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Consider a random sample {(Yi,Ri,Xi)}n
i=1 drawn from the joint

distribution of (Y,R,X), where

• Y ∈ R is the outcome variable that could potentially be missing;

• R ∈ {0, 1} is the indicator of Y being observed;

• X ∈ Rd is the high-dimensional covariate vector with d≫ n.

▶ Central Question of Interest:

How can we conduct statistically and computationally efficient inference on
m0(x) = E(Y|X = x) despite missing outcomes?

Problem of Interest
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1 The covariates are easier to obtain within some population.

• Micro-array gene expression data in biology (Carvalho et al., 2008).

• Home-price data with cross-sectional effects (Fan et al., 2011).

2 Incorporating as many covariates as possible can control for potential
confounders in causal inference (Wyss et al., 2022).

3 Generating high-dimensional covariates with interaction terms or
spline features enables the simple parametric (e.g., linear) model to
capture complex patterns (Belloni et al., 2019).

Motivations: High-Dimensional Data
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The response/outcome variable in observational data could be missing.

1 Participants may drop out from the study in clinical trials (Higgins
et al., 2008).

2 The semi-supervised learning, where additional samples without
labels are provided, is a missing-outcome problem (Chapelle et al.,
2006).

▶ More Concrete Example: Some (estimated) stellar masses of the
observed galaxies in the Sloan Digital Sky Survey (SDSS-IV) are missing
in the Firefly value-added catalog (Comparat et al., 2017).

Motivations: Missing Outcomes
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The missingness of (estimated) stellar masses is due to
• Limiting usage of the observational run in SDSS-IV for galaxy targets;

• Potential data contamination;

• Misclassification of galaxies as stars.
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Figure 1: Galaxy distribution at a high redshift slice 0.4 ∼ 0.401.

▶ Scientific Question: How can we conduct valid inference on the
(estimated) stellar mass based on the spectroscopic and photometric properties?

Motivations: Stellar Mass Inference Problem
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To tackle the challenges of high-dimensional data with missing
outcomes, we impose two basic assumptions.

1 (Linearity) The data {(Yi,Ri,Xi)}n
i=1 ⊂ R× {0, 1} × Rd are i.i.d.

observations from a sparse linear model

Y = XTβ0 + ϵ with E
(
ϵ
∣∣X) = 0 and E

(
ϵ2
∣∣X) = σ2

ϵ ,

where ||β0||0 =
∑d

k=1 1{β0k ̸=0} = sβ ≪ d.

▶ Notes: The linearity assumption can be relaxed to

• Sparse additive model (Ravikumar et al., 2009);

• Partially linear model (Müller and van de Geer, 2015);

• Approximately/weakly sparse linear model (Belloni et al., 2019).

2 (Missing At Random; MAR) Yi⊥⊥Ri|Xi for i = 1, ...,n.

Challenges and Model Assumptions
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The existing works focus mainly on the statistical inference on β0 ∈ Rd.

1 (Fully observed outcomes) Debiased Lasso is applicable (Zhang and
Zhang, 2014; van de Geer et al., 2014; Javanmard and Montanari,
2014):

β̂debias = β̂λ +
1
n
Θ̂

n∑
i=1

Xi(Yi − XT
i β̂λ),

• β̂λ = argmin
β∈Rd

[
1

2n

n∑
i=1

(Yi − XT
i β)

2 + λ ||β||1

]
is a Lasso solution with the

regularization parameter λ > 0;

• Θ̂ ∈ Rd×d is an approximation to the matrix inverse
( 1

n

∑n
i=1 XiXT

i

)−1.

2 (MAR outcomes) Chakrabortty et al. (2019) proposed an M-estimation
framework with a Lasso-type debiased and doubly robust estimator.

Existing Works on High-Dimensional Inference
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▶ Drawbacks of the Existing Approaches:

1 (Computational issue) They require a good approximation to the d× d
debiasing matrix Θ̂.

2 (Loss of statistical efficiency) Sample splitting or cross-fitting is
necessary for the M-estimation framework.

▶ Our Contributions: Focus on the inference of m0(x) = xTβ0 instead.

• (Computational efficiency) Our core debiasing program is convex and
only needs to solve for a n-dimensional weight vector.

• (Statistical efficiency) Our debiased estimator is semi-parametrically
efficient among all asymptotically linear estimators.

Drawback of Existing Works and Our Contributions
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1 Introduce our efficient debiasing method for inferring m0(x) = xTβ0.

• Estimate π(X) = P(R = 1|X) via any machine learning methods.

• Design our debiasing program based on bias-variance trade-offs.

• Fine-tune the program from its dual so as to debias the Lasso solution.

2 Discuss the asymptotic normality and semi-parametric efficiency of
our final debiased estimator.

3 Demonstrate the finite-sample performances via simulations and
present an application to the stellar mass inference problem.

Highlights of Today’s Presentation
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Methodology
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For any fixed λ > 0, the Lasso solution (on the complete-case data) is a
biased estimator of β0 ∈ Rd:

β̂λ = argmin
β∈Rd

[
1

2n

n∑
i=1

Ri(Yi − XT
i β)

2 + λ ||β||1

]
.

▶ Question: How can we correct for the bias in β̂λ or m̂(x) = xTβ̂λ?

• Optimality/KKT condition reads

1
n

n∑
i=1

RiXi

(
Yi − XT

i β̂λ

)
= λẑ with ẑ ∈ ∂

∣∣∣∣∣∣β̂λ

∣∣∣∣∣∣
1
∈ Rd. (1)

• Linearity assumption Yi = XT
i β0 + ϵi for i = 1, ...,n implies that

1
n

n∑
i=1

RiXiϵi + Σ̂
(
β0 − β̂λ

)
= λẑ with Σ̂ =

1
n

n∑
i=1

RiXiXT
i .

Heuristics From Debiased Lasso
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• Given an approximation Θ̂ ∈ Rd×d to Σ̂−1, it becomes

β̂λ − β0 + Θ̂λẑ =
1
n

n∑
i=1

RiΘ̂Xiϵi︸ ︷︷ ︸
Stochastic error ∼Nd(0,Σ̃)

+
(
Θ̂Σ̂− Id

)(
β0 − β̂λ

)
︸ ︷︷ ︸
Asymptotically negligible bias

.

• By KKT condition (1), the debiased Lasso estimate is thus given by

β̂debias = β̂λ + Θ̂λẑ

= β̂λ +
1
n

n∑
i=1

RiΘ̂Xi

(
Yi − XT

i β̂λ

)
.

• A candidate debiased estimator for m0(x) = xTβ0 is

m̂debias(x) = xTβ̂debias = xTβ̂λ +
1
n

xTΘ̂

n∑
i=1

RiXi

(
Yi − XT

i β̂λ

)
.

Heuristics From Debiased Lasso
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▶ Issue: Fitting the debiasing matrix Θ̂ ∈ Rd×d is computationally
inefficient; see, e.g., the nodewise regression (Meinshausen and
Bühlmann, 2006; van de Geer et al., 2014).

▶ Solution: Introduce the weight vector ŵ = (ŵ1, ..., ŵn)
T ∈ Rn with

(Giessing and Wang, 2023)
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Consider the generic debiased estimator mdebias(x;w) from (2) as:

mdebias(x;w) = xTβ +
1√
n

n∑
i=1

wiRi
(
Yi − XT

i β
)
. (3)

The conditional mean squared error of
√

n mdebias(x;w) is given by

E
[(√

n mdebias(x;w)−
√

n m0(x)
)2 ∣∣∣X1, ...,Xn

]

= σ2
ϵ

n∑
i=1

w2
i π(Xi)︸ ︷︷ ︸

Main Conditional Variance

+

( 1√
n

n∑
i=1

wiπ(Xi)Xi − x

)T
√

n (β0 − β)

2

︸ ︷︷ ︸
Conditional Bias

+ (β0 − β)
T

[
n∑

i=1

w2
i π(Xi) (1− π(Xi))XiXT

i

]
(β0 − β)︸ ︷︷ ︸

Asymptotically Negligible Conditional Variance

,

where π(X) = P(R = 1|X) is the propensity score under MAR condition.

Optimize Over the Conditional Mean Square Error
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E
[(√

n mdebias(x;w)−
√

n m0(x)
)2 ∣∣∣X1, ...,Xn

]

≍ σ2
ϵ

n∑
i=1

w2
i π(Xi)︸ ︷︷ ︸

Main Conditional Variance

+

( 1√
n

n∑
i=1

wiπ(Xi)Xi − x

)T
√

n (β0 − β)

2

︸ ︷︷ ︸
Conditional Bias

.

• By Hölder’s inequality, the “Conditional Bias” is upper bounded by[∣∣∣∣∣
∣∣∣∣∣ 1√

n

n∑
i=1

wiπ(Xi)Xi − x

∣∣∣∣∣
∣∣∣∣∣
∞

√
n ||β0 − β||1

]2

.

• We design our core debiasing program as:

min
w∈Rn

n∑
i=1

π̂iw2
i subject to

∣∣∣∣∣
∣∣∣∣∣x− 1√

n

n∑
i=1

wi · π̂i · Xi

∣∣∣∣∣
∣∣∣∣∣
∞

≤ γ

n
,

where γ > 0 is a tuning parameter and π̂i is a consistent estimate of
the propensity score π(Xi) for i = 1, ...,n.
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1 Compute the Lasso pilot estimate β̂λ on the complete-case data

β̂λ = argmin
β∈Rd

[
1

2n

n∑
i=1

Ri(Yi − XT
i β)

2 + λ ||β||1

]
.

2 Obtain consistent propensity score estimates π̂i, i = 1, ...,n by any
machine learning method based on {(Xi,Ri)}n

i=1 ⊂ Rd × {0, 1}.
3 Solve the debiasing program defined as:

min
w∈Rn


n∑

i=1

π̂iw2
i :

∣∣∣∣∣
∣∣∣∣∣x −

1
√

n

n∑
i=1

wi · π̂i · Xi

∣∣∣∣∣
∣∣∣∣∣
∞

≤
γ

n

 .

4 Define the debiased estimator for m0(x) as:

m̂debias(x; ŵ) = xTβ̂ +
1
√

n

n∑
i=1

ŵiRi

(
Yi − XT

i β̂
)
.

5 Construct the asymptotic (1− τ)-level confidence interval for m0(x) as:m̂debias(x; ŵ)± Φ−1
(

1 −
τ

2

)
· σ̂ϵ ·

√√√√ 1
n

n∑
i=1

π̂iŵ2
i

 with Φ(·) being the CDF of N (0, 1).
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There are two unanswered questions in our proposed debiasing
inference procedure:

1 How can we select the tuning parameter γ > 0 for our debiasing
program?

min
w∈Rn

{
n∑

i=1

π̂iw2
i :

∣∣∣∣∣
∣∣∣∣∣x− 1√

n

n∑
i=1

wi · π̂i · Xi

∣∣∣∣∣
∣∣∣∣∣
∞

≤ γ

n

}
.

2 Why is the asymptotic (1− τ)-level confidence interval for m0(x)
valid?m̂debias(x; ŵ)± Φ−1

(
1 −

τ

2

)
· σ̂ϵ ·

√√√√ 1
n

n∑
i=1

π̂iŵ2
i

 with Φ(·) being the CDF of N (0, 1).

▶ Answer: The above two questions can be addressed by the dual
formulation/solution of our debiasing program!

Theory and Practice of Our Debiasing Program
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The primal form of our debiasing program is a quadratic programming
problem with a box constraint:

min
w∈Rn

{
n∑

i=1

π̂iw2
i :

∣∣∣∣∣
∣∣∣∣∣x− 1√

n

n∑
i=1

wi · π̂i · Xi

∣∣∣∣∣
∣∣∣∣∣
∞

≤ γ

n

}
.

Proposition (Proposition 1 in Zhang et al. 2023)

The dual form of our debiasing program is given by

min
ℓ∈Rd

{
1

4n

n∑
i=1

π̂i
[
XT

i ℓ
]2

+ xTℓ+
γ

n
||ℓ||1

}
.

If the strong duality holds, we further have that

ŵi = −
1

2
√

n
· XT

i ℓ̂ for i = 1, ...,n,

where ŵ ∈ Rn and ℓ̂ ∈ Rd are the solutions to the primal and dual debiasing
program, respectively.
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The dual form of our debiasing program is an unconstrained quadratic
programming problem:

min
ℓ∈Rd

{
1

4n

n∑
i=1

π̂i
[
XT

i ℓ
]2

+ xTℓ+
γ

n
||ℓ||1

}
.

We can fine-tune γ > 0 by cross-validation.
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• Consider the regression function m ≡ m(x) ∈ R as the main parameter
to be inferred and β ∈ Rd as the high-dimensional nuisance parameter.

• Our generic debiased estimator mdebias(x,w) solves the sample-based
estimating equation

1
n

n∑
i=1

Ξx(Yi,Ri,Xi;mdebias, β) = mdebias(x;w)−xTβ− 1√
n

n∑
i=1

wi·Ri

(
Yi − XT

i β
)
= 0.

• The Neyman near-orthogonalization condition (Chernozhukov et al.,
2018) given X = (X1, ...,Xn)

T ∈ Rn×d at (m0, β0) = (xTβ0, β0) requires

E

[
1
n

n∑
i=1

Ξx(Yi,Ri,Xi;m0, β0)

∣∣∣∣X
]
= 0,

sup
β∈Tn

∣∣∣∣∣∣
{

∂

∂β
E

[
1
n

n∑
i=1

Ξx(Yi,Ri,Xi;m, β)
∣∣∣X] ∣∣∣∣

(m0,β0)

}T

(β − β0)

∣∣∣∣∣∣ ≤ δn√
n
,

(4)

where Tn is a properly shrinking neighborhood of β0 and δn = o(1).
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• Both conditions in (4) hold true, because for any β ∈ Tn and some
convex set B containing β0, we have that∣∣∣∣∣∣

{
1
n

n∑
i=1

∂

∂β
E [Ξx(Yi,Ri,Xi;m, β)|X]

∣∣
(m0,β0)

}T

(β − β0)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
[

x − 1√
n

n∑
i=1

wi · π(Xi)Xi

]T

(β0 − β)

∣∣∣∣∣∣
“ ≤ ”

∣∣∣∣∣
∣∣∣∣∣x − 1√

n

n∑
i=1

wi · π̂i · Xi

∣∣∣∣∣
∣∣∣∣∣
∞

||β − β0||1 by Hölder’s inequality

≤ γ

n
||β − β0||1 by the box constraint in our debiasing program

≤ δn√
n

by setting Tn =

{
β ∈ B ⊂ Rd : ||β − β0||1 ≤

√
nδn

γ

}
.

• Our debiasing program optimizes the (estimated) variance among all
the estimators satisfying Neyman near-orthogonalization (4).

• (4) also allows our debiasing program to de-correlate the Lasso pilot
regression from propensity score estimation and weight optimization.
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▶ Goal: Establish the asymptotic normality of our debiased estimator

m̂debias(x; ŵ) = xTβ̂ +
1√
n

n∑
i=1

ŵiRi

(
Yi − XT

i β̂
)
.

▶ Naive Attempt: Linearity assumption Yi = XT
i β0 + ϵi for i = 1, ...,n

implies that

√
n
[
m̂debias(x; ŵ)− m0(x)

]
=

n∑
i=1

ŵiRiϵi︸ ︷︷ ︸
Not an i.i.d. sum!

+

[
x − 1√

n

n∑
i=1

ŵiRiXi

]T √
n
(
β̂ − β0

)
,

▶ Solution: With the dual relation ŵi = − 1
2
√

n ·X
T
i ℓ̂, i = 1, ...,n, we obtain

√
n
[

m̂debias(x; ŵ)− m0(x)
]
= −

1
2
√

n

n∑
i=1

RiϵiXT
i ℓ̂+

[
x +

1
2n

n∑
i=1

RiXiXT
i ℓ̂

]T √
n
(
β0 − β̂

)

= −
1

2
√

n

n∑
i=1

RiϵiXT
i ℓ0(x)︸ ︷︷ ︸

i.i.d. sum!

+ “Bias terms”︸ ︷︷ ︸
oP(1)

.
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2
√

n ·X
T
i ℓ̂, i = 1, ...,n, we obtain

√
n
[

m̂debias(x; ŵ)− m0(x)
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1 The covariate vector X ∈ Rd and the noise ϵ ∈ R are sub-Gaussian.

2 There exists a constant κR > 0 such that

inf
v∈Sd−1

E
[
R(XTv)2] ≥ κ2

R with Sd−1 =
{

x ∈ Rd : ||x||2 = 1
}
.

3 Given any n ≥ 1 and δ ∈ (0, 1), there exists rπ ≡ rπ(n, δ) > 0 such that

P
(
max
1≤i≤n

|π̂i − πi| > rπ

)
< δ with πi = π(Xi), i = 1, ...,n.

4 Define the population dual program as:

min
ℓ∈Rd

{
1
4

E
[
R
(
XTℓ

)2
]
+ xTℓ

}
,

whose exact solution is ℓ0(x) = −2
[
E
(
RXXT

)]−1 x. We assume that
the rℓ-approximation ℓ̃(x) to ℓ0(x) is sparse with rℓ ∈

[
0, 1

2

]
, i.e.,

sℓ(x) =
∣∣∣∣∣∣ℓ̃(x)∣∣∣∣∣∣

0
≪ min{n, d} with ℓ̃(x) = argmin

u∈Rd

{
||u||0 : ||u − ℓ0(x)||2 ≤ rℓ ||ℓ0(x)||2

}
.

Regularity Conditions For the Asymptotic Theory
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1 Consistency of Lasso pilot estimate: If λ ≍ σϵ

√
log d

n with log d = o(n),

then
∣∣∣∣∣∣β̂ − β0

∣∣∣∣∣∣
2
= OP

(
1
κ2

R

√
sβ log d

n

)
.

2 Consistency of the solution to the dual debiasing program: If rℓ
shrinks to 0 in a certain rate and γ

n ≍
||x||2
κR

√
log d

n +
||x||2
κ2

R
· rπ , then

∣∣∣∣∣∣ℓ̂(x)− ℓ0(x)
∣∣∣∣∣∣

2
= OP

(
1
κ3

R

√
sℓ(x) log d

n
+

rℓ
κ4

R
+

rπ
√

sℓ(x)
κ4

R

)
.

Note: Under the same choice of γ > 0, the strong duality holds.

Theorem (Theorem 7 in Zhang et al. 2023)

If (1+κ2
R)smax log(nd)

κ4
R

= o
(√

n
)
, (1+κ4

R)
√

smax log(nd)

κ6
R

(rℓ + rπ) = o(1), and ||x||2 = O(1)

with smax = {sβ , sℓ(x)}, then
√

n
[
m̂debias(x; ŵ)− m0(x)

]
d→ N

(
0, σ2

m(x)
)

with σ2
m(x) = lim

n→∞
σ2
ϵ·xT

[
E
(

RXXT
)]−1

x.

Consistency and Asymptotic Normality
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1 Our growth requirement smax = o
( √

n
log d

)
on the sparsity level is a

standard and essentially necessary condition for asymptotic normality;
see Section 8.6 of Jankova and van de Geer (2018).

2 Given any dimension d > 0, the asymptotic variance of our debiased
estimator

σ2
m,d(x) = σ2

ϵ · xT [E (RXXT)]−1
x

attains the semi-parametric efficiency bound among all asymptotically
linear estimators under MAR outcomes (Müller and Keilegom, 2012).

Proposition (Proposition 8 in Zhang et al. 2023)

If (1+κ3
R)

κ5
R

√
sℓ(x) log(nd)

n = o(1), (1+κ4
R)

κ6
R

[
rℓ + rπ

√
sℓ(x)

]
= o(1), and

||x||2 = O(1), then∣∣∣∣∣
n∑

i=1

π̂iŵ2
i − xT [E (RXXT)]−1

x

∣∣∣∣∣ = oP(1).
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Our theoretical results also provide insightful answers to the following
two questions:

• Why don’t we need sample splitting or cross fitting?

• Why can we estimate the propensity score by any machine learning
methods without worrying about the overfitting issue?

▶ Answer: Our asymptotic normality result depends on the in-sample
estimation error rπ of the propensity score; recall that

P
(
max
1≤i≤n

|π̂i − πi| > rπ

)
< δ with πi = π(Xi), i = 1, ...,n.

• In other words, our debiased estimator performs even better when we
overfit the propensity scores π(Xi) = P(Ri = 1|Xi), i = 1, ...,n.

• This coincides with “benign overfitting” in linear regression or neural
networks (Bartlett et al., 2020; Li et al., 2021; Cao et al., 2022).

Overfitting the Propensity Scores
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Comparative Simulations
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We compare our debiasing method with L1-penalized logistic regression
for the propensity score estimation with several existing methods:
• “DL-Jav”: The debiased Lasso by Javanmard and Montanari (2014).

• “DL-vdG”: The debiased Lasso by van de Geer et al. (2014).

• “Refit”: Run the regular least-square regression on the support set of the
Lasso pilot estimate (Belloni and Chernozhukov, 2013).

These methods to be compared are implemented on
• Complete-case (CC) data {(Xi,Yi,Ri = 1)}n

i=1;

• Inverse probability weighted (IPW) data
{(

Xi√
π̂i
, Yi√

π̂i
,Ri = 1

)}n

i=1
;

• Oracle fully observed data (Xi,Yi) for i = 1, ..., n.

Evaluation metrics on 1000 Monte Carlo experiments include
• Average absolute bias

∣∣m̂debias(x)− m0(x)
∣∣;

• Average coverage of the yielded 95% confidence intervals;

• Average length of the yielded 95% confidence intervals.

Experimental Setups and Evaluation Metrics

Yikun Zhang High-Dimensional Inference With Missing Outcomes 31/45



We compare our debiasing method with L1-penalized logistic regression
for the propensity score estimation with several existing methods:
• “DL-Jav”: The debiased Lasso by Javanmard and Montanari (2014).

• “DL-vdG”: The debiased Lasso by van de Geer et al. (2014).

• “Refit”: Run the regular least-square regression on the support set of the
Lasso pilot estimate (Belloni and Chernozhukov, 2013).

These methods to be compared are implemented on
• Complete-case (CC) data {(Xi,Yi,Ri = 1)}n

i=1;

• Inverse probability weighted (IPW) data
{(

Xi√
π̂i
, Yi√

π̂i
,Ri = 1

)}n

i=1
;

• Oracle fully observed data (Xi,Yi) for i = 1, ..., n.

Evaluation metrics on 1000 Monte Carlo experiments include
• Average absolute bias

∣∣m̂debias(x)− m0(x)
∣∣;

• Average coverage of the yielded 95% confidence intervals;

• Average length of the yielded 95% confidence intervals.

Experimental Setups and Evaluation Metrics

Yikun Zhang High-Dimensional Inference With Missing Outcomes 31/45



We compare our debiasing method with L1-penalized logistic regression
for the propensity score estimation with several existing methods:
• “DL-Jav”: The debiased Lasso by Javanmard and Montanari (2014).

• “DL-vdG”: The debiased Lasso by van de Geer et al. (2014).

• “Refit”: Run the regular least-square regression on the support set of the
Lasso pilot estimate (Belloni and Chernozhukov, 2013).

These methods to be compared are implemented on
• Complete-case (CC) data {(Xi,Yi,Ri = 1)}n

i=1;

• Inverse probability weighted (IPW) data
{(

Xi√
π̂i
, Yi√

π̂i
,Ri = 1

)}n

i=1
;

• Oracle fully observed data (Xi,Yi) for i = 1, ..., n.

Evaluation metrics on 1000 Monte Carlo experiments include
• Average absolute bias

∣∣m̂debias(x)− m0(x)
∣∣;

• Average coverage of the yielded 95% confidence intervals;

• Average length of the yielded 95% confidence intervals.

Experimental Setups and Evaluation Metrics

Yikun Zhang High-Dimensional Inference With Missing Outcomes 31/45



0.00 0.05 0.10 0.15 0.20 0.25
Absolute Bias

DL-Jav (CC)

DL-Jav (IPW)

DL-Jav (Oracle)

DL-vdG (CC)

DL-vdG (IPW)

DL-vdG (Oracle)

Refit (CC)

Refit (IPW)

Refit (Oracle)

Debias (min-CV)

Debias (1SE)

Debias (min-feas)
0.80 0.85 0.90 0.95 1.00

Empirical Coverage Probability

DL-Jav (CC)

DL-Jav (IPW)

DL-Jav (Oracle)

DL-vdG (CC)

DL-vdG (IPW)

DL-vdG (Oracle)

Refit (CC)

Refit (IPW)

Refit (Oracle)

Debias (min-CV)

Debias (1SE)

Debias (min-feas)

95% nominal level

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Lengths of Confidence Intervals

DL-Jav (CC)

DL-Jav (IPW)

DL-Jav (Oracle)

DL-vdG (CC)

DL-vdG (IPW)

DL-vdG (Oracle)

Refit (CC)

Refit (IPW)

Refit (Oracle)

Debias (min-CV)

Debias (1SE)

Debias (min-feas)

0.0 0.5 1.0
DL-Jav

0.0

0.2

0.4

0.6

0.8

1.0

CC
IPW
Oracle

0.0 0.5 1.0
DL-vdG

0.0

0.2

0.4

0.6

0.8

1.0

CC
IPW
Oracle

0.0 0.5 1.0
Lasso-Refit

0.0

0.2

0.4

0.6

0.8

1.0

CC
IPW
Oracle

0.0 0.5 1.0
Debias

0.0

0.2

0.4

0.6

0.8

1.0 min-CV
1SE
min-feas

Tr
an

sf
or

m
ed

 S
tu

de
nt

ize
d 

De
bi

as
ed

 E
st

im
at

or
s

Figure 2: Sparse β
sp
0 and sparse x(2) with Xi ∼ Nd(0,Σcs), i = 1, ..., n.

Simulation Results Under Gaussian Noises (I)

Yikun Zhang High-Dimensional Inference With Missing Outcomes 32/45



0.0 0.2 0.4 0.6 0.8 1.0
Absolute Bias

DL-Jav (CC)

DL-Jav (IPW)

DL-Jav (Oracle)

DL-vdG (CC)

DL-vdG (IPW)

DL-vdG (Oracle)

Refit (CC)

Refit (IPW)

Refit (Oracle)

Debias (min-CV)

Debias (1SE)

Debias (min-feas)
0.75 0.80 0.85 0.90 0.95 1.00

Empirical Coverage Probability

DL-Jav (CC)

DL-Jav (IPW)

DL-Jav (Oracle)

DL-vdG (CC)

DL-vdG (IPW)

DL-vdG (Oracle)

Refit (CC)

Refit (IPW)

Refit (Oracle)

Debias (min-CV)

Debias (1SE)

Debias (min-feas)

95% nominal level

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Lengths of Confidence Intervals

DL-Jav (CC)

DL-Jav (IPW)

DL-Jav (Oracle)

DL-vdG (CC)

DL-vdG (IPW)

DL-vdG (Oracle)

Refit (CC)

Refit (IPW)

Refit (Oracle)

Debias (min-CV)

Debias (1SE)

Debias (min-feas)

0.0 0.5 1.0
DL-Jav

0.0

0.2

0.4

0.6

0.8

1.0 CC
IPW
Oracle

0.0 0.5 1.0
DL-vdG

0.0

0.2

0.4

0.6

0.8

1.0

CC
IPW
Oracle

0.0 0.5 1.0
Lasso-Refit

0.0

0.2

0.4

0.6

0.8

1.0 CC
IPW
Oracle

0.0 0.5 1.0
Debias

0.0

0.2

0.4

0.6

0.8

1.0 min-CV
1SE
min-feas

Tr
an

sf
or

m
ed

 S
tu

de
nt

ize
d 

De
bi

as
ed

 E
st

im
at

or
s

Figure 3: Dense βde
0 and sparse x(2) with Xi ∼ Nd(0,Σcs), i = 1, ..., n.

Simulation Results Under Laplace
(
0, 1/
√

2
)

Noises
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Figure 4: Pseudo-dense β
pd
0 and dense x(4) with Xi ∼ Nd(0,Σar), i = 1, ..., n. Note that the

mean-zero t2 distribution has infinite variance.

Simulation Results Under t2-Distributed Noises
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1 True propensity score model: P(Ri = 1|Xi) = Φ
(
−4 +

∑K
k=1 Zik

)
,

where (Zi1, ...,ZiK) contains all polynomial combinations of the first
eight components Xi1, ...,Xi8 of Xi ∈ R1000 with degrees ≤ 2.

2 Estimate the propensity scores π(Xi), i = 1, ...,n by the following
nonlinear/nonparametric machine learning methods:

• Gaussian Naive Bayes (“NB”).

• Random Forest (“RF”): 100 trees, bootstrapping samples, and the Gini
impurity.

• Support Vector Machine (“SVM”): Gaussian radial basis function.

• Neural Network (“NN”): Two hidden layers of size 80 × 50 and ReLU
h(x) = max{x, 0} as the activation function.

3 Include an extra evaluation metric as the average mean absolute error
(“Avg-MAE”) for the estimated propensity scores.

Proposed Method With Nonparametric Propensity Scores
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Figure 5: Sparse β
sp
0 and (weakly) dense x(4).

Simulation Results With Nonparametric Propensity Scores
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Real-World Applications
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Recall that some estimated stellar masses of the observed galaxies in
SDSS-IV are missing in the most recent Firefly value-added catalog.
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▶ Scientific Questions:
1 How can we conduct valid inference on the (estimated) stellar mass based on

the spectroscopic and photometric properties?

2 Is it statistically significant that the stellar mass of a galaxy is negatively
correlated with its distance to the nearby cosmic filament structures?

Background on Stellar Mass Inference
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1 Consider all the observed galaxies by SDSS-IV within a thin redshift
slice 0.4 ∼ 0.4005, among which 30.2% of their stellar masses are
missing in the Firefly value-added catalog.

2 Fetch their spectroscopic and photometric properties from SDSS-IV
DR16 database similar to the input catalog of Chang et al. (2015).

3 Apply feature transformation, remove highly linearly correlated
covariates, and generate univariate B-spline base covariates of
polynomial order 3 with 40 knots.

4 Incorporate RA, DEC, and the angular diameter distances from the
galaxies to the two-dimensional spherical cosmic filaments by Zhang
and Chen (2023); Zhang et al. (2022).

5 Control for the confounding effects by including the distances from
galaxies to candidate galaxy clusters.

▶ Final Dataset: n = 1185 and d = 1409.

Study Design For Stellar Mass Inference

Yikun Zhang High-Dimensional Inference With Missing Outcomes 39/45



1 Consider all the observed galaxies by SDSS-IV within a thin redshift
slice 0.4 ∼ 0.4005, among which 30.2% of their stellar masses are
missing in the Firefly value-added catalog.

2 Fetch their spectroscopic and photometric properties from SDSS-IV
DR16 database similar to the input catalog of Chang et al. (2015).

3 Apply feature transformation, remove highly linearly correlated
covariates, and generate univariate B-spline base covariates of
polynomial order 3 with 40 knots.

4 Incorporate RA, DEC, and the angular diameter distances from the
galaxies to the two-dimensional spherical cosmic filaments by Zhang
and Chen (2023); Zhang et al. (2022).

5 Control for the confounding effects by including the distances from
galaxies to candidate galaxy clusters.

▶ Final Dataset: n = 1185 and d = 1409.

Study Design For Stellar Mass Inference

Yikun Zhang High-Dimensional Inference With Missing Outcomes 39/45



1 Consider all the observed galaxies by SDSS-IV within a thin redshift
slice 0.4 ∼ 0.4005, among which 30.2% of their stellar masses are
missing in the Firefly value-added catalog.

2 Fetch their spectroscopic and photometric properties from SDSS-IV
DR16 database similar to the input catalog of Chang et al. (2015).

3 Apply feature transformation, remove highly linearly correlated
covariates, and generate univariate B-spline base covariates of
polynomial order 3 with 40 knots.

4 Incorporate RA, DEC, and the angular diameter distances from the
galaxies to the two-dimensional spherical cosmic filaments by Zhang
and Chen (2023); Zhang et al. (2022).

5 Control for the confounding effects by including the distances from
galaxies to candidate galaxy clusters.

▶ Final Dataset: n = 1185 and d = 1409.

Study Design For Stellar Mass Inference

Yikun Zhang High-Dimensional Inference With Missing Outcomes 39/45



1 Consider all the observed galaxies by SDSS-IV within a thin redshift
slice 0.4 ∼ 0.4005, among which 30.2% of their stellar masses are
missing in the Firefly value-added catalog.

2 Fetch their spectroscopic and photometric properties from SDSS-IV
DR16 database similar to the input catalog of Chang et al. (2015).

3 Apply feature transformation, remove highly linearly correlated
covariates, and generate univariate B-spline base covariates of
polynomial order 3 with 40 knots.

4 Incorporate RA, DEC, and the angular diameter distances from the
galaxies to the two-dimensional spherical cosmic filaments by Zhang
and Chen (2023); Zhang et al. (2022).

5 Control for the confounding effects by including the distances from
galaxies to candidate galaxy clusters.

▶ Final Dataset: n = 1185 and d = 1409.

Study Design For Stellar Mass Inference

Yikun Zhang High-Dimensional Inference With Missing Outcomes 39/45



1 Consider all the observed galaxies by SDSS-IV within a thin redshift
slice 0.4 ∼ 0.4005, among which 30.2% of their stellar masses are
missing in the Firefly value-added catalog.

2 Fetch their spectroscopic and photometric properties from SDSS-IV
DR16 database similar to the input catalog of Chang et al. (2015).

3 Apply feature transformation, remove highly linearly correlated
covariates, and generate univariate B-spline base covariates of
polynomial order 3 with 40 knots.

4 Incorporate RA, DEC, and the angular diameter distances from the
galaxies to the two-dimensional spherical cosmic filaments by Zhang
and Chen (2023); Zhang et al. (2022).

5 Control for the confounding effects by including the distances from
galaxies to candidate galaxy clusters.

▶ Final Dataset: n = 1185 and d = 1409.

Study Design For Stellar Mass Inference

Yikun Zhang High-Dimensional Inference With Missing Outcomes 39/45



20 25 30 35 40
95% Confidence Intervals of Estimated Stellar Masses

Refit

Debias (LR, min-feas)

Debias (LR, 1SE)

Debias (LR, min-CV)

Debias (NN, min-feas)

Debias (NN, 1SE)

Debias (NN, min-CV)

Debias (NNcal, min-feas)

Debias (NNcal, 1SE)

Debias (NNcal, min-CV)

Stellar Mass by Firefly

0.06 0.04 0.02 0.00 0.02
95% Confidence Intervals

R-Proj

Refit

Debias (LR)

Debias (NN)

Debias (NNcal)

H0

• Left Panel: 95% confidence intervals by different debiasing methods
for the estimated stellar mass of a new galaxy.

• Right Panel: 95% confidence intervals by different debiasing methods
for the estimated regression coefficient associated with the distance to
nearby cosmic filaments.

Results on Stellar Mass Inference
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Conclusions and Future
Works
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We develop an efficient debiasing method for conducting valid
inference on high-dimensional linear models with MAR outcomes.

• Its computational and statistical efficiencies follow from the dual
formulation.

• Sample splitting and cross fitting are not required, and the nuisance
propensity score can be estimated by any machine learning method.

• We provide interpretations to our debiasing method from the
viewpoints of bias-variance trade-off and Neyman
near-orthogonalization.

• Comprehensive simulation studies and motivating applications
demonstrate the potential of our proposed debiasing method.

Conclusions
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The observable data in causal inference are

{(Yi,Ti,Xi)}n
i=1 ⊂ R× {0, 1} × Rd.

• Ti ∈ {0, 1} is a binary treatment assignment indicator;

• Yi = Ti · Y(1)i + (1− Ti) · Y(0)i with Y(0),Y(1) as potential outcomes.

▶ Objective: Conduct valid inference on the regression function (or
conditional mean outcome) of the treatment group.
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Figure 7: Naive approaches for inferring E(Y|X,T = 1).

Potential Application to Causal Inference (I)
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Figure 7: Our approach for inferring E(Y|X,T = 1), similar to the regression
adjustment in causal inference (Freedman, 2008; Negi and Wooldridge, 2021).

Potential Application to Causal Inference (I)
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Our debiasing method can be extended to valid inference on the linear
average conditional treatment effect (ACTE)

E[Y(1)− Y(0)|X]

with no unmeasured confounding and high-dimensional covariates.

• The modified debiasing program with tuning parameters γ1, γ2 > 0 is

argmin
w(0),w(1)∈Rn

n∑
i=1

[
π̂iw2

i(1) + (1 − π̂i)w2
i(0)

]

s.t.

∣∣∣∣∣
∣∣∣∣∣x −

1
√

n

n∑
i=1

wi(1) · π̂i · Xi
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.

• The efficiency theory for this modified procedure is worth studying!

Potential Application to Causal Inference (II)

Yikun Zhang High-Dimensional Inference With Missing Outcomes 44/45



Our debiasing method can be extended to valid inference on the linear
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Thank you!
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1 Lasso pilot estimate: We adopt the scaled Lasso (Sun and Zhang,

2012) with its universal regularization parameter λ0 =
√

2 log d
n as the

initialization. Specifically, it iteratively updates β̂(λ̃), σ̂ϵ(λ̃), λ̃ via the
jointly convex optimization program:

(
β̂(λ̃), σ̂ϵ(λ̃)

)
= argmin

β∈Rd,σϵ>0

[
1

2nσϵ

n∑
i=1

Ri
(
Yi − XT

i β
)2

+
σϵ

2
+ λ̃ ||β||1

]
.

2 Debiasing program: We solve the primal program by Python package
“CVXPY” (Diamond and Boyd, 2016; Agrawal et al., 2018) or R
package “CVXR” (Fu et al., 2020). For the dual program, we
formulate a coordinate descent algorithm (Wright, 2015) as:

[
ℓ̂(x)

]
j
←
S γ

n

(
− 1

2n

∑n
i=1 π̂i

(∑
k ̸=j XikXjk

[
ℓ̂(x)

]
k

)
− xj

)
1

2n

∑n
i=1 π̂iX2

ij
for j = 1, ..., d,

where S γ
n
(u) = sign(u) ·

(
u− γ

n

)
+

is the soft-thresholding operator.

Implementation Details of the Proposed Debiasing Method
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• Suppose that we conduct a K-fold cross-validation on a candidate set
Γ = {γ1, ..., γm} of the tuning parameter.

• For each γi ∈ Γ, we compute the cross-validated risk or error on each
fold of the data as:

CVk(γi), k = 1, ...,K.

• For each γi ∈ Γ, we calculate the standard error of CV1(γi), ...,CVK(γi)
as:

SD(γi) =
√

Var (CV1(γi), ...,CVK(γi)), SE(γi) = SD(γi)/
√

K.

• Let

CV(γ) =
1
K

K∑
k=1

CVk(γ) and γ̂ = argmin
γ∈Γ

CV(γ).

The 1SE rule (Breiman et al., 1984; Chen and Yang, 2021) selects
γ1SE ∈ Γ with as the one with the smallest CV(γ) such that

CV(γ1SE) ≥ CV(γ̂) + SE(γ̂).

One Standard Error (1SE) Rule For Model Selection
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Figure 8: Illustration of the 1SE rule for selecting the model parameter.

One Standard Error (1SE) Rule For Model Selection
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The galaxy distribution is distorted along the line of sight due to the
peculiar velocities of galaxies, i.e., the so-called finger-of-god (Jackson,
1972) and Kaiser (Kaiser, 1987) effects.

Figure 9: Redshift distortions along the line of sight (Kuchner et al., 2021).

Finger-of-God and Kaiser Effects
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