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Observed galaxies on the high redshift slice 0.4 ∼ 0.401.

▶ Scientific Question:

How can we quantify the uncertainty of the (estimated) stellar mass of a newly
observed galaxy based on the spectroscopic and photometric properties?

▶ Notes: Sloan Digital Sky Survey (SDSS) observes millions of galaxies, but some (estimated) galactic

stellar masses are missing in the associated value-added catalog (Comparat et al., 2017).
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▶ High-dimensional Covariates:

• Generate nonlinear features to capture complex patterns (Chang et al.,
2015; Belloni et al., 2019).

▶ Reasons for Missingness:

• Limiting usage of the observational run in SDSS for galaxy targets;

• Potential data contamination;

• Misclassification of galaxies as stars.

▶ Statistical Problem:

How can we conduct valid and efficient inference on the regression function
despite missing outcomes?
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1 Linearity: The data {(Yi,Ri,Xi)}n
i=1 are i.i.d. observations from a

sparse linear model

Y = XTβ0 + ϵ with E
(
ϵ
∣∣X) = 0 and E

(
ϵ2
∣∣X) = σ2

ϵ ,

where ||β0||0 = sβ ≪ d and R ∈ {0, 1}when Y is missing or not.

Relaxing the linearity assumption:

• Sparse additive model (Ravikumar et al., 2009);

• Partially linear model (Müller and van de Geer, 2015).

Our method can be generalized to handle heteroscedastic errors.

2 Missing At Random (MAR): Yi⊥⊥Ri|Xi for i = 1, ...,n.

Model Assumptions
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The existing works focus on the statistical inference on β0 ∈ Rd.

1 Fully Observed Outcomes: Debiased Lasso (Zhang and Zhang, 2014;
van de Geer et al., 2014; Javanmard and Montanari, 2014):

β̂debias = β̂λ +
1
n
Θ̂

n∑
i=1

Xi(Yi − XT
i β̂λ),

• β̂λ is a Lasso solution under the regularization parameter λ > 0;

• Θ̂ ∈ Rd×d is an approximation to the matrix inverse
( 1

n

∑n
i=1 XiXT

i

)−1.

2 MAR Outcomes: M-estimation framework with a Lasso-type
debiased and doubly robust estimator (Chakrabortty et al., 2019).

Related Literature on High-Dimensional Inference
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▶ Drawbacks of Existing Approaches: Inference on β0 ∈ Rd.

1 Need to compute a d× d debiasing matrix Θ̂.

2 Require sample splitting or cross fitting for valid inference.

▶ Our Focus: Inference on m0(x) = xTβ0.

• Computational efficiency: Our debiasing program is convex and only
needs to solve for an n-dimensional weight vector.

• Statistical efficiency: Our estimator is semi-parametrically efficient
among all asymptotically linear estimators.

Our Contributions
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Methodology and
Asymptotic Theory
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• The debiased Lasso estimator on the complete-case data is given by

β̂debias = β̂λ +
1
n

n∑
i=1

RiΘ̂Xi

(
Yi − XT

i β̂λ

)
.

• The candidate debiased estimator for m0(x) = xTβ0 is

m̂debias(x) = xTβ̂debias = xTβ̂λ +
1
n

xTΘ̂

n∑
i=1

RiXi

(
Yi − XT

i β̂λ

)
.

▶ Issue: This naive estimator may not be asymptotically normal in
general (van de Geer et al., 2014; Javanmard and Montanari, 2014)!

Heuristics From Debiased Lasso
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m̂debias(x) = xTβ̂debias = xTβ̂λ +
1
n

xTΘ̂

n∑
i=1

RiXi

(
Yi − XT

i β̂λ

)
.

▶ Idea: Introduce a weight vector w = (w1, ...,wn)
T ∈ Rn to replace

1√
n

xTΘ̂Xi =⇒ wi for i = 1, ...,n

and formulate a generic debiased estimator

m̂debias(x;w) = xTβ̂ +
1√
n

n∑
i=1

wiRi

(
Yi − XT

i β̂
)
. (1)

▶ Question: How do we estimate the weight vector w = (w1, ...,wn)
T?

Heuristics From Debiased Lasso
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The conditional mean squared error of
√

n mdebias(x;w) is

E
[(√

n mdebias(x;w)−
√

n m0(x)
)2 ∣∣∣X1, ...,Xn

]

= σ2
ϵ

n∑
i=1

w2
i πi︸ ︷︷ ︸

Main Conditional Variance

+

( 1√
n

n∑
i=1

wiπiXi − x

)T
√

n (β0 − β)

2

︸ ︷︷ ︸
Conditional Bias

+ (β0 − β)
T

[
n∑

i=1

w2
i πi (1− πi)XiXT

i

]
(β0 − β)︸ ︷︷ ︸

Asymptotically Negligible Conditional Variance

.

▶ Notes: πi := P(Ri = 1|Xi) is the propensity score under the MAR condition.

Conditional Mean Squared Error Decomposition
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E
[(√

n mdebias(x;w)−
√

n m0(x)
)2 ∣∣∣X1, ...,Xn

]

≍ σ2
ϵ

n∑
i=1

w2
i πi︸ ︷︷ ︸

Main Conditional Variance

+

( 1√
n

n∑
i=1

wiπiXi − x

)T
√

n (β0 − β)

2

︸ ︷︷ ︸
Conditional Bias

.

• By Hölder’s inequality,

“Conditional Bias” ≤

[∣∣∣∣∣
∣∣∣∣∣ 1√

n

n∑
i=1

wiπiXi − x

∣∣∣∣∣
∣∣∣∣∣
∞

√
n ||β0 − β||1

]2

.

• We design our debiasing program as:

min
w∈Rn

n∑
i=1

w2
i π̂i subject to

∣∣∣∣∣
∣∣∣∣∣x− 1√

n

n∑
i=1

wi · π̂i · Xi

∣∣∣∣∣
∣∣∣∣∣
∞

≤ γ

n
.

Bias-Variance Trade-off Optimization
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1 Compute the Lasso pilot estimate β̂λ on the complete-case data

β̂λ = argmin
β∈Rd

[
1

2n

n∑
i=1

Ri(Yi − XT
i β)

2 + λ ||β||1

]
.

2 Obtain consistent propensity score estimates π̂i, i = 1, ...,n by any
machine learning method.

3 Solve the debiasing program defined as:

min
w∈Rn

{
n∑

i=1

π̂iw2
i :

∣∣∣∣∣
∣∣∣∣∣x− 1√

n

n∑
i=1

wi · π̂i · Xi

∣∣∣∣∣
∣∣∣∣∣
∞

≤ γ

n

}
.

4 Define the debiased estimator for m0(x) = xTβ as:

m̂debias(x; ŵ) = xTβ̂ +
1√
n

n∑
i=1

ŵiRi

(
Yi − XT

i β̂
)
.

Our Debiasing Inference Procedure
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1√
n

n∑
i=1
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1 How to select the tuning parameter γ > 0 for our debiasing program?

min
w∈Rn

{
n∑

i=1

π̂iw2
i :

∣∣∣∣∣
∣∣∣∣∣x− 1√

n

n∑
i=1

wi · π̂i · Xi

∣∣∣∣∣
∣∣∣∣∣
∞

≤ γ

n

}
.

2 Is our debiased estimator asymptotically normal?

m̂debias(x; ŵ) = xTβ̂ +
1√
n

n∑
i=1

ŵiRi

(
Yi − XT

i β̂
)
.

▶ Answer: The above two questions can be addressed by the dual
formulation of our debiasing program!

Our Debiasing Inference Procedure
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▶ Primal Program:

min
w∈Rn

{
n∑

i=1

π̂iw2
i :

∣∣∣∣∣
∣∣∣∣∣x− 1√

n

n∑
i=1

wi · π̂i · Xi

∣∣∣∣∣
∣∣∣∣∣
∞

≤ γ

n

}
.

▶ Dual Program:

min
ℓ∈Rd

{
1

4n

n∑
i=1

π̂i
(
XT

i ℓ
)2

+ xTℓ+
γ

n
||ℓ||1

}
.

▶ Primal-Dual Relation: Under the strong duality,

ŵi = −
1

2
√

n
· XT

i ℓ̂ for i = 1, ...,n.

Dual Formulation of Our Debiasing Program
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▶ Dual Program:

min
ℓ∈Rd

{
1

4n

n∑
i=1

π̂i
(
XT

i ℓ
)2

+ xTℓ+
γ

n
||ℓ||1

}
.

• It is an unconstrained optimization problem, and γ > 0 can be
fine-tuned via cross-validation.

• Primal-dual relation ŵi = − 1
2
√

n · X
T
i ℓ̂, i = 1, ...,n and dual consistency

ℓ̂
P→ ℓ0 reveal that

√
n
[
m̂debias(x; ŵ)−m0(x)

]
= − 1

2
√

n

n∑
i=1

RiϵiXT
i ℓ0︸ ︷︷ ︸

i.i.d. sum!

+ “Bias terms”︸ ︷︷ ︸
oP(1)

.

Theory and Practice of Our Dual Debiasing Program
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]
= − 1

2
√

n

n∑
i=1

RiϵiXT
i ℓ0︸ ︷︷ ︸

i.i.d. sum!

+ “Bias terms”︸ ︷︷ ︸
oP(1)

.

Theory and Practice of Our Dual Debiasing Program

Yikun Zhang High-Dimensional Inference With Missing Outcomes 15/22



Theorem (Theorem 7 in Zhang et al. 2023)

Under regularity conditions,

√
n
[
m̂debias(x; ŵ)−m0(x)

]
d→ N

(
0, σ2

m(x)
)

with σ2
m(x) = limn→∞ σ2

ϵ · xT
[
E
(
RXXT

)]−1 x.

1 For any fixed dimension d > 0, the asymptotic variance

σ2
ϵ · xT [E (RXXT)]−1

x

attains the semi-parametric efficiency bound among all asymptotically
linear estimators under MAR outcomes (Müller and Keilegom, 2012).

2 Under regularity conditions (Proposition 8 in Zhang et al. 2023),

σ̂2
ϵ

n∑
i=1

π̂iŵ2
i

P→ σ2
ϵ · xT [E (RXXT)]−1

x.

Consistency and Asymptotic Normality
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Sample splitting or cross fitting is often required in debiased inference
via machine learning methods (Chernozhukov et al., 2018).

• Why don’t we need sample splitting or cross fitting for estimating the
propensity score by any machine learning method?

▶ Answer: Our asymptotic normality result depends on the in-sample
estimation error rπ of the propensity score:

max
1≤i≤n

|π̂i − πi| = OP (rπ) with πi = π(Xi), i = 1, ...,n.

• Our debiased estimator performs even better when the estimated
propensity scores on the training data are close to the true ones!!

• This permits the use of complex machine learning methods with high
learnability (Steinwart, 2001; Farrell et al., 2021; Gao et al., 2022).

Theoretical Insights into Propensity Score Estimation
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Simulation and Real-World
Application
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▶ Effectiveness of Our Debiased Estimator:

• Correct the bias of the Lasso pilot estimate.

• Asymptotically normal under a wide range of γ > 0.

▶ Notes: Our paper contains comprehensive comparisons with other existing methods.

Simulation Result
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How can we quantify the uncertainty of the (estimated) stellar mass of a galaxy
based on the spectroscopic and photometric properties?

20 25 30 35 40
95% Confidence Intervals of Estimated Stellar Masses

Refit

Debias (LR, min-feas)

Debias (LR, 1SE)

Debias (LR, min-CV)

Debias (NN, min-feas)

Debias (NN, 1SE)

Debias (NN, min-CV)

Debias (NNcal, min-feas)

Debias (NNcal, 1SE)

Debias (NNcal, min-CV)

Stellar Mass by Firefly

• The 95% confidence intervals by our debiasing methods cover the true
stellar mass of a new galaxy.

Results on Galactic Stellar Mass Inference
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Is it statistically significant that the stellar mass of a galaxy is negatively
correlated with its distance to the nearby cosmic filament structures?

0.06 0.04 0.02 0.00 0.02
95% Confidence Intervals

R-Proj

Refit

Debias (LR)

Debias (NN)

Debias (NNcal)

H0

• 95% confidence intervals by our debiasing methods exclude 0 and are
all negative.

Results on Galactic Stellar Mass Inference
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We present an efficient debiasing method for conducting valid inference
on high-dimensional linear models with MAR outcomes.

• The dual form explains its computational and statistical efficiencies.

• The nuisance propensity score can be nonparametrically estimated
without sample splitting or cross fitting.

• A novel application to the inference on galactic stellar mass.

More details can be found in

[1] Y. Zhang, A. Giessing, and Y.-C. Chen. Efficient Inference on High-Dimensional Linear
Models with Missing Outcomes. arXiv preprint, 2023. https://arxiv.org/abs/2309.06429.

Python Package: Debias-Infer and R Package: DebiasInfer.

Thank you!

Summary of the Talk
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1 Lasso pilot estimate: We adopt the scaled Lasso (Sun and Zhang,

2012) with its universal regularization parameter λ0 =
√

2 log d
n as the

initialization. Specifically, it iteratively updates β̂(λ̃), σ̂ϵ(λ̃), λ̃ via the
jointly convex optimization program:

(
β̂(λ̃), σ̂ϵ(λ̃)

)
= argmin

β∈Rd,σϵ>0

[
1

2nσϵ

n∑
i=1

Ri
(
Yi − XT

i β
)2

+
σϵ

2
+ λ̃ ||β||1

]
.

2 Debiasing program: We solve the primal program by Python package
“CVXPY” (Diamond and Boyd, 2016; Agrawal et al., 2018) or R
package “CVXR” (Fu et al., 2020). For the dual program, we
formulate a coordinate descent algorithm (Wright, 2015) as:

[
ℓ̂(x)

]
j
←
S γ

n

(
− 1

2n

∑n
i=1 π̂i

(∑
k ̸=j XikXjk

[
ℓ̂(x)

]
k

)
− xj

)
1

2n

∑n
i=1 π̂iX2

ij
for j = 1, ..., d,

where S γ
n
(u) = sign(u) ·

(
u− γ

n

)
+

is the soft-thresholding operator.

Implementation Details of the Proposed Debiasing Method
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• Suppose that we conduct a K-fold cross-validation on a candidate set
Γ = {γ1, ..., γm} of the tuning parameter.

• For each γi ∈ Γ, we compute the cross-validated risk or error on each
fold of the data as:

CVk(γi), k = 1, ...,K.

• For each γi ∈ Γ, we calculate the standard error of CV1(γi), ...,CVK(γi)
as:

SD(γi) =
√

Var (CV1(γi), ...,CVK(γi)), SE(γi) = SD(γi)/
√

K.

• Let

CV(γ) =
1
K

K∑
k=1

CVk(γ) and γ̂ = argmin
γ∈Γ

CV(γ).

The 1SE rule (Breiman et al., 1984; Chen and Yang, 2021) selects
γ1SE ∈ Γ with as the one with the smallest CV(γ) such that

CV(γ1SE) ≥ CV(γ̂) + SE(γ̂).

One Standard Error (1SE) Rule For Model Selection
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Figure: Illustration of the 1SE rule for selecting the model parameter.

One Standard Error (1SE) Rule For Model Selection
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• Consider the regression function m ≡ m(x) ∈ R as the main parameter
to be inferred and β ∈ Rd as the high-dimensional nuisance parameter.

• Our generic debiased estimator mdebias(x,w) solves the sample-based
estimating equation

1
n

n∑
i=1

Ξx(Yi,Ri,Xi;mdebias, β) = mdebias(x;w)−xTβ− 1√
n

n∑
i=1

wi·Ri

(
Yi − XT

i β
)
= 0.

• The Neyman near-orthogonalization condition (Chernozhukov et al.,
2018) given X = (X1, ...,Xn)

T ∈ Rn×d at (m0, β0) = (xTβ0, β0) requires

E

[
1
n

n∑
i=1

Ξx(Yi,Ri,Xi;m0, β0)

∣∣∣∣X
]
= 0,

sup
β∈Tn

∣∣∣∣∣∣
{

∂

∂β
E

[
1
n

n∑
i=1

Ξx(Yi,Ri,Xi;m, β)
∣∣∣X] ∣∣∣∣

(m0,β0)

}T

(β − β0)

∣∣∣∣∣∣ ≤ δn√
n
,

(2)

where Tn is a properly shrinking neighborhood of β0 and δn = o(1).

Interpretations From Neyman Near-Orthogonalization
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• Both conditions in (2) hold true, because for any β ∈ Tn and some
convex set B containing β0, we have that∣∣∣∣∣∣

{
1
n

n∑
i=1

∂

∂β
E [Ξx(Yi,Ri,Xi;m, β)|X]

∣∣
(m0,β0)

}T

(β − β0)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
[

x − 1√
n

n∑
i=1

wi · π(Xi)Xi

]T

(β0 − β)

∣∣∣∣∣∣
“ ≤ ”

∣∣∣∣∣
∣∣∣∣∣x − 1√

n

n∑
i=1

wi · π̂i · Xi

∣∣∣∣∣
∣∣∣∣∣
∞

||β − β0||1 by Hölder’s inequality

≤ γ

n
||β − β0||1 by the box constraint in our debiasing program

≤ δn√
n

by setting Tn =

{
β ∈ B ⊂ Rd : ||β − β0||1 ≤

√
nδn

γ

}
.

• Our debiasing program optimizes the (estimated) variance among all
the estimators satisfying Neyman near-orthogonalization (2).

• (2) also allows our debiasing program to de-correlate the Lasso pilot
regression from propensity score estimation and weight optimization.

Interpretations From Neyman Near-Orthogonalization
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▶ Goal: Establish the asymptotic normality of our debiased estimator

m̂debias(x; ŵ) = xTβ̂ +
1√
n

n∑
i=1

ŵiRi

(
Yi − XT

i β̂
)
.

• Linearity assumption Yi = XT
i β0 + ϵi for i = 1, ...,n implies

√
n
[
m̂debias(x; ŵ)− m0(x)

]
=

n∑
i=1

ŵiRiϵi︸ ︷︷ ︸
Not an i.i.d. sum!

+

[
x − 1√

n

n∑
i=1

ŵiRiXi

]T √
n
(
β̂ − β0

)
,

• Dual relation ŵi = − 1
2
√

n · X
T
i ℓ̂ for i = 1, ...,n and dual consistency

ℓ̂
P→ ℓ0 reveal that

√
n
[

m̂debias(x; ŵ)− m0(x)
]
= −

1
2
√

n

n∑
i=1

RiϵiXT
i ℓ̂+

[
x +

1
2n

n∑
i=1

RiXiXT
i ℓ̂

]T √
n
(
β0 − β̂

)

= −
1

2
√

n

n∑
i=1

RiϵiXT
i ℓ0︸ ︷︷ ︸

i.i.d. sum!

+ “Bias terms”︸ ︷︷ ︸
oP(1)

.

Theoretical Implications of Our Dual Debiasing Program
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1 The covariate vector X ∈ Rd and the noise ϵ ∈ R are sub-Gaussian.

2 There exists a constant κR > 0 such that

inf
v∈Sd−1

E
[
R(XTv)2] ≥ κ2

R with Sd−1 =
{

x ∈ Rd : ||x||2 = 1
}
.

3 Given any n ≥ 1 and δ ∈ (0, 1), there exists rπ ≡ rπ(n, δ) > 0 such that

P
(
max
1≤i≤n

|π̂i − πi| > rπ

)
< δ with πi = π(Xi), i = 1, ...,n.

4 Define the population dual program as:

min
ℓ∈Rd

{
1
4

E
[
R
(
XTℓ

)2
]
+ xTℓ

}
,

whose exact solution is ℓ0(x) = −2
[
E
(
RXXT

)]−1 x. We assume that
the rℓ-approximation ℓ̃(x) to ℓ0(x) is sparse with rℓ ∈

[
0, 1

2

]
, i.e.,

sℓ(x) =
∣∣∣∣∣∣ℓ̃(x)∣∣∣∣∣∣

0
≪ min{n, d} with ℓ̃(x) = argmin

u∈Rd

{
||u||0 : ||u − ℓ0(x)||2 ≤ rℓ ||ℓ0(x)||2

}
.

Regularity Conditions For the Asymptotic Theory
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Methods to be compared:

• “DL-Jav”: The debiased Lasso by Javanmard and Montanari (2014).

• “DL-vdG”: The debiased Lasso by van de Geer et al. (2014).

• “Refit”: Run the regular least-square regression on the support set of the
Lasso pilot estimate (Belloni and Chernozhukov, 2013).

Implementation settings of the above methods:

• Complete-case (CC) data {(Xi,Yi,Ri = 1)}n
i=1;

• Inverse probability weighted (IPW) data
{(

Xi√
π̂i
, Yi√

π̂i
,Ri = 1

)}n

i=1
;

• Oracle fully observed data (Xi,Yi) for i = 1, ..., n.

Evaluation metrics over 1000 Monte Carlo experiments:

• Average absolute bias
∣∣m̂debias(x)− m0(x)

∣∣;
• Average coverage and average length of the yielded 95% confidence intervals.

Experimental Setups and Evaluation Metrics
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Figure: Sparse β
sp
0 and sparse x(2) with Xi ∼ Nd(0,Σcs), i = 1, ..., n.

Simulation Results Under Gaussian Noises (I)
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Figure: Pseudo-dense β
pd
0 and sparse x(2) with Xi ∼ Nd(0,Σar), i = 1, ..., n.

Simulation Results Under Gaussian Noises (II)
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Figure: Dense βde
0 and sparse x(2) with Xi ∼ Nd(0,Σcs), i = 1, ..., n.

Simulation Results Under Laplace
(
0, 1/
√

2
)

Noises
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Figure: Pseudo-dense β
pd
0 and dense x(4) with Xi ∼ Nd(0,Σar), i = 1, ..., n. Note that the mean-zero

t2 distribution has infinite variance.

Simulation Results Under t2-Distributed Noises
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1 True propensity score model: P(Ri = 1|Xi) = Φ
(
−4 +

∑K
k=1 Zik

)
,

where (Zi1, ...,ZiK) contains all polynomial combinations of the first
eight components Xi1, ...,Xi8 of Xi ∈ R1000 with degrees ≤ 2.

2 Estimate the propensity scores π(Xi), i = 1, ...,n by the following
nonlinear/nonparametric machine learning methods:

• Gaussian Naive Bayes (“NB”).

• Random Forest (“RF”): 100 trees, bootstrapping samples, and the Gini
impurity.

• Support Vector Machine (“SVM”): Gaussian radial basis function.

• Neural Network (“NN”): Two hidden layers of size 80 × 50 and ReLU
h(x) = max{x, 0} as the activation function.

3 Include an extra evaluation metric as the average mean absolute error
(“Avg-MAE”) for the estimated propensity scores.

Proposed Method With Nonparametric Propensity Scores
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Simulation Results With Nonparametric Propensity Scores
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1 Consider all the observed galaxies by SDSS-IV within a thin redshift
slice 0.4 ∼ 0.4005, among which 30.2% of their stellar masses are
missing in the Firefly value-added catalog.

2 Fetch their spectroscopic and photometric properties from SDSS-IV
DR16 database similar to the input catalog of Chang et al. (2015).

3 Apply feature transformation, remove highly linearly correlated
covariates, and generate univariate B-spline base covariates of
polynomial order 3 with 40 knots.

4 Incorporate RA, DEC, and the angular diameter distances from the
galaxies to the two-dimensional spherical cosmic filaments by Zhang
and Chen (2023); Zhang et al. (2022).

5 Control for the confounding effects by including the distances from
galaxies to candidate galaxy clusters.

▶ Final Dataset: n = 1185 and d = 1409.

Study Design For Stellar Mass Inference
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The observable data in causal inference are

{(Yi,Ti,Xi)}n
i=1 ⊂ R× {0, 1} × Rd.

• Ti ∈ {0, 1} is a binary treatment assignment indicator;

• Yi = Ti · Y(1)i + (1− Ti) · Y(0)i with Y(0),Y(1) as potential outcomes.

▶ Objective: Conduct valid inference on E [Y(1)|X,T = 1].

Treatment Group

Control Group

Y (1)1

Y (1)n
2

...

XT
1

XT
n
2

...

XT
n
2+1

XT
n

...

Y (0)n
2
+1

Y (0)n

...

E [Y (1)|X,T = 1]

based on
{(Y (1)i, Ti, Xi)}ni=1

Potential Application to Causal Inference (I)

Yikun Zhang High-Dimensional Inference With Missing Outcomes 20/24



Our debiasing method can be extended to valid inference on the
high-dimensional linear average conditional treatment effect (ACTE)

E[Y(1)− Y(0)|X].

• The modified debiasing program with tuning parameters γ1, γ2 > 0 is

argmin
w(0),w(1)∈Rn

n∑
i=1

[
π̂iw2

i(1) + (1 − π̂i)w2
i(0)

]

s.t.

∣∣∣∣∣
∣∣∣∣∣x −

1
√

n

n∑
i=1

wi(1) · π̂i · Xi

∣∣∣∣∣
∣∣∣∣∣
∞

≤
γ1

n
and

∣∣∣∣∣
∣∣∣∣∣x −

1
√

n

n∑
i=1

wi(0) (1 − π̂i)Xi

∣∣∣∣∣
∣∣∣∣∣
∞

≤
γ2

n
.

• The extended debiased estimator becomes

m̂debias
(x; ŵ(1), ŵ(0))

= xT
(
β̂(1) − β̂(0)

)
+

1
√

n

n∑
i=1

[
ŵi(1) · Ti

(
Yi − XT

i β̂(1)

)
− ŵi(0) · (1 − Ti)

(
Yi − XT

i β̂(0)

)]
.

• The efficiency theory for this modified procedure is worth studying!

Potential Application to Causal Inference (II)
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The observable data in causal inference are

{(Yi,Ti,Xi)}n
i=1 ⊂ R× {0, 1} × Rd.

• Ti ∈ {0, 1} is a binary treatment assignment indicator;

• Yi = Ti · Y(1)i + (1− Ti) · Y(0)i with Y(0),Y(1) as potential outcomes.

▶ Objective: Conduct valid inference on E [Y(1)|X,T = 1].

Treatment Group

Control Group

Y (1)1

Y (1)n
2

...

XT
1
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2

...

XT
n
2+1

XT
n

...

Y (0)n
2
+1

Y (0)n

...

E [Y (1)|X,T = 1]

based on
{(Y (1)i, Ti, Xi)}ni=1

Potential Application to Causal Inference (I)
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Our debiasing method can be extended to valid inference on the
high-dimensional linear average conditional treatment effect (ACTE)

E[Y(1)− Y(0)|X].

• The modified debiasing program with tuning parameters γ1, γ2 > 0 is

argmin
w(0),w(1)∈Rn

n∑
i=1

[
π̂iw2

i(1) + (1 − π̂i)w2
i(0)

]

s.t.

∣∣∣∣∣
∣∣∣∣∣x −

1
√

n

n∑
i=1

wi(1) · π̂i · Xi

∣∣∣∣∣
∣∣∣∣∣
∞

≤
γ1

n
and

∣∣∣∣∣
∣∣∣∣∣x −

1
√

n

n∑
i=1

wi(0) (1 − π̂i)Xi

∣∣∣∣∣
∣∣∣∣∣
∞

≤
γ2

n
.

• The extended debiased estimator becomes

m̂debias
(x; ŵ(1), ŵ(0))

= xT
(
β̂(1) − β̂(0)

)
+

1
√

n

n∑
i=1

[
ŵi(1) · Ti

(
Yi − XT

i β̂(1)

)
− ŵi(0) · (1 − Ti)

(
Yi − XT

i β̂(0)

)]
.

• The efficiency theory for this modified procedure is worth studying!

Potential Application to Causal Inference (II)
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The galaxy distribution is distorted along the line of sight due to the
peculiar velocities of galaxies, i.e., the so-called finger-of-god (Jackson,
1972) and Kaiser (Kaiser, 1987) effects.

Figure: Redshift distortions along the line of sight (Kuchner et al., 2021).

Finger-of-God and Kaiser Effects
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