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In this article we provide generalizations of Specht’s theorem which states that two n� n
matrices A and B are unitarily equivalent if and only if all traces of words in two non-
commuting variables applied to the pairs ðA,A�Þ and ðB,B�Þ coincide. First, we obtain
conditions which allow us to extend this to simultaneous similarity or unitary equivalence
of families of operators, and secondly, we show that it suffices to consider a more restricted
family of functions when comparing traces. Our results do not require the traces of words
in ðA,A�Þ and ðB,B�Þ to coincide, but only to be close.
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1. Introduction

A useful tool in determining whether two n� n complex matrices A and B are similar
is to compare their Jordan canonical forms. In practice, deciding whether they are
unitarily equivalent is a much more difficult problem. A theorem of Specht [5]
tells us that A and B are unitarily equivalent if and only if trðwðA,A�ÞÞ ¼ trðwðB,B�ÞÞ

for all words w in two non-commuting variables. Specht’s theorem was later
improved by Pearcy [4], who showed that A, B 2 MnðCÞ are unitarily equivalent
if and only if trðwðA,A�ÞÞ ¼ trðwðB,B�ÞÞ for all words w of degree at most 2n2. (In a
private communication, Djokovic has informed us that by combining a theorem
of Razmyslov with the work of Procesi, it can be shown that in fact it suffices to
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consider words of length at most n2. More precisely, Razmyslov’s result improves
a bound in the Nagata-Higman theorem, while the work of Procesi establishes the
equality of that bound and the length of words necessary to determine the unitary
equivalence of two n� n matrices. The proof, however, is somewhat involved, and
will not be elaborated here. We direct the interested reader to Chapter 6 of [1]).

The present work examines to what extent the Specht’s theorem can be generalized.
First, one can ask whether by only knowing that the traces of the words in A and A* are
close to the traces of the same words in B and B* implies that A and B are close to being
unitarily equivalent. In section 2, we show that if A and B are unitary matrices for which
trðAkÞ lies within distance 1 of trðBkÞ for all powers k 2 Z, then A and B are unitarily
equivalent. In section 3, we consider the indexed families for which the traces of
words are close. Under certain natural conditions, we are able to conclude the existence
of a single invertible matrix which implements the simultaneous similarity of the two
families (see Corrollary 3.10). When the families are self-adjoint, the notion of similarity
may be replaced by a unitary equivalence.

One may also ask whether it is sufficient to consider a more restricted class of
words w in two non-commuting variables in the statement of the Specht’s theorem.
In section 4, we show that if A, B 2 MnðCÞ and if trjpðA,A�Þj ¼ trjpðB,B�Þj for all
polynomials p in two non-commuting variables (here jTj ¼ ðT �TÞ1=2 for T 2 MnðCÞ),
then A is unitarily equivalent to B. This condition is shown to be equivalent
to a condition involving only projection-valued polynomials.

2. The single variable unitary case

Suppose y1, y2, . . . , yr are complex numbers of modulus 1. We shall say that
y1, y2, . . . , yr are independent if for each quotient f of two words (i.e. monomials) in
r variables (equivalently, if f is a word in r variables and their inverses), the condition
f ðy1, y2, . . . , yrÞ ¼ 1 implies that f � 1. An equivalent formulation is that y1, y2, . . . , yr
are independent if ðlogðykÞ=2�iÞk¼1,..., r and 1 are linearly independent over the rational
numbers.

LEMMA 2.1 If x1, . . . , xm are complex numbers of modulus 1, then there exist y1, . . . , yr,
independent numbers of modulus 1, functions f1, . . . , fm, quotients of words, and torsion
elements x01, . . . , x

0
m so that xk ¼ x0k fkðy1, . . . , yrÞ.

Proof Let z1, . . . , zr be a maximal independent subset of x1, . . . , xm and abbreviate
z ¼ ðz1, . . . , zrÞ. Note that there exist functions gk, words in r variables and their inverses
and positive integers nk, such that xnkk ¼ gjðzÞ. Let n ¼ n1n2 � � � nm and choose y ¼ ðyjÞj
so that ynj ¼ zj. Now define fk ¼ gn=nkk and note that numbers x0k ¼ xk=fkðyÞ are
torsion. Indeed

ðx0kÞ
nk ¼

xnkk
f nkk ðyÞ

¼
xnkk
gnkðyÞ

¼
xnkk
gkðzÞ

¼
xnkk
xnkk

¼ 1: &

LEMMA 2.2 Suppose that ða1, . . . , anÞ and ðb1, . . . , bnÞ are two n-tuples of complex
numbers. Suppose furthermore that there exists an integer m > 1 for which
amj ¼ bmj ¼ 1 for all 1 � j � n. If there does not exist a permutation � of f1, 2, . . . , ng
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such that aj ¼ b�ðjÞ for all 1 � j � n, then for some 1 � k � ðm� 1Þ we must have

Xn
j¼1

akj � bkj

� ������
����� � m

m� 1
:

Proof Suppose, on the contrary, that for all 1 � k < m we have

Xn
j¼1

akj � bkj

� ������
����� < m

m� 1
:

Since ðb1, . . . , bnÞ is not just a permutation of ða1, . . . , anÞ, there exists some 1� i0� n
so that the term ai0 appears more frequently in the sequence ða1, . . . , anÞ than
it does as a term in the sequence ðb1, . . . , bnÞ. Since our inequality is independent
of permutations of the aj’s and the bj’s, we may assume without loss of generality
that i0 ¼ 1 and a fortiori that

(i) a1 ¼ a2 ¼ � � � ¼ ad1 for some 1 � d1 � n,
(ii) a1 ¼ b1 ¼ b2 ¼ � � � ¼ bd2 for some 0 � d2 < d1, and
(iii) bj 6¼ a1, j > d2.

Moreover, since
Pn

j¼1ða
k
j � bkj Þ ¼

Pn
j¼d2þ1ða

k
j � bkj Þ for each 1 � k, we can in turn

restrict our attention to ðad2þ1, . . . , anÞ and ðbd2þ1, . . . , bnÞ. If we next divide these
remaining aj’s and bj’s by ad2þ1 and relabel the index set to run from 1 to
N :¼ n� d2, then we see that we have reduced the problem to the case where:

(a) a1 ¼ 1 and 1 62 fb1, . . . , bNg;
(b) amj ¼ 1 ¼ bmj , 1 � j � N, and
(c) j

PN
j¼1ða

k
j � bkj Þj < m=ðm� 1Þ, 1 � k < m. (Clearly this also holds for k¼ 0.)

Also note that for each 1 � j � N, we have

Xm�1

k¼0

bkj ¼ 0

and

Xm�1

k¼0

akj ¼
m; aj ¼ 1
0; aj 6¼ 1:

�

Hence, if r :¼ d1 � d2 > 0 is the number of 1’s among aj’s, then we have

XN
j¼1

Xm�1

k¼1

akj � bkj

� �
¼
XN
j¼1

Xm�1

k¼0

akj � bkj

� �
¼ rm � m:

Now compute

m ¼
Xm�1

k¼1

m

m� 1

� �
>
Xm�1

k¼1

XN
j¼1

akj � bkj

� ������
����� �

Xm�1

k¼1

XN
j¼1

akj � bkj

� ������
����� ¼ rm � m,

a contradiction. From this the desired conclusion follows. g
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THEOREM 2.3 If A and B are unitary matrices such that

jtrAl � trBlj � 1

for all l 2 Z, then A and B are unitarily equivalent.

Proof Without any loss of generality we can assume that A ¼ diagða1, . . . , anÞ,
B ¼ diagðb1, . . . , bnÞ for some complex numbers al and bl of modulus 1. Suppose that
A and B are not unitarily equivalent. Through an argument similar to the one
used in the previous lemma, we may reduce the problem to the case where a1¼ 1 and
bl 6¼ 1 for any l. We can then use Lemma 2.1 to find c1, . . . , cr independent numbers
from the unit circle, �l, �l, quotients of words and torsion elements a0l and b0l
such that al ¼ a0l�lðcÞ and bl ¼ b0l�lðcÞ (here we abbreviate c ¼ ðc1, . . . , crÞ).

For j ¼ 1, . . . , r define dj ¼ e2�i=pj , where pj are primes to be chosen as follows.
First choose p1 from primes larger than any order of b0l. When primes p1, . . . , pj�1

have been chosen then choose pj from primes that are larger than any of the orders of

b0l�lðd1, . . . , dj�1, 1, . . . , 1Þ:

Primes pj were chosen in this manner to ensure that b00l :¼ b0l�lðdÞ 6¼ 1. Indeed, if j0 is the
largest integer such that the order of xj0 in �l is non-zero, then the order of b00l must be
divisible by pj0 . Now define also a00l :¼ a0l�lðd Þ, A1 ¼ diagða00l Þ and B1 ¼ diagðb00l Þ. Since
the matrices A1 and B1 are clearly of the finite order, there exists an integer m1 such
that Am1

1 ¼ 1 ¼ Bm1

1 . Since a001 ¼ 1 and b00l 6¼ 1 the sequences of a00l ’s and b00l ’s cannot be
permutations of each other and hence by Lemma 2 there exists a positive integer
l1<m1 such that jtrAl1

1 � trBl1
1 j � m1=ðm1 � 1Þ.

Now simultaneous approximation yields an integer k so that ck ¼ ðckj Þ is so close
to d that the numbers j�lðc

kÞ
l1 � �lðdÞ

l1 j and j�lðc
kÞ

l1 � �lðdÞ
l1 j are smaller than

ð1=2nðm1 � 1ÞÞ (and hence jtrAl1k � trAl1
1 j þ jtrBl1k � trBl1

1 j < 1=ðm1 � 1Þ). But then

trAl1k � trBl1k
�� �� � trAl1

1 � trBl1
1

��� ���� trAl1k � trAl1
1

��� ���� trBl1k � trBl1
1

��� ���
>

m1

m1 � 1
�

1

m1 � 1
¼ 1,

a contradiction. g

3. Results about groups

3.1 For arbitrary matrices A, B 2 MnðCÞ, knowing that trðwðA,A�ÞÞ is close to
trðwðB,B�Þ for all words w does not tell us very much about A and B. For example,
if we fix ">0 and choose A, B so that kAk, kBk < "=n, then
kwðA,A�Þk, kwðB,B�Þk< "=n for all words w, and so jtrðwðA,A�ÞÞ � trðwðB,B�ÞÞj < 2".
If we let A0 ¼ In � A and B0 ¼ In � B in M2nðCÞ, then kA0k ¼ kB0k ¼ 1 and yet the
same trace inequality holds for A0 and B0, showing that it is not just a matter of the
norms of the original matrices being too small.
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One way to avoid this problem is to require that A and B be invertible, which is what
we shall now do. In fact, we are able to obtain results about the simultaneous unitary
equivalence of families of matrices whose traces remain (relatively) close.

LEMMA 3.2 Let r, s � 1 be integers. Suppose that 0< �<1 is fixed, !1,!2, . . . ,!r

and �1, �2, . . . , �s are complex numbers of modulus one and that there exists k0 2 N

so that k � k0 implies

Xr
i¼1

!k
i �

Xs
j¼1

�kj

�����
����� � �:

Then s ¼ r and there exists a permutation � of f1, 2, . . . , rg such that !i ¼ ��ðiÞ,
1 � i � r.

Proof We may assume without loss of generality that r � s. Let 0 < " < ð1� �Þ=2.
We can find k1 > k0 so that j1� !k1

i j1 < "=r for all 1 � i � r and j1� �k1j j1 < "=s for
all 1 � j � s. Then

jr� sj � r�
Xr
i¼1

!k1
i

�����
�����þ

Xr
i¼1

!k1
i �

Xs
j¼1

�k1j

�����
�����þ

Xs
j¼1

�k1j � s

�����
����� ð1Þ

and

� "þ �þ " < 1: ð2Þ

Since r and s are integers, r ¼ s.
The result now follows as an easy application of Theorem 2.3. For each k � k0,

let Ak :¼ diagð!k
1, . . . ,!

k
r Þ, Bk :¼ diagð�k1, . . . , �

k
r Þ. By Theorem 2.3, Ak and Bk are

unitarily equivalent and as such they have the same eigenvalues appearing with equal
multiplicities. Thus there exists a permutation �k of f1, 2, . . . , rg so that !k

i ¼ ð�k�kðiÞ
Þ,

1 � i � r. Since there are infinitely many primes bigger than k0, but only finitely
many permutations of f1, 2, . . . , rg, we can choose two distinct primes p, q > k0
so that �p ¼ �q. Then !p

i ¼ �p�pðiÞ
and !q

i ¼ �q�pðiÞ
with p and q relatively prime implies

!i ¼ ��p
ði Þ, 1 � i � r, completing the proof. g

LEMMA 3.3 Suppose m� 1, �1,�2, . . . ,�m,�1,�2, . . . ,�m 2 Cnf0g and that

Xm
i¼1

�ki � �k
i

� ������
����� � 1 for all k 2 Z: ð3Þ

Then there exists a permutation � of f1, 2, . . . ,mg so that �i ¼ ��ðiÞ, 1 � i � m.

Proof If j�ij ¼ 1 ¼ j�ij for all 1 � i � m, then by setting A :¼ diagð�1, . . . ,�mÞ

and B ¼ diagð�1, . . . ,�mÞ, we see that jtrAk � trBkj � 1 for all k 2 Z, and so by
Theorem 2.3 again, A and B are unitarily equivalent. As before, this implies that
they have the same eigenvalues appearing with the same multiplicities, from which
the existence of � immediately follows.
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Let us next assume that some j�ij 6¼ 1 or some j�ij 6¼ 1.
Observe that in the statement of the lemma we can replace each �i by ��1

i

if we also replace each �i by ��1
i . Using this fact, and switching the roles of �i

and �i if necessary, it is not hard to see that without loss of generality, we may
assume that

. j�1j � j�2j � � � � � j�mj;

. j�1j � j�2j � � � � � j�mj;

. j�1j > 1; and

. j�1j � j�1j.

Our argument will proceed by induction upon the number m of terms.

Step 1 m¼ 1.
Now j�1j > 1 and j�1j � j�1j. If �1 6¼ �1, then limk!1 j�k

1 � �k
1j ¼ 1. In particular,

there exists k 2 N so that j�k
1 � �k

1j > 1, contradicting our assumption. Thus �1 ¼ �1
in this case.

Step 2 m > 1.
Suppose that the result holds for m0 < m. Now consider �1,�2, . . . ,�m, �1,�2, . . . ,�m

satisfying the inequalities (7). Fix 1 � r, s � m maximal with respect to the conditions
j�1j ¼ j�2j ¼ � � � ¼ j�rj, j�1j ¼ j�2j ¼ � � � ¼ j�sj.

Set !j ¼ �j=j�1j and �j ¼ �j=j�1j, 1 � j � m. Note that j!jj ¼ 1, 1 � j � r, j!jj < 1
if j > r, j�jj < 1 if j > s, then

Xr
i¼1

!k
i �

Xs
j¼1

�kj þ
Xm
i¼rþ1

!k
i �

Xm
j¼sþ1

�kj

" #�����
����� � 1

j�1j
k
, k 2 Z: ð4Þ

Suppose j�1j < 1 (i.e., j�1j < j�1j) and " < 1=2. Then we can choose k0 sufficiently
large so that k � k0 implies that

(i) 1=j�1j
k < "=4 and

(ii)
Pm

i¼rþ1 j!ij
k þ

Pm
j¼1 j�jj

k < "=4.

Moreover, since each j!ij ¼ 1, 1 � i � r, we can find k1� k0 so that j1� !k1
i j < "=ð4rÞ,

1 � i � r. From equation (4) we deduce that

r � r�
Xr
i¼1

!k1
i

�����
�����þ

Xm
i¼rþ1

j!ij
k1 þ

Xm
j¼1

j�jj
k1 þ

Xm
i¼1

!k1
i �

Xm
j¼1

�k1j

�����
����� ð5Þ

� "=4þ "=4þ "=4 ¼ 3"=4 < 1, ð6Þ

a contradiction since r� 1.
It follows therefore that j�1j ¼ 1, whence j!1j ¼ � � � ¼ j!rj ¼ 1 ¼ j�1j ¼ � � � ¼ j�sj.

Since j!ij < 1 if i > r and j�jj < 1 if j > s, we can find an integer k2 > 0 so that
k � k2 implies

(a) 1=j�1j
k< "=4 and

(b)
Pm

i¼rþ1 j!ij
k þ

Pm
j¼sþ1 j�jj

k< "=4.
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From equation (4) we see that for k � k2,

Xr
i¼1

!k
i �

Xs
j¼1

�kj

�����
����� � 1

j�1j
k
þ
Xm
i¼rþ1

j!ij
k þ

Xm
j¼sþ1

j�jj
k ð7Þ

< "=4þ "=4 < 1=2: ð8Þ

By Lemma 3.2, s ¼ r and there exists a permutation �0 of f1, 2, . . . , rg so that
!i ¼ ��0ðiÞ, 1 � i � r. It follows that �i ¼ ��0ðiÞ, 1 � i � r. But then equation (3) holds
for �rþ1, . . . ,�m, �rþ1, . . . ,�m in that for all k 2 Z,

Xm
i¼rþ1

�k
i � �k

i

� ������
����� ¼

Xr
i¼1

�k
i � �k

�0ðiÞ

� �
þ
Xm
i¼rþ1

�k
i � �k

i

� ������
����� ð9Þ

¼
Xm
i¼1

�k
i � �k

i

� ������
����� � 1: ð10Þ

Since m0 :¼ m� r < m, we may apply our induction hypothesis to obtain a permutation
�1 of frþ 1, rþ 2, . . . ,mg so that �i ¼ ��1ðiÞ, rþ 1 � i � m. This clearly establishes
our claim. g

As a simple consequence of the above lemma, we obtain the following.

PROPOSITION 3.4 Suppose that A,B 2 MnðCÞ are two invertible matrices and that

jtrðAkÞ � trðBkÞj � 1

for all k 2 Z. Then �ðAÞ ¼ �ðBÞ, including multiplicities.

Proof We can (without loss of generality) assume that both A ¼ ½aij	 and B ¼ ½bij	
are in upper triangular form. Let �i ¼ aii, �i ¼ bii, 1� i � n. Since A, B are
invertible, �i 6¼ 0 6¼ �i for all 1 � i � n. Our trace condition implies that

Xn
i¼1

�k
i � �k

i

� ������
����� ¼ trðAkÞ � trðBkÞ

�� ��
� 1 for all k 2 Z:

By Lemma 3.3, there exists a permutation � of f1, 2, . . . , ng such that �i ¼ ��ðiÞ,
1 � i � n. g

THEOREM 3.5 Suppose that A,B 2 MnðCÞ are two invertible matrices and that for all
words w in two non-commuting variables we have:

jtrðwðA,A�ÞÞ � trðwðB,B�ÞÞj � 1,

and

jtrðwðA,A�Þ
�1
Þ � trðwðB,B�Þ

�1
Þj � 1:

Then A is unitarily equivalent to B.
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Proof Let w denote an arbitrary (but temporarily fixed) word in two non-commuting
variables. Let A0 ¼ wðA,A�Þ and B0 ¼ wðB,B�Þ. Note that any word in A0 (resp. B0)
is just another word in A and A* (resp. B and B*). The conditions in the statement
of the theorem therefore imply that

jtrðAk
0Þ � trðB0Þ

k
j � 1

for all k 2 Z, and so by Proposition 3.4, �ðA0Þ ¼ �ðB0Þ, including multiplicities.
But then trðwðA,A�ÞÞ ¼ trðA0Þ ¼ trðB0Þ ¼ trðwðB,B�ÞÞ. Since w was arbitrary, Specht’s
theorem implies that A and B are unitarily equivalent. g

3.6 In [2], a semigroup of operators G 
 MnðCÞ was defined to be semisimple if its
linear span forms a semisimple algebra. We extend this definition slightly, namely:
we shall say that a non-empty subset A 
 MnðCÞ is semisimple if the algebra AlgA
generated by A is semisimple. When A is a semigroup, these two notions coincide.
Also, if A is an algebra to begin with, then all definitions of semisimplicity are
consistent.

We say that a family A 
 MnðCÞ is self-adjoint if T 2 A implies that T � 2 A. It is
readily verified that any self-adjoint family A is semisimple in the above sense.

We next recall a theorem of Hladnik, Omladic̆, and the third author of the
present work which we need. We do not state that theorem in its full generality,
but rather only in the context we require.

THEOREM 3.7 [2] Suppose that G and H are two semisimple semigroups of invertible
n� n matrices. If ’ : G ! H is a surjective, trace-preserving semigroup homomorphism,
then there exists an invertible operator R 2 MnðCÞ so that

’ðAÞ ¼ R�1AR for all A 2 G:

Let us write AdR to denote the map X�R�1XR. The domain of this map will be
clear from the context.

THEOREM 3.8 Let G, H 
 MnðCÞ be two semisimple groups of invertible matrices.
If ’ : G ! H is a surjective homomorphism, and if

trð’ðAÞÞ � trðAÞ
�� �� � 1 for all A 2 G,

then ’ ¼ AdR for some invertible operator R 2 MnðCÞ.

Proof Fix A 2 G and set B ¼ ’ðAÞ. Since the trace condition holds for all members
of the group G, we have

trðBkÞ � trðAkÞ
�� �� ¼ trð’ðAkÞÞ � trðAkÞ

�� ��
� 1 for all k 2 Z:

By Proposition 3.4, �ðAÞ ¼ �ðBÞ including multiplicities. But then trðBÞ ¼ trð’ðAÞÞ ¼
trðAÞ. Since A 2 G was arbitrary, ’ is a trace preserving surjective homomorphism
among the semisimple groups of Mn(C). It follows from Theorem 3.7 above that
’ ¼ AdR for some invertible operator R 2 MnðCÞ. g
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Recall that if A 2 MnðCÞ, then the absolute value of A is the element jAj ¼ ðA�AÞ1=2.

COROLLARY 3.9 If G, H are self-adjoint subgroups of the invertible group of Mn(C)
and ’ : G ! H is a surjective �-homomorphism satisfying

trð’ðAÞÞ � trðAÞ
�� �� � 1 for all A 2 G,

then ’ ¼ AdU for some unitary operator U 2 MnðCÞ.

Proof By Theorem 3.8, ’ ¼ AdR for some invertible operator R. A standard argument
shows that if a �-homomorphism is implemented by a similarity, then it is implemented
by the unitary part of the polar decomposition of that similarity.

We include the argument for completeness: for A 2 G, ’ðAÞ ¼ R�1AR, while
R�1A�R ¼ ’ðA�Þ ¼ ’ðAÞ� ¼ ðR�1ARÞ� ¼ R�A�ðR�1Þ

�. Thus A�ðRR�Þ ¼ ðRR�ÞA�

for all A 2 G, whence ðRR�ÞA ¼ AðRR�Þ for all A 2 G. But then jR�jA ¼ AjR�j for
all A 2 G. Write the polar decomposition R� ¼ UjR�j where U is unitary. Then
R ¼ jR�jU� and R�1 ¼ UjR�j�1, and so

’ðAÞ ¼ R�1AR ¼ UjR�j�1AjR�jU�

¼ UjR�j�1 jR�jAU�

¼ UAU�

for all A 2 G. g

We can now rephrase some of these results as multivariable versions of Specht’s
theorem.

COROLLARY 3.10 Suppose that A ¼ fA�g�2� and B ¼ fB�g�2� are two semisimple,
inverse-closed families of invertible operators in Mn(C). If

trðwðAÞÞ � trðwðBÞÞ
�� �� � 1

for all finite words w in jAj non-commuting variables, then there exists R 2 MnðCÞ

invertible such that

A� ¼ R�1B�R for all � 2 �:

Note We first recall that the semisimplicity of B implies that algðBÞ is similar to a
C*-algebra. It is readily verified that there is no loss of generality in invoking that
similarity at the outset and assuming a priori that algðBÞ is a C*-algebra, as we shall
proceed below.

Proof Fix q, a finite word in jAj variables, and let Uq :¼ qðAÞ,Vq :¼ qðBÞ. Note that
Uq and Vq are invertible operators. If k 2 Z, then Uk

q and Vk
q represent the same words

in A and B respectively. By our hypothesis,

trðUk
qÞ � trðVk

q Þ

��� ��� � 1 for all k 2 Z:
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From Proposition 3.4, �ðUqÞ ¼ �ðVqÞ, including multiplicities and so trðUqÞ ¼ trðVqÞ.
Let SA (resp. SB) denote the multiplicative semigroup generated by A (resp. by B).

Let

’ : SA ! SB

rðAÞ � rðBÞ

where r is an arbitrary word in jAj variables. We claim that ’ is well defined, when it is
a semigroup homomorphism.

Indeed, suppose that r1ðAÞ ¼ r2ðAÞ for words r1, r2. Then r3 :¼ r1r
�1
2 is simply

another word in jAj-variables, and r3ðAÞ ¼ I. As such, if w is any other word, then
the argument of the first paragraph shows that

�ðwðBÞÞ ¼ �ðwðAÞÞ ¼ �ðr3ðAÞwðAÞÞ ¼ �ðr3ðBÞwðBÞÞ,

including multiplicities. In particular, therefore,

trðwðBÞÞ ¼ trðwðAÞÞ ¼ trðr3ðAÞwðAÞÞ ¼ trðr3ðBÞwðBÞÞ

for all words w. By linearity, it follows that

trððr3ðBÞ � IÞQÞ ¼ 0

for all Q 2 spanSB ¼ algðBÞ. But B is semisimple, and so as pointed out above, we may
assume that algðBÞ is a C*-algebra. But then ðr3ðBÞ � IÞ 2 algðBÞ implies that
ðr3ðBÞ � IÞ� 2 algðBÞ and therefore that

trððr3ðBÞ � IÞðr3ðBÞ � IÞ�Þ ¼ 0:

Since the trace is faithful on Mn(C), it follows that r3ðBÞ � I ¼ 0, or that r3ðBÞ ¼ I.
From this we get r1ðBÞ ¼ r2ðBÞ. In particular, ’ is a well-defined semigroup
homomorphism.

We are now in a position to apply Theorem 3.8 to conclude that ’ ¼ AdR for
some invertible matrix R 2 MnðCÞ, from which the result is easily obtained. g

COROLLARY 3.11 Suppose that A ¼ fA�g�2� and B ¼ fB�g�2� are two self-adjoint,
inverse-closed families of invertible operators in Mn(C). If

trðwðAÞÞ � trðwðBÞÞ
�� �� � 1

for all finite words w in jAj non-commuting variables, then there exists Z 2 MnðCÞ unitary
such that

A� ¼ Z�1B�Z for all � 2 �:
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Proof Note that A and B self-adjoint automatically implies that these families are
semisimple. By Corollary 3.10, we can find R 2 MnðCÞ an invertible operator
so that A� ¼ R�1B�R for all �2�. As in the proof of Corollary 3.9, we find that
the self-adjointness of the families A and B implies that the unitary part Z of
the polar decomposition of R implements the simultaneous unitary equivalence
of A and B. g

4. The projection condition

Recall that for a matrix A 2 MnðCÞ, jAj denotes the positive square root of A�A.
Also, C�ðAÞ denotes the C*-algebra generated by A, that is, the smallest norm-closed,
unitary self-adjoint subalgebra of Mn(C) which contains A. If we use C½X,Y	 to
denote the set of polynomials in two non-commuting variables X and Y with complex
coefficients, then, in the finite-dimensional setting, C�ðAÞ is easily seen to coincide with
the set fpðA,A�Þ : p 2 C½X,Y	g.

Definition 4.1 Let A,B 2 MnðCÞ.
We shall say that A and B satisfy the ‘projection condition’ (we abbreviate this to

the PC) if, for any polynomial p 2 C½X,Y	 in two non-commuting variables x and y
for which pðA,A�Þ is a projection, it follows that pðB,B�Þ is a projection of the
same trace.

We shall say that A and B satisfy the ‘absolute value condition’ (we abbreviate this to
the AVC) if, for any polynomial p 2 C½X,Y	 in two non-commuting variables x and y,
jpðA,A�Þj is unitarily equivalent to jpðB,B�Þj.

It is worth making a few observations. First we remark that there is an apparent
asymmetry in our definition of the projection condition. However, as the next
proposition demonstrates, the PC and the AVC are equivalent for pairs A and B of
n� n matrices. Since the AVC is easily seen to be a symmetric relation, it follows
that the PC is also symmetric. Secondly, it is clear that the trace condition in the
definition of the projection condition can be replaced with the condition that
pðA,A�Þ and pðB,B�Þ are projections of equal rank, or are unitarily equivalent
projections. Finally, if trðwðA,A�ÞÞ ¼ trðwðB,B�ÞÞ for all words w in two non-
commuting variables, then by Specht’s theorem, A is unitarily equivalent to B and
so A and B satisfy the PC.

Our goal in this section is to prove the converse of this result, namely: if A and B
satisfy the projection condition, then they are unitarily equivalent.

PROPOSITION 4.2 Suppose A,B 2 MnðCÞ. The following are equivalent:

(i) A and B satisfy the PC and
(ii) A and B satisfy the AVC.

Proof Suppose first that they satisfy the AVC. Let p 2 C½X,Y	 and suppose
P :¼ pðA,A�Þ is a projection. Let Q :¼ pðB,B�Þ. Then 0 ¼ jPP� � P�Pj implies
that 0 ¼ jQQ� �Q�Qj, and hence Q is normal. Also, 0 ¼ jP2 � Pj implies 0 ¼

jQ2 �Qj, and so Q is a projection. But then the AVC implies that P ¼ jPj ’
jQj ¼ Q, and so P and Q are clearly projections with the same trace. Thus A and B
satisfy the PC.
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Suppose next that A and B satisfy the PC. Let p 2 C½X,Y	 be any polynomial in two
non-commuting variables. Set PA ¼ pðA,A�Þ

�pðA,A�Þ and PB ¼ pðB,B�Þ
�pðB,B�Þ.

It suffices to prove that PA is unitarily equivalent to PB.
Now PA and PB are positive matrices, and so we can find distinct non-negative

real numbers a1, a2, . . . , a�A and distinct non-negative real numbers b1, b2, . . . , b�B
so that PA ’ �

�A
j¼1ajIlj and PB ’ �

�B
i¼1biImi

for some lj,mi � 1 satisfying
P�A

j¼1 lj ¼
n ¼

P�B
i¼1 mi.

Suppose that there exists 1 � i � �B so that bi 62 fa1, . . . , a�Ag. Without loss of
generality, we may assume that b1 62 fa1, . . . , a�Ag. For each 1 � j � �A, consider the
polynomials

qjðzÞ ¼
Y

1�r6¼j��A

z� ar
aj � ar

 !
,

and q0jðzÞ ¼ qjðzÞððz� b1Þ=ðaj � b1ÞÞ.
Then q0jðajÞ ¼ 1, q0jðarÞ ¼ 0, 1 � r 6¼ j � �A, and q0jðb1Þ ¼ 0.
As such,

P�A
j¼1 q

0
jðPAÞ ¼ I, and clearly

P�A
j¼1 q

0
jðPAÞ is a polynomial in A

and A*. It follows from the projection condition that
P�A

j¼1 q
0
jðPBÞ ¼ I. But,

X�A
j¼1

q0jðPBÞ ’ �
�B
i¼1

X�A
j¼1

q0jðbiÞ

 !
Imi

:

Since
P�A

j¼1 q
0
jðb1Þ ¼ 0, we get that

P�A
j¼1 q

0
jðPBÞ 6¼ I, a contradiction. From this, we

conclude that �ðPBÞ 
 �ðPAÞ, i.e.; bi ¼ ajðiÞ for some 1 � jðiÞ � �A, 1 � i � �B.
Recalling that the bi’s are distinct, we see that ajðiÞ 6¼ ajði0Þ if i 6¼ i0.

Next, for each 1 � j � �A, qjðPAÞ ’ Ilj and hence qj(PB) must be a projection of the
same rank. But

qjðPBÞ ’ �
�B
i¼1qjðbiÞImi

’ �
�B
i¼1qjðajðiÞÞImi

:

Thus there exists a unique i0 so that bi0 ¼ ajði0Þ ¼ aj, and mi0 ¼ lj. It follows that the
multiplicity of aj as an eigenvalue of PA is the same as its multiplicity as an eigenvalue
of PB. Hence PA is unitarily equivalent to PB, and so, as stated, A and B satisfy the
absolute value condition. g

LEMMA 4.3 Suppose A,B 2 MnðCÞ satisfy the PC. Then A is similar to B.

Proof By Proposition 4.2, A and B satisfy the AVC as well. Given T 2 MnðCÞ,
a complete set of similarity invariants for T is given by
fnul ðT� �IÞk : � 2 C, 1 � k � ng. Since kerðT� �IÞk ¼ ker jðT� �IÞkj, and since
jðA� �IÞkj is unitarily equivalent to jðB� �IÞkj for each �2C and 1 � k � n, we see
that A and B share the same similarity invariants, and hence the same Jordan form.
In particular, A is similar to B. g

As an immediate consequence, we observe that if A and B satisfy the absolute value
condition (or equivalently the projection condition), then A and B have the same
spectrum occurring with the same multiplicities.

170 L.W. Marcoux et al.



LEMMA 4.4 Suppose A,B 2 MnðCÞ satisfy the PC. Let P1,P2, . . . ,Pm denote the
minimal central projections of C�ðAÞ. Choose polynomials p1, p2, . . . , pm 2 C½X,Y	
so that Pi ¼ piðA,A

�Þ for each 1 � i � m. Then Qi :¼ piðB,B
�Þ are the minimal

central projections of C�ðBÞ. Moreover, Pi is unitarily equivalent to Qi for each 1 � i � m.

Proof By definition of the PC, Qi is a projection of the same rank as Pi for each i.
Moreover, PiPj ¼ piðA,A

�ÞpjðA,A
�Þ ¼ 	i, jPi (where 	i, j denotes the Kronecker delta)

and hence QiQj ’ PiPj ¼ 0 if i 6¼ j. That is, the Qi’s form a family of pairwise
orthogonal projections.

Let r 2 C½X,Y	 be any polynomial. If we set R ¼ rðA,A�Þ and S ¼ rðB,B�Þ, then,
since A and B satisfy the AVC as well, jPiR� RPij ¼ 0, which implies
jQiS� SQij ¼ 0, and so we see that Qi’s are central in C�ðBÞ.

By symmetry, the minimality of the Pi’s as central projections for C
�ðAÞ implies that

the Qi’s are central projections for C�ðBÞ. g

LEMMA 4.5 Suppose A,B 2 MnðCÞ satisfy the PC, and that C�ðAÞ contains no
central projections other than 0 and I. Then the same holds for C�ðBÞ, and furthermore,
A is unitarily equivalent to B.

Proof By Lemma 4.2, we may assume that A and B satisfy the AVC as well.
By Lemma 4.4, C�ðBÞ has no proper central projections. We consider
R1, 1,R2, 2, . . . ,Rk, k, a maximal set of minimal projections in C�ðAÞ, and choose
polynomials rj, j 2 C½X,Y	 so that Rj, j ¼ rj, jðA,A

�Þ. Then Tj, j :¼ rj, jðB,B
�Þ is a

projection of the same (constant) rank m in C�ðBÞ, by the projection condition.
By symmetry, any proper subprojection of the Tj, j’s would be carried to a
proper subprojection of the Rj,j’s, and so the minimality of the Rj, j’s implies that
of the Tj, j’s. Without loss of generality, we may assume that Rj, j ¼ Tj, j for each
1 � j � k.

For i ¼ 1, 2, . . . , k� 1, fix a polynomial ri, iþ1 2 C½X,Y	 so that Ri, iþ1ðA,A
�Þ

satisfies Ri, i Ri, iþ1 Riþ1, iþ1 ¼ Ri, iþ1 and Ri, iþ1 R
�
i, iþ1 ¼ Ri, i. Let Ti, iþ1 :¼ ri, iþ1ðB,B

�Þ.
Then jTi, i Ti, tþ1 Tiþ1, iþ1 � Ti, iþ1j is unitarily equivalent to jRi, i Ri, tþ1 Riþ1, iþ1 �

Ri, iþ1j ¼ 0, and so Ti, i Ti, tþ1 Tiþ1, iþ1 ¼ Ti, iþ1 ¼ Ri, i Ti, iþ1 Riþ1, iþ1. Since jTi, iþ1j is
unitarily equivalent to Ri, iþ1, again, without loss of generality we may assume that
Ti, iþ1 ¼ Ri, iþ1 for all 1 � i � k� 1. For i < j, define Ri, j ¼ Ri, iþ1 Riþ1, iþ2 � � �Rj�1, j

and for j < i, define Ri, j ¼ R�
j, i. To complete the proof, we shall show that

Ri, iARj, j ¼ Ri, iBRj, j for all i and j.
Consider, for 1 � j � k, Xi, j ¼ Rj, iðRi, iARj, jÞ ¼ ai, jRj, j. Then Yi, j ¼ Tj, iðTi, iBTj, jÞ ¼

bi, jTj, j ¼ bi, jRj, j. But Xi, j and Yi, j satisfy the AVC – or equivalently the PC – and so
by Lemma 4.3, Xi, j is similar to Yi, j. Hence their spectra agree, which means that
ai, j ¼ bi, j for each pair i and j. That is, A ¼ B. g

THEOREM 4.6 Suppose A,B 2 MnðCÞ satisfy the projection condition. Then A is
unitarily equivalent to B.

Proof By Lemma 4.4, we may choose a set of minimal central projections
P1,P2, . . . ,Pm for C�ðAÞ and Q1,Q2, . . . ,Qm for C�ðBÞ such that Pi is unitarily
equivalent to Qi for each i. Since PiPj � PjPi ¼ 0, and hence is a projection, it
follows that QiQj �QjQi is again a projection with the same trace – namely zero.
Thus QiQj ¼ QjQi. Similarly, I�

Pm
i¼1 Pi ¼ 0 is the zero projection, and hence
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so is I�
Pm

i¼1 Qi. It follows that there must exist a unitary U 2 MnðCÞ such that
U�PiU ¼ Qi, 1 � i � m. As such, without loss of generality, we may assume that
Pi ¼ Qi, 1 � i � m.

Now PiAPi and PiBPi satisfy the PC, and so Ai :¼ PiAPijPiC
n and Bi ¼ PiBPijPiC

n are
also readily seen to satisfy the PC.

But C�ðAiÞ and C�ðBiÞ contain no proper central projections, and so by Lemma 4.5,
Ai is unitarily equivalent to Bi, 1 � i � k, say V�

i AiVi ¼ Bi for some Vi unitary
in BðPiC

n
Þ.

Letting V ¼ �m
i¼1Vi, V

�AV ¼ B and we are done. g

COROLLARY 4.7 Suppose A,B 2 MnðCÞ, and that

trðjpðA,A�ÞjÞ ¼ trðjpðB,B�ÞjÞ

for all polynomials p in two non-commuting variables. Then A is unitarily equivalent to B.

Proof Fix a polynomial p in two non-commuting variables. Let Hp ¼ jpðA,A�Þj2

and Kp ¼ jpðB,B�Þj2. Since any word in Hp and its adjoint is really just a power
of Hp, it is easily seen that Hk

p ¼ qkðA,A
�Þ

�qkðA,A
�Þ for some polynomial q and that

Kk
p ¼ qkðB,B

�Þ
�qkðB,B

�Þ.
In particular, Hk

p ¼ jHk
pj and Kk

p ¼ jKk
pj. Our assumption therefore implies that

trHk
p ¼ trKk

p for all k� 1, whence trwðHp,H
�
pÞ ¼ trwðKp,K

�
pÞ for all words w in two

variables. It follows from Specht’s theorem that Hp and Kp are unitarily equivalent.
But then H1=2

p ¼ jpðA,A�Þj is unitarily equivalent to K1=2
p ¼ jpðB,B�Þj. That is, A and

B satisfy the AVC.
By Theorems 4.2 and 4.6, A and B are unitarily equivalent. g

Example 4.8 We point out that in Corollary 4.7, it is not sufficient to consider
absolute values of words (as opposed to absolute values of polynomials) in A
and A*. For example, if A ¼ I and U is any unitary other than I in Mn(C), then
for all words w, jwðA,A�Þj ¼ jwðB,B�Þj ¼ I, and so their traces agree, despite the fact
that A and U are not unitarily equivalent.

On the other hand, consideration of dimensions of kernels as in Lemma 4.3 shows
that if we begin with two nilpotent matrices A and B, then the unitary equivalence
of absolute values of words in A and A* with the corresponding words in B and B*
implies the similarity of A and B.

Closing Remarks 4.9 We have been asked by C.-K. Li, and also by the referee,
whether or not the results of this work can be extended to real matrices, this is
indeed the case that follows from the following arguments.

It is relatively well known that if two matrices A,B 2 MnðRÞ are similar when
regarded as elements of Mn(C) (i.e., there exists S 2 MnðCÞ invertible such that
S�1AS ¼ B), then there exists R 2 MnðRÞ invertible such that R�1AR ¼ B. Since the
argument is short, we include it here for completeness.

Let S ¼ ½sij	, S1 ¼ ½ReðsijÞ	, and S2 ¼ ½ImðsijÞ	, so that S ¼ S1 þ iS2, and S1,S2 2

MnðRÞ. The equation S�1AS ¼ B implies that AðS1 þ iS2Þ ¼ ðS1 þ iS2ÞB. By
comparing the real and complex components of these matrices, we find that
AS1 ¼ S1B and AS2 ¼ S2B. Thus, for z 2 C, we have AðS1 þ zS2Þ ¼ ðS1 þ zS2ÞB.
Observe that the complex-valued function pðzÞ :¼ detðS1 þ zS2Þ, z 2 C is a polynomial
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of degree at most n. Furthermore, since pðiÞ ¼ detðSÞ 6¼ 0, p is a non-trivial polynomial,
and hence has at most n roots. From this it immediately follows that p has at most n real
roots, and therefore for most x 2 R, S1 þ xS2 is invertible. Choosing such an x0,
we see that R ¼ S1 þ x0S2 is an invertible element of Mn(R) such that R�1AR ¼ B.

Using this, one can obtain version (for matrices over R) of Theorems 3.7 and 3.8,
and Corollary 3.10.

The results we have for simultaneous unitary equivalence deal with self-adjoint
families of matrices. These may also be extended to matrices over R as follows.

Suppose that A,B 2 MnðRÞ, and suppose also that there exists U 2 MnðCÞ so that
U�AU ¼ B. Then U�A�U ¼ B� is immediate. (Here, of course, A* agrees with the
transpose of A.) Then, treating U as a similarity, it follows from the the above
paragraphs that there exists S 2 MnðRÞ so that S�1AS ¼ B and S�1A�S ¼ B�.

Thus AS ¼ SB and A�S ¼ SB�, from which we also obtain S�A ¼ BS�.
Thus S�SB ¼ S�ðASÞ ¼ BS�S, so that B commutes with S�S. Since jSj is a limit of
polynomials in S�S, we may conclude that BjSj ¼ jSjB. Let S ¼ VjSj denote the
polar decomposition of S. Since S is invertible, V is unitary and

ðAV ÞjSj ¼ AðjVjS Þ ¼ AS ¼ SB ¼ ðVjSjÞB ¼ VðBjSjÞ ¼ ðVBÞjSj:

Since jSj is invertible, AV ¼ VB. There remains only to show that V 2 MnðRÞ. On the
other hand, S�S 2 MnðRÞ, and since jSj is a limit of polynomials in S�S, jSj 2 MnðRÞ

as well. Finally, V ¼ SjSj�1 2 MnðRÞ since both terms are.
This shows that the Mn(R) versions of Corollaries 3.9 and 3.11, and all of the results

of section 4 also hold.
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