Your title

Your name*

June 19, 2018

Abstract

A concise summary of the whole reading report and main findings

1 Introduction

A brief overview of the subject or research field that you are going to discuss.

2 Background

Definition 2.1. A list of vectors $x_{1}, \ldots, x_{k} \in \mathbf{C}^{n}$ is orthogonal if $x_{i}^{*} x_{j}=0$ for all $i \neq j, i, j \in\{1, \ldots, k\}$. If, in addition, $x_{i}^{*} x_{i}=1$ for all $i=1, \ldots, k$ (that is, the vectors are normalized), then the list is orthonormal.

Example 2.2 (normalization). If $y_{1}, \ldots, y_{k} \in \mathbf{C}^{n}$ are orthogonal and nonzero, the vectors x_{1}, \ldots, x_{k} defined by $x_{i}=\left(y_{i}^{*} y_{i}\right)^{-\frac{1}{2}} y_{i}, i=1, \ldots, k$ are orthonormal.

Theorem 2.3. Every orthogonal list of vectors in \mathbf{C}^{n} is linearly independent.
Proof. Suppose that $\left\{y_{1}, \ldots, y_{k}\right\}$ is an orthogonal set. Normalize them as Example 2.2 did and obtain an orthonormal list of vectors $\left\{x_{1}, \ldots, x_{k}\right\}$. Assume that $0=$ $\alpha_{1} x_{1}+\cdots+\alpha_{k} x_{k}$. Then $0=\left(\alpha_{1} x_{1}+\cdots+\alpha_{k} x_{k}\right)^{*}\left(\alpha_{1} x_{1}+\cdots+\alpha_{k} x_{k}\right)=\sum_{i, j} \bar{\alpha}_{i} \alpha_{j} x_{i}^{*} x_{j}=$ $\sum_{i=1}^{k}\left|\alpha_{i}\right|^{2} x_{i}^{*} x_{i}=\sum_{i=1}^{k}\left|\alpha_{i}\right|^{2}$ because the vectors x_{i} are orthonormal. Thus, all $\alpha_{i}=0$ and hence $\left\{x_{1}, \ldots, x_{k}\right\}$ is a linearly independent set, which in turn means that $\left\{y_{1}, \ldots, y_{k}\right\}$ is linearly independent.

3 Method and Evaluation

Main section of the reading report. It contains your solutions to the exercises, your methodology to address the problem, and your experimental results.

[^0]
4 Conclusions

Summarize what you have written in previous sections and discuss your understandings of possible future research directions.

References

[1] Roger A. Horn, Charles R. Johnson (2012) Matrix Analysis, Second Edition. Cambridge University Press.

[^0]: *Your institution

