is the identity linear transformation.

Now we are well-prepared to prove the main result of this section, which
is stated as a proposition.

Proposition 1.3. Every invertible matrix is a change-of-basis matrix, and
every change-of-basis matrix is invertible.

Proof. Given the identity transformation I : V → V ,

[x]B2 = [Ix]B2 = B2 [I]B1 [x]B1 = B2 [I]B1 [Ix]B1 = B2 [I]B1 B1 [I]B2 [x]B2

for all x ∈ V . By successively choosing x = w1, ..., wn and using the fact that

[wi]B2 =


0
...
1
...
0

← i, where i = 1, 2, ..., n,
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this identity permits us to identify each column of B2 [I]B1B1 [I]B2 and shows
that

B2 [I]B1 B1 [I]B2 = In

Similarly, if we do the same computation starting with [x]B1 = [Ix]B1 = · · · ,
we obtain that

B1 [I]B2 B2 [I]B1 = In

Thus, every matrix of the form B2 [I]B1 is invertible and B1 [I]B2 is its inverse.
Conversely, every invertible matrix S = [s1 s2 . . . sn] ∈ Mn(F) has the form

B1 [I]B for some basis B. We may take B to be the vectors {s̃1, ..., s̃n} defined
by

[s̃i]B1 = B1 [I]B [s̃i]B =
[
s1 s2 · · · sn

]


0
...
1
...
0

 = si, where i = 1, 2, ..., n.

The list B is independent, because if a1s̃1 + · · ·+ ans̃n = 0, then

0 = [0]B1 = [a1s̃1 + · · ·+ ans̃n]B1 =
[
s1 · · · sn

] a1...
an


Due to the fact that S is invertible, we find that ai = 0, i = 1, 2, ..., n. �

Notice that

B2 [I]B1 =
[
[Iv1]B2 · · · [Ivn]B2

]
=
[
[v1]B2 · · · [vn]B2

]
,

so B2 [I]B1 describes how the elements of the basis B1 are represented in terms
of elements of the basis B2. Now let x ∈ V and compute

B2 [T ]B2 [x]B2 = [Tx]B2 = [I(Tx)]B2 = B2 [I]B1 [Tx]B1
= B2 [I]B1 B1 [T ]B1 [x]B1 = B2 [I]B1 B1 [T ]B1 [Ix]B1
= B2 [I]B1 B1 [T ]B1 B1 [I]B2 [x]B2

By choosing x = w1, ..., wn successively, we conclude that

B2 [T ]B2 = B2 [I]B1 B1 [T ]B1 B1 [I]B2 (1)
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This identity shows how the B1 basis representation of T changes if the basis
is changed to B2. That is why we define the matrix B2 [I]B1 to be the B1−B2
change of basis matrix.

Therefore, if B1 is a given basis of a vector space V , if T is a given linear
transformation on V , and if A = B1 [T ]B1 is the B1 basis representation of T ,
the set of all possible basis representation of T is

{B2 [I]B1 B1 [T ]B1 B1 [I]B2 : B2 is a basis of V }
= {S−1AS : S ∈Mn(F) is invertible}

This, at the same time, indicates the set of all matrices that are similar to
the given matrix A.
Remark. Similar but not identical matrices are just different basis repre-
sentations of a single linear transformation.

1.2 Constrained extrema and eigenvalues (Page 43-44,
Appendix E)

Nonzero vectors x such that Ax is a scalar multiple of x play a major role in
analyzing the structure of a matrix or linear transformation, but such vectors
arise in the more elementary context of maximizing (or minimizing) a real
symmetric quadratic form subject to a geometric constraint: For a given real
symmetric A ∈Mn(R),

maximize xTAx, subject to x ∈ Rn, xTx = 1 (2)

Commonly, we introduce a Lagrangian multiplier to convert the constrained
optimization problem into an unconstrained one, L(x) = xTAx−λxTx, whose
necessary conditions for an extremum are

0 = ∇L = 2(Ax− λx) = 0

Thus, if a vector x ∈ Rn with xTx = 1 (and hence x 6= 0) is an extremum of
xTAx, it must satisfy the equation Ax = λx.

Definition 1.4. Let A ∈Mn (Mn is the set of n-by-n matrices over C. We
will inherit this notation in the rest of lectures). If a scalar λ and a nonzero
vector x satisfy the equation

Ax = λx, x ∈ Cn, x 6= 0, λ ∈ C (3)
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then λ is called an eigenvalue of A and x is called an eigenvector of A asso-
ciated with λ. The pair λ, x is an eigenpair for A.

Remark. It is a key element of the definition that an eigenvector can
never be the zero vector.

Theorem 1.5 (Weierstrass). Let S be a compact subset of a finite-dimensional
real or complex vector space V with a given norm || · ||, and let f : S → R
be a continuous function. There exists a point xmin ∈ S such that

f(xmin) ≤ f(x) for all x ∈ S

and a point xmax ∈ S such that

f(x) ≤ f(xmax) for all x ∈ S

That is, f attains its minimum and maximum values on S.

We omit the proof here. For readers who are interested in its proof, we
refer them to Theorem 4.16 (Page 89) of Rudin’s book[2].

With Weierstrass’s theorem in our mind, we conclude that the constrained
extremum problem (2) has a solution, since f(x) = xTAx is a continuous
function on the compact set {x ∈ Rn : xTx = 1}. This result, in turn,
indicates that every real symmetric matrix has at least one real eigenvalue.

2 The eigenvalue-eigenvector equation (Page 44-
48, Appendix C)

We have came across eigenvalues and eigenvectors in the course of linear alge-
bra and proficiently known how to calculate eigenpairs of a specified matrix.
Essentially, Equation (3) can be rewritten as λx − Ax = (λI − A)x = 0, a
square system of homogeneous linear equations. If this system has a nontriv-
ial solution, then λ is an eigenvalue of A and the matrix λI − A is singular.
Conversely, if λ ∈ C and if λI − A is singular, then there exists a nonzero
vector x such that (λI − A)x = 0, and hence Ax = λx, i.e., λ, x is an
eigenvalue-eigenvector pair for A.

Therefore, we often compute eigenvalues of A by solve its characteristic
equation det(λI − A) = 0.
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Definition 2.1. The spectrum of A ∈ Mn is the set of all λ ∈ C that are
eigenvalues of A; we denote this set by σ(A).

If x is an eigenvector of A ∈ Mn associated with λ, then for any c ∈
C, c 6= 0, we find that A(cx) = c(Ax) = c(λx) = λ(cx), that is, any nonzero
scalar multiple of x is an eigenvector of A associated with λ. Thus, it is often
convenient to normalize an eigenvector x to form a unit vector ξ = x/||x||2,
which is still an eigenvector of A associated with λ.
Remark. However, normalization does not select a unique eigenvector as-
sociated with λ: λ, eiθξ is an eigenvalue-eigenvector pair for A for all θ ∈ R.

Example 2.2. Consider the matrix

A =

[
7 −2
4 1

]
∈M2

Then 3 ∈ σ(A) and [1 2]T is an eigenpair, while 5 ∈ σ(A) and [1 1]T is the
other.

Example 2.3. Let Jn be the n-by-n matrix whose entries are all equal to 1.
Consider the n-vector e whose entries are all equal to 1, and let xk = e−nek,
in which {e1, ..., en} is the standard basis for Cn. Then {e, x1, ..., xn−1} are
linearly independent, since the matrix whose columns are {e, x1, ..., xn−1} can
be reduced to In via elementary row operations (or its determinant is nn−1).
Furthermore, {e, x1, ..., xn−1} are eigenvectors of Jn associated with eigenval-
ues {n, 0, ..., 0}, respectively. This can be checked by direct computations.
Consider a matrix

A =

 3 −1 −1
−1 3 −1
−1 −1 3


Then Ae = (4I − J3)e = e and Ax1 = (4I − J3)x1 = 4x1. Hence 1 and 4 are
eigenvalues of A.

Proposition 2.4. Let A ∈ Mn. Then σ(Ā) = σ(A). If A ∈ Mn(R) and
λ ∈ σ(A), then λ̄ ∈ σ(A) as well.

Proof. If Ax = λx, x 6= 0, then Āx̄ = λ̄x̄, showing that λ̄ is an eigenvalue of
Ā and thus σ(A) ⊂ σ(Ā).
Conversely, if λ′ ∈ σ(Ā), namely, Āx = λ′x, then Ax̄ = λ̄′x̄, i.e., λ̄′ ∈ σ(A).
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Whenever A ∈ Mn(R) and λ ∈ σ(A), σ(A) = σ(Ā) = σ(A), yielding that
λ̄ ∈ σ(A). �

For a given A ∈ Mn, we are not sure at this point whether σ(A) is
empty, or, if it is not empty, whether it contains finitely or infinitely many
complex numbers. Fortunately, we can resort to the fundamental theorem of
algebra1to tackle this problem.

Theorem 2.5 (fundamental theorem of algebra). Any polynomial p with
complex coefficients and of degree at least 1 has at least one zero in C.

Using synthetic divisions and inductive argument, we can derive that

Corollary 2.6. A polynomial of degree n ≥ 1 with complex coefficients has,
counting multiplicities, exactly n zeroes among the complex numbers.

Evaluation of a polynomial of degree k

p(t) = akt
k + ak−1t

k−1 + · · ·+ a1t+ a0, ak 6= 0 (4)

with real or complex coefficients at a matrix A ∈Mn is well-defined since we
may form linear combinations of integral powers of a given square matrix.
We define

p(A) = akA
k + ak−1A

k−1 + · · ·+ a1A+ a0I (5)

in which we observe the universal convention that A0 = I. A polynomial (4)
of degree k is said to be monic if ak = 1; since ak 6= 0, a−1k p(t) is always
monic.
Remark. A monic polynomial cannot be the zero polynomial.

There is an alternative way to represent p(A) that has very important
consequences. The fundamental theorem of algebra ensures that any monic
polynomial of degree k ≥ 1 can be represented as a product of exactly k
complex of real linear factors:

p(t) = (t− α1) · · · (t− αk) (6)

1Mathematicians have announced miscellaneous approaches to prove this well-known
theorem. Some of them addressed it with elementary algebra, while others utilized topo-
logical tools to conjure up proofs. The method via results in Complex Analysis (Liouville’s
theorem) is one of the most elegant proofs, which can be found in Chapter 2 of Stein’s
book[3].
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The representation of p(t) is unique up to permutation of its factors. It tells
us that p(αi) = 0 for each j = 1, ..., k, so that each αi is a root of the equation
p(t) = 0 or a zero of p(t). Conversely, if β is a complex number such that
p(β) = 0, then β ∈ {α1, ..., αk}, so a polynomial of degree k ≥ 1 has at most
k distinct zeroes. The number of times a factor (t − αj) is repeated is the
multiplicity of αj as a zero of p(t). The factorization (6) gives a factorization
of p(A):

p(A) = (A− α1I) · · · (A− αkI) (7)

The eigenvalues of p(A) are linked to the eigenvalues of A in a simple way.

Theorem 2.7. Let p(t) be a given polynomial of degree k. If λ, x is an
eigenvalue-eigenvector pair of A ∈Mn, then p(λ), x is an eigenvalue-eigenvector
pair of p(A). Conversely, if k ≥ 1 and if µ is an eigenvalue of p(A), then
there is some eigenvalue λ of A such that µ = p(λ).

Proof. If Ax = λx, then we have

p(A)x = akA
kx+ ak−1A

k−1x+ · · ·+ a1Ax+ a0x, ak 6= 0

and Ajx = Aj−1λx = · · · = λjx by repeated application of the eigenvalue-
eigenvector equation. Thus,

p(A) = akλ
kx+ · · ·+ a0x = (akλ

k + · · ·+ a0)x = p(λ)x.

Conversely, if µ is an eigenvalue of p(A), then p(A) − µI is singular. Since
p(t) has degree k ≥ 1, the polynomial q(t) = p(t) − µ has degree k ≥ 1,
and we can factor it as q(t) = (t − β1) · · · (t − βk) for some complex or real
β1, ..., βk. Since p(A)−µI = q(A) = (A−β1I) · · · (A−βkI) is singular, some
factor A − βjI is singular, which means that βj is an eigenvalue of A. But
0 = q(βj) = p(βj)− µ, so µ = p(βj), as claimed. �

Remark. In the “converse” part of the preceding theorem, we can say noth-
ing about the relation between the eigenvector of p(A) and the eigenvector

of A. Consider a singular matrix A =

[
0 1
0 0

]
. e1 is an eigenvector of both A

and A2, associated with the eigenvalue λ = 0. However, e2 is an eigenvector
of A2 but not of A, since Ae2 = e1 while A2e2 = Ae1 = 0.

Example 2.8. Suppose that A ∈Mn. If σ(A) = {−1, 1}, then σ(A2) = {1}.
This is because by Theorem 2.7, if λ ∈ σ(A), then λ2 ∈ σ(A2), so 1 ∈ σ(A2).
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Furthermore, the solutions of p(t) = t2 − 1 = 0 does not go beyond the set
{−1, 1}. Therefore, 1 is the only point in σ(A2).

Before we prove the main result of this section, that is, every complex
matrix has a nonempty spectrum, we make some nontrivial observations.

Observation 2.9. A matrix A ∈Mn is singular if and only if 0 ∈ σ(A).

Proof. The matrix A is singular if and only if Ax = 0 for some x 6= 0. This
happens if and only if Ax = 0x for some x 6= 0, that is, if and only if λ = 0
is an eigenvalue of A. �

Observation 2.10. Let A ∈ Mn and λ, µ ∈ C be given. Then λ ∈ σ(A) if
and only if λ+ µ ∈ σ(A+ µI).

Proof. If λ ∈ σ(A), there exists a nonzero vector x such that Ax = λx
and hence (A + µI)x = Ax + µx = (λ + µ)x. Thus, λ + µ ∈ σ(A + µI).
Conversely, if λ + µ ∈ σ(A + µI), there exists a nonzero vector y such that
Ay + µy = (A+ µI)y = (λ+ µ)y = λy + µy. Thus, Ay = λy and λ ∈ σ(A).
�

With these observations, we are about to answer a question aroused ear-
lier, that is, for each A ∈ Mn, there exist some scalar λ ∈ C and some
nonzero x ∈ Cn such that Ax = λx. We formulate this result in a sightly
different way.

Theorem 2.11. Let A ∈ Mn be given. Then A has an eigenvalue. In fact,
for each given nonzero y ∈ Cn, there is a polynomial g(t) of degree at most
n− 1 such that g(A)y is an eigenvector of A.

Proof. Let m be the least integer k such that the vectors y, Ay,A2y, ..., Aky
are linearly dependent. Then m ≥ 1 since y 6= 0, and m ≤ n since any n+ 1
vectors in Cn are linearly dependent. Let a0, a1, ..., am be scalars, not all
zero, such that

amA
my + am−1A

m−1y + · · ·+ a1Ay + a0y = 0. (8)

We claim that am 6= 0, for, otherwise, if am = 0, then (8) implies that the
vectors y, Ay, ..., Am−1y are linearly dependent, contradicting the minimality
of m.
We may consider the polynomial p(t) = tm+(am−1/am)tm−1+· · ·+(a1/am)t+
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(a0/am). The identity (8) ensures that p(A)y = 0, so 0, y is an eigenvalue-
eigenvector pair for p(A). Theorem 2.7 assures that one of the m zeroes of
p(t) is an eigenvalue of A.
Suppose that λ is a zero if p(t) that is an eigenvalue of A and factor p(t) =
(t− λ)g(t), in which g(t) is a polynomial of degree m− 1. If g(A)y = 0, the
minimality of m would be contradicted again (in Identity (8)), so g(A)y 6= 0.
But 0 = p(A)y = (A− λI)(g(A)y), so the nonzero vector g(A)y is an eigen-
vector of A associated with the eigenvalue λ. �

Remark. The preceding argument shows that for a given A ∈ Mn we can
find a polynomial of degree at most n such that at least one of its zeroes is
an eigenvalue of A. In the next section, we will introduce the characteristic
polynomial pA(t) of degree exactly n, whose zeroes are eigenvalues of A, and
vice versa, that is, pA(λ) = 0 if and only if λ ∈ σ(A).

3 The characteristic polynomial and algebraic
multiplicity (Page 49-55, Page 25-26, Page 28-29)

Recall that we can rewrite the eigenvalue-eigenvector equation (3) into a
square system of homogeneous linear equations,

(λI − A)x = 0, x 6= 0. (9)

Thus, λ ∈ σ(A) if and only if λI − A is singular, that is, if and only if

det(λI − A) = 0. (10)

This identity, in terms of λ, is in effect a polynomial of degree n whenA ∈Mn.

Definition 3.1. Thought of as a formal polynomial in t, the characteristic
polynomial of A ∈Mn is

pA(t) = det(tI − A).

We refer to the equation pA(t) = 0 as the characteristic equation of A.

Observation 3.2. The characteristic polynomial of each A = [aij] ∈ Mn

has degree n and pA(t) = tn − (trA)tn−1 + · · · + (−1)n det(A). Moreover,
pA(λ) = 0 if and only if λ ∈ σ(A), so σ(A) contains at most n complex
numbers.
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Proof. We define a permutation of {1, ..., n} to be a one-to-one function
σ : {1, ..., n} → {1, ..., n} and the determinant of A can be presented as

detA =
∑
σ

(sgn σ
n∏
i=1

aiσ(i)). (11)

Each summand in this presentation of det(tI − A) is a product of exactly n
entries of tI −A, each from a different row and column, so each summand is
a polynomial in t of degree at most n. The degree of a summand can be n
if and only if every factor in the product involves t, which happens only for
the summand

(t− a11) · · · (t− ann) = tn − (a11 + · · ·+ ann)tn−1 + · · · (12)

which is just the product of the diagonal entries.
By the presentation (11), any other summand must contain a factor −aij
with i 6= j, so the diagonal entries (t − aii) (in the same row as aij) and
(t − ajj) (in the same column as aij) cannot also be factors; this summand
therefore cannot have degree larger than n− 2.
Thus, the coefficients of tn and tn−1 in the polynomial pA(t) arise only from
the summand (12).
The constant term in pA(t) is just pA(0) = det(0I − A) = det(−A) =
(−1)n detA. The remaining assertion is the equivalence of (9) and (10),
together with the fact that a polynomial of degree n ≥ 1 has at most n
distinct zeroes. �
Remark. The characteristic polynomial could alternatively be defined as
det(A − tI) = (−1)n det(tI − A) = (−1)npA(t). Conventionally, we would
choose the coefficient of tn in the characteristic polynomial to be +1.

In fact, the coefficients of ti, i = 0, ..., n− 1 in pA(t) can also be expressed
in terms of eigenvalues of A. Consider a matrix A ∈ Mn with n > 1 and
factor its characteristic polynomial as pA(t) = (t−α1) · · · (t−αn). We know
that each zero αi of pA(t) (regardless of its multiplicity) is an eigenvalue of
A. A computation reveals that

pA(t) = tn − (α1 + · · ·+ αn)tn−1 + · · ·+ (−1)nα1 · · ·αn (13)

A comparison of Observation 3.2 and Identity (13) tells us that the sum of
the zeroes of pA(t) is trA, and the product of the zeroes of pA(t) is detA. If
each zero of pA(t) has multiplicity 1, that is, if αi 6= αj whenever i 6= j, then
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σ(A) = {α1, ..., αn}, so trA is the sum of the eigenvalues of A and detA is
the product of the eigenvalues of A.

What if an eigenvalue λ of a matrix A ∈ Mn with n > 1 is a multiple
zero of pA(t) (equivalently, a multiple root of its characteristic equation)?
For instance, the characteristic polynomial of I ∈Mn is

pI(t) = det(tI − I) = det((t− 1)I) = (t− 1)n det I = (t− 1)n

so the eigenvalue λ = 1 has multiplicity n as a zero of pI(t).

Definition 3.3. Let A ∈ Mn. The multiplicity of an eigenvalue λ of A is
its multiplicity as a zero of the characteristic polynomial pA(t). For clar-
ity, we sometimes refer to the multiplicity of an eigenvalue as its algebraic
multiplicity.

Henceforth, the eigenvalues of A ∈ Mn will always mean the eigenvalues
together with their respective (algebraic) multiplicities. Thus, the zeroes
of the characteristic polynomial of A (including their multiplicities) are the
same as the eigenvalues of A (including their multiplicities):

pA(t) = (t− λ1) · · · (t− λn) (14)

in which λ1, ..., λn are the n eigenvalues of A.
We can now say without qualification that each matrix A ∈ Mn has ex-

actly n eigenvalues among the complex numbers ; the trace and determinant
of A are the sum and product, respectively, of its eigenvalues.
Remark. The elements of the set σ(A) are the distinct eigenvalues of A.

Since we now know that each n-by-n complex matrix has finitely many
eigenvalues, we may unambiguously make the following definition.

Definition 3.4. Let A ∈ Mn. The spectral radius of A is ρ(A) = max{|λ| :
λ ∈ σ(A)}.

Thanks to the finiteness of eigenvalues of A ∈ Mn, we conclude that all
its eigenvalues lie in the closed bounded disk {z : z ∈ C and |z| ≤ ρ(A)} in
the complex plane.

If A = [aij] ∈ Mn(R), some or all of its eigenvalues might not be real.
Suppose that A has an eigenvalue λ that is not real. We claim that λ̄ is also
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an eigenvalue of A. This is because by the representation (11) of det(tI−A),
the coefficients of pA(t) are products of aij or the sums of products of aij,
which are all real. Since pA(λ) = 0, we find that

0 = 0̄ = pA(λ) = pA(λ̄),

which means that λ̄ is an eigenvalue, as claimed. Furthermore, rewriting
pA(t) = (t − λ)(t − λ̄)g(t), together with inductive arguments, we can de-
duce that the algebraic multiplicities of λ and λ̄ are the same. In addition, if
x, λ is an eigenpair for A, we immediately know that x̄, λ̄ is also an eigenpair.

Before conducting more in-depth investigations on the coefficients of char-
acteristic polynomials, we digress for a moment to discuss eigenvalues of some
special matrices. Here we introduce some preliminary knowledge about sub-
matrices and block matrices.

Let A ∈ Mm,n(F). For index sets α ⊆ {1, ...,m} and β ⊆ {1, ..., n}, we
denote by A[α, β] the (sub)matrix of entries that lie in the rows of A indexed
by α and the columns indexed by β. For example,1 2 3

4 5 6
7 8 9

 [{1, 3}, {1, 2, 3}] =

[
1 2 3
7 8 9

]
If α = β, the submatrix A[α] = A[α, α] is a principal submatrix of A.

The determinant of an r-by-r submatrix of A is called a minor ; if we wish
to indicate the size of the submatrix, we call its determinant a minor of size
r. If the r-by-r submatrix is a principal submatrix, then its determinant is
a principal minor (of size r).
Remark. By convention, the empty principal minor is 1, i.e., detA[∅] = 1.

If a matrix is partitioned by sequential partitions of its rows and columns,
the resulting partitioned matrix is called a block matrix. For example, if the
rows and columns of A ∈ Mn(F) are partitioned by the same sequential
partition α1 = {1, ..., k}, α2{k + 1, ..., n}, the resulting block matrix is

A =

[
A[α1, α1] A[α1, α2]
A[α2, α1] A[α2, α2]

]
=

[
A11 A12

A21 A22

]
in which the blocks are Aij = A[αi, αj].
Remark. Computations with block matrices are employed throughout the
book; 2-by-2 block matrices are the most important and useful.
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To compute the eigenvalues and determinant of I+xy∗, where x, y ∈ Cn,
we introduce an important concept in the field of both matrix theory and
convex optimization, Schur complements. Let A ∈ Mn(F) be partitioned
into a 2-by-2 block matrix,

A =

[
A11 A12

A21 A22

]
in which A11 is nonsingular. Suppose that we want to compute detA as well
as the inverse of A. It would be convenient if A has a block diagonal form.
Thus, we utilize block Gaussian elimination to transform A as[

I 0
−A21A

−1
11 I

] [
A11 A12

A21 A22

] [
I −A−111 A12

0 I

]
=

[
A11 0
0 A22 − A21A

−1
11 A12

]
(15)

The special matrix

S = A/A11 = A22 − A21A
−1
11 A12 (16)

is called the Schur complement of A11 in A. Therefore, we have the following
determinantal formula for A,

detA = detA11 det(A22 − A21A
−1
11 A12) (17)

Meanwhile, a useful expression for the corresponding partitioned presentation
of A−1 is

A−1 =

[
I −A−111 A12

0 I

] [
A−111 0

0 S−1

] [
I 0

−A21A
−1
11 I

]
=

[
A11 + A−111 A12S

−1A21A
−1
11 −A−111 A12S

−1

−S−1A21A
−1
11 S−1

] (18)

When A22 consists of a single element, the Schur complement of A11 in
A is a scalar and A can be rewritten as

A =

[
Ã x
yT a

]
with a ∈ F, x, y ∈ Fn−1, and F̃ ∈Mn−1(F). Then (17) reduces to the identity

detA = det

[
Ã x
yT a

]
= (det Ã) (a− yT Ã−1x)

= a det Ã− yT (adj Ã)x

(19)

15
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where we use the fact that the adjugate adj Ã = (det Ã)Ã−1. (The definition
of the adjugate of A is adjA =

[
(−1)i+j detA[{j}c, {i}]

]
, which is also called

the classical adjoint ofA.) The expression (19) is called the Cauchy expansion
of the determinant of a bordered matrix, which is valid even if A11 is singular.
If a 6= 0, we can use the Schur complement of [a] in A to express

det

[
Ã x
yT a

]
= a det(Ã− a−1xyT )

Equating the right-hand side of this identity to that of (19) and setting a =
−1 gives Cauchy’s formula for the determinant of a rank-one perturbation

det(Ã+ xyT ) = det(Ã) + yT (adj Ã)x (20)

Now we are ready to compute the determinants of some particular ma-
trices. One of them is the so-called Brauer’s theorem.

Example 3.5. Let x, y ∈ Cn. We now compute the eigenvalues and deter-
minant of I + xy∗.
Using (20) and the fact that adj(αI) = αn−1I , we calculate

pI+xy∗(t) = det(tI − (I + xy∗)) = det((t− 1)I − xy∗)
= det((t− 1)I)− y∗adj((t− 1)I)x

= (t− 1)n − (t− 1)n−1y∗x = (t− 1)n−1(t− (1 + y∗x))

Thus, the eigenvalues of I + xy∗ are 1 + y∗x and 1 (with multiplicity n− 1),
so det(I + xy∗) = (1 + y∗x)(1)n−1 = 1 + y∗x.

Theorem 3.6 (Brauer). Let x, y ∈ Cn, x 6= 0, and A ∈ Mn. Suppose that
Ax = λx and let the eigenvalues of A be λ, λ2, ..., λn. Then the eigenvalues
of A+ xy∗ are λ+ y∗x, λ2, ..., λn.

Proof. First, (t − λ)x = (tI − A)x implies that (t − λ)adj(tI − A)x =
adj(tI − A)(tI − A)x = det(tI − A)x, that is,

(t− λ)adj(tI − A)x = pA(t)x (21)

Apply (20) to compute

pA+xy∗(t) = det(tI − (A+ xy∗)) = det((tI − A)− xy∗)
= det(tI − A)− y∗adj(tI − A)x

16
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Multiply both sides by (t− λ), use (21), and obtain

(t− λ)pA+xy∗(t) = (t− λ) det(tI − A)− y∗(t− λ)adj(tI − A)x

= (t− λ)pA(t)− pA(t)y∗x

which is the polynomial identity

(t− λ)pA+xy∗(t) = (t− (λ+ y∗x))pA(t)

The zeroes of the left-hand polynomial are λ together with the n eigen-
values of A + xy∗, while the zeroes of the right-hand polynomial are λ +
y∗x, λ, λ2, ..., λn. It follows that the eigenvalues of A + xy∗ are simply λ +
y∗x, λ2, ..., λn. �

We now return to the main stream of this section, and express the co-
efficients of the characteristic polynomial in terms of the sum of principle
minors.

Definition 3.7. Let A ∈ Mn. The sum of its principle minors of size k
(there are

(
n
k

)
of them) is denoted by Ek(A).

We have already encountered principle minor sums as two coefficients of
the characteristic polynomial in Observation (3.2)

pA(t) = tn + an−1t
n−1 + · · ·+ a2t

2 + a1t+ a0 (22)

If k = 1, then
(
n
k

)
= n and E1(A) = a11 + · · ·+ ann = trA = −an−1; if k = n,

then
(
n
k

)
= 1 and En(A) = detA = (−1)na0. The border connection between

coefficients and principal minor sums is a consequence of the fact that the
coefficients are explicit functions of certain derivatives of pA(t) at t = 0:

ak =
1

k!
p
(k)
A (0), k = 0, ..., n− 1 (23)

We need to deduce the derivative of the determinant.

Proposition 3.8. Let A(t) = [a1(t) · · · an(t)] = [aij(t)] be an n-by-n com-
plex matrix whose entries are differentiable functions of t and define A′(t) =
[a′ij(t)]. The derivative of detA(t) is d

dt
detA(t) = tr((adjA(t))A′(t)). More-

over, d
dt

det(tI − A) = tr(adj(tI − A)).

17
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Proof. The first formula follows from multilinearity of the determinant (11)

and the fact that
n∑
i=1

n∑
j=1

aijbij = tr(ATB),

d

dt
detA(t) =

n∑
j=1

det(A(t)←−
j
a′j(t)) =

n∑
i=1

n∑
j=1

((adjA(t))T )ija
′
ij(t)

= tr((adjA(t))A′(t)),

(24)

where the notation (A(t) ←−
j
a′j(t)) denotes the matrix whose jth column is

a′j(t) and whose remaining columns coincide with those of A(t), i.e., (A(t)←−
j

a′j(t)) = [a1(t) · · · aj−1(t) a′j(t) aj+1(t) · · · an(t)].
If A ∈Mn and A(t) = tI − A, then A′(t) = I and

d

dt
det(tI − A) = tr((adjA(t))I) = (tr(adj(tI − A)) (25)

as claimed. �

Proposition 3.8 tells us that p′A(t) = tr adj(tI−A). Observe that tr(adjA)
is the sum of the principal minors of A of size n−1, i.e., tr(adjA) = En−1(A).
Then

a1 = p′A(t)|t=0 = tr(adj(tI − A))|t=0 = tr(adj(−A))

= (−1)n−1tr(adjA) = (−1)n−1En−1(A)

Again, observe that tr(adj(tI − A)) = En−1(tI − A) =
n∑
i=1

pA(i)
(t) is the

sum of the characteristic polynomials of the n principal submatrices of A
of size n − 1, which we denote by A(1), ..., A(n). Use the second result of
Proposition 3.8 again to evaluate

p′′A(t) =
d

dt
tr(adj(tI − A)) =

n∑
i=1

d

dt
pA(i)(t) =

n∑
i=1

tr(adj(tI − A(i))) (26)

Each summand tr(adj(tI − A(i))) is the sum of the n − 1 principal minors
of size n − 2 of a principal minor of tI − A, so each summand is a sum of
certain principal minors of tI − A of size n− 2. Each of the

(
n
n−2

)
principal

minors of tI−A of size n− 2 appears twice in (26): the principal minor with

18
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rows and columns k and ` omitted appears when i = k as well as when i = `.
Thus,

a2 =
1

2
p′′A(t)|t=0 =

1

2

n∑
i=1

tr(adj(tI − A(i)))|t=0 =
1

2

n∑
i=1

tr(adj(−A(i)))

=
1

2
(−1)n−2tr(adjA(i)) =

1

2
(−1)n−2(2En−2(A))

= (−1)n−2En−2(A).

Repeating this argument reveals that p
(k)
A (0) = k!(−1)n−kEn−k(A), k = 0, 1, ..., n−

1, so the coefficients of the characteristic polynomial (22) are

ak =
1

k!
p
(k)
A (0) = (−1)n−kEn−k(A), k = 0, 1, ..., n− 1

and hence

pA(t) = tn − E1(A)tn−1 + · · ·+ (−1)n−1En−1(A)t+ (−1)nEn(A) (27)

In order to express the coefficients of the characteristic function pA(t) (or
Ei(A)) in terms of eigenvalues of A, we make the following definition:

Definition 3.9. The kth elementary symmetric function of n complex num-
bers λ1, ..., λn, k ≤ n, is

Sk(λ1, ..., λn) =
∑

1≤i1<···<ik≤n

k∏
j=1

λij

Notice that the sum has
(
n
k

)
summands. If A ∈ Mn and λ1, ..., λn are its

eigenvalues, we define Sk(A) = Sk(λ1, ..., λn).

A calculation with (14) reveals that

pA(t) = tn − S1(A)tn−1 + · · ·+ (−1)n−1Sn−1(A)t+ (−1)nSn(A) (28)

Comparison of (27) and (28) yields the following identities between elemen-
tary symmetric functions of eigenvalues of a matrix and sums of its principal
minors.

Theorem 3.10. Let A ∈Mn. Then Sk(A) = Ek(A) for each k = 1, ..., n.
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Singular matrices are annoying but ubiquitous under real-world scenar-
ios. The next theorem ensures that a singular matrix can always be shifted
slightly to become nonsingular and therefore we can compute its inverse.
Also, it permits us to use continuity arguments to deduce results about sin-
gular matrices from properties of nonsingular matrices.

Theorem 3.11. Let A ∈ Mn. There is some δ > 0 such that A + εI is
nonsingular whenever ε ∈ C and 0 < |ε| < δ

Proof. Observation 2.10 shows that λ ∈ σ(A) if and only if λ+ ε ∈ σ(A+ εI).
Thus, 0 ∈ σ(A + εI) if and only if λ + ε = 0 for some λ ∈ σ(A), that is, if
and only if ε = −λ for some λ ∈ σ(A).
If all the eigenvalues of A are zero, take δ = 1.
If some eigenvalues of A is nonzero, let δ = min{|λ| : λ ∈ σ(A) and λ 6= 0}.
If we choose any ε such that 0 < |ε| < δ, we are assured that −ε /∈ σ(A), so
0 /∈ σ(A+ εI) and A+ εI is nonsingular. �

There is a useful connection between the derivatives of a polynomial p(t)
and the multiplicity of its zeroes: α is a zero of p(t) with multiplicity k ≥ 1
if and only if we can write p(t) in the form

p(t) = (t− α)kq(t)

where q(t) is a polynomial such that q(α) 6= 0. Differentiating this identity
with respect to t repeatedly, we know that α is a zero of p(t) of multiplicity
k if and only if p(α) = p′(α) = · · · = p(k−1)(α) = 0 and p(k)(α) 6= 0.

Theorem 3.12. Let A ∈ Mn and suppose that λ ∈ σ(A) has algebraic
multiplicity k. Then rank(A− λI) ≥ n− k with equality for k = 1.

Proof. Apply the previous observation to the characteristic polynomial pA(t)
of a matrix A ∈ Mn that has an eigenvalue λ with multiplicity k ≥ 1. Let
B = A−λI. Obviously, 0 is an eigenvalue of B with multiplicity k and hence
p
(k)
B (0) 6= 0.

Since p
(k)
B (0) = k!(−1)n−kEn−k(B), we find that En−k(B) 6= 0. In particular,

some principal minor of B = A−λI of size n−k is nonzero, so rank(A−λI) ≥
n− k.
If k = 1, we can say more: A− λI is singular, so n > rank(A− λI) ≥ n− 1,
which means that rank(A − λI) = n − 1 if the eigenvalue λ has algebraic
multiplicity 1. �
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