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▶ We want to study the causal effects of PM2.5 levels on Cardiovascular Mortality
Rates (CMRs).

Biological pathways associated with particulate matter (PM) and cardiovascular
disease (Miller and Newby, 2020; Basith et al., 2022).

Motivation for Continuous Treatments
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The dataset contains the average annual cardiovascular mortality rates (CMRs) and
PM2.5 levels across n = 2132 U.S. counties from 1990 to 2010 (Wyatt et al., 2020a,b).

• The treatment variable T, i.e., the PM2.5 level at each county, is a quantitative
measure. In other words, it is not a binary but continuous variable!
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For binary treatment (i.e., T = {0, 1}), common causal estimands are

• E [Y(t)] = mean counterfactual outcome when we set T = t.

• E [Y(1)]− E [Y(0)] = average treatment effect.

▶ Question: What are the counterparts of the above estimands under continuous
treatment (i.e., T ⊂ R)?

• t 7→ m(t) := E [Y(t)] = (causal) dose-response curve.

• t 7→ θ(t) := m′(t) = d
dtE [Y(t)] = (causal) derivative effect curve.

Causal Inference For Continuous Treatments
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T Y

SRCTs

T Y

S

Assumption (Identification Conditions)

1 (Consistency) Y = Y(t) whenever T = t ∈ T .
2 (Ignorability) Y(t) is conditionally independent of T given S for all t ∈ T .
3 (Positivity) The conditional density satisfies pT|S(t|s) ≥ pmin > 0 for all (t, s) ∈ T × S .

m(t) = E [Y(t)] = E [E(Y|T = t,S)] and θ(t) =
d
dt
E [Y(t)]

(*)1

= E
[
∂

∂t
E(Y|T = t,S)

]
.

• The positivity condition is required for µ(t, s) = E (Y|T = t,S = s) and
∂
∂tµ(t, s) = ∂

∂tE (Y|T = t,S = s) to be well-defined on T × S.

1Some mild interchangeability assumptions are needed; see Theorem 1.1 in Shao (2003).

Standard Identification in Observational Studies
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There are three major strategies for estimating

m(t) = E [Y(t)] = E [µ(t,S)] = lim
h→0

E

[
Y · K

(T−t
h

)
h · p(T|S)

]

from the data {(Yi,Ti,Si)}n
i=1, where K : R → [0,∞) is a kernel function.

1 Regression Adjustment (Robins, 1986; Gill and Robins, 2001):

m̂RA(t) =
1
n

n∑
i=1

µ̂(t,Si).

2 Inverse Probability Weighting (Hirano and Imbens, 2004):

m̂IPW(t) =
1

nh

n∑
i=1

K
(

Ti−t
h

)
p̂(Ti|Si)

· Yi.

3 Doubly Robust (Kennedy et al., 2017; Colangelo and Lee, 2020).

▶ Issue: Positivity is a strong assumption with continuous treatments!

Estimation of Dose-Response Curves Under Positivity
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Assumption (Positivity Condition)

The conditional density p(t|s) is uniformly bounded away from zero for all (t, s) ∈ T × S .

T = sin(πS) + E, E ∼ Unif[−0.3, 0.3], S ∼ Unif[−1, 1], and E⊥⊥S.

1.0 0.5 0.0 0.5 1.0
S

1.0

0.5

0.0

0.5

1.0

T

p(t|s) = 0

Joint support of (T,S)

▶ Note: p(t|s) = 0 in the gray regions, and the positivity condition fails.

Violation of the Positivity Condition
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PM2.5 level (µg m3)

2.5

5.0

7.5

10.0

Average PM2.5 levels from 1990 to 2010 in n = 2132 counties.

• T is PM2.5 level, and S consists of the county location and socioeconomic factors.
• Only one or several PM2.5 levels are available per county in the dataset, and the

positivity condition is violated!

PM2.5 Distribution at the County Level
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t 7→ m(t) = E [Y(t)] and t 7→ θ(t) =
d
dt
E [Y(t)] for t ∈ T .

1 The positivity condition may fail in some regions of T × S.

• We propose a new identification strategy for m(t) and θ(t).

2 We derive a novel integral estimator m̂θ(t) of m(t) for all t ∈ T .

• Construct a localized derivative estimator θ̂C(t) of θ(t) = m′(t) around the
observations Ti, i = 1, ...,n.

• Extrapolate θ̂C(t) to any treatment level of interest via the integration.

• Both m̂θ(t) and θ̂C(t) are consistent in T even when the positivity condition fails.

3 Nonparametric bootstrap inference with our proposed estimators m̂θ(t) and θ̂C(t)
for m(t) and θ(t) is asymptotically valid.

Highlight of Today’s Talk
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Identification and Estimation
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Assumption (Identification Conditions)

1 (Consistency) Y = Y(t) whenever T = t ∈ T .

2 (Ignorability or Unconfoundedness) Y(t)⊥⊥T
∣∣S for all t ∈ T .

3 (Positivity) pT|S(t|s) ≥ pmin > 0 for all (t, s) ∈ T × S .

The RA (or G-computation) formulae are given by

m(t) = E [Y(t)] = E [µ(t,S)] and θ(t) =
d
dt
E [Y(t)] = E

[
∂

∂t
µ(t,S)

]
.

1.0 0.5 0.0 0.5 1.0
S

1.0

0.5

0.0

0.5

1.0

T

p(t|s) = 0

Joint support of (T,S)

▶ Identification Issue: Without
positivity,

µ(t, s) = E (Y|T = t,S = s)

is not well-defined outside the support
E ⊂ T × S of the joint density p(t, s).

Why Do We Need Positivity?
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Consider the additive confounding model, which is commonly assumed in spatial
statistics (Paciorek, 2010; Schnell and Papadogeorgou, 2020; Gilbert et al., 2023):

Y(t) = m̄(t) + η(S) + ϵ with E(ϵ) = 0 and Var(ϵ) > 0. (1)

• m̄ : T → R, η : S → R are unknown functions, while ϵ ∈ R is exogenous.
• m(t) = E [Y(t)] = m̄(t) + E [η(S)] and θ(t) = m′(t) = d

dtE [Y(t)] = m̄′(t).

Proposition 2 in Zhang et al. (2024)

Under model (1) and consistency, we have

θ(t) = E
[
∂

∂t
µ(t,S)

∣∣∣T = t
]
:= θC(t)

and E(Y) = E [m̄(T) + η(S)] = E [m(T)].
1.0 0.5 0.0 0.5 1.0

S

1.0

0.5

0.0

0.5

1.0

T

pT|S(t|s) = 0

pS|T(s|t) > 0
Joint support of (T,S)

▶ Identification of m(t): By the fundamental theorem of calculus,

m(t) = E
[

Y +

∫ u=t

u=T
θC(u) du

]
= E(Y)+E

{∫ u=t

u=T
E
[
∂

∂t
µ(T,S)

∣∣∣T = u
]

du
}

for any t ∈ T .

Key Example: Additive Confounding Model
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Recall our identification formulae

m(t) = E

[
Y +

∫ t̃=t

t̃=T
θC(̃t) d̃t

]
and θC(t) = E

[
∂

∂t
µ(t,S)

∣∣∣T = t
]
=

∫
∂

∂t
µ(t, s) dP(s|t).

Our integral estimator of m(t) is given by

m̂θ(t) =
1
n

n∑
i=1

[
Yi +

∫ t̃=t

t̃=Ti

θ̂C(̃t) d̃t

]
,

and our localized derivative estimator of θ(t) is

θ̂C(t) =
∫

β̂2(t, s) dP̂(s|t) =

∑n
i=1 β̂2(t,Si) · K̄T

(
Ti−t
ℏ

)
∑n

j=1 K̄T

(
Tj−t
ℏ

) .

• β2(t, s) := ∂
∂tµ(t, s) is fitted by (partial) local polynomial regression.

• P(s|t) is estimated by Nadaraya-Watson conditional cumulative distribution
function (CDF) estimator.

Proposed Estimators of m(t) and θ(t)
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m(t) = E

[
Y +

∫ t̃=t

t̃=T
θC(̃t) d̃t

]
and θC(t) = E

[
∂

∂t
µ(t,S)

∣∣∣T = t
]
=

∫
∂

∂t
µ(t, s) dP(s|t).

1 Other methods can be applied to estimate ∂
∂tµ(t, s) and P(s|t).

• m̂θ(t) and θ̂C(t), under our kernel-based estimators, are linear smoothers.

2 Practically, the integral in m̂θ(t) = 1
n

n∑
i=1

[
Yi +

∫ u=t
u=Ti

θ̂C(u) du
]

could be analytically

difficult to compute.
• We provide a fast computing recipe via Riemann sum approximation.

• The approximation error is at most OP
( 1

n

)
, which is asymptotically negligible.

3 We can construct (simultaneous) inference on m(t) and θ(t) with the proposed
estimators m̂θ(t) and θ̂C(t) via nonparametric bootstrap.

Some Remarks on Proposed Estimators m̂θ(t) and θ̂C(t)
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• The approximation error is at most OP
( 1

n

)
, which is asymptotically negligible.

3 We can construct (simultaneous) inference on m(t) and θ(t) with the proposed
estimators m̂θ(t) and θ̂C(t) via nonparametric bootstrap.

Some Remarks on Proposed Estimators m̂θ(t) and θ̂C(t)
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Asymptotic Theory
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Combining the theory for local polynomial regression on β̂2(t, s) with the consistency
of P̂ℏ(s|t) via the technique in Fan et al. (1998), we have the following results.

Theorem (Theorem 4 in Zhang et al. 2024)

Let T ′ ⊂ T be a compact set so that pT(t) ≥ pT,min > 0 for all t ∈ T ′. When q = 2 and
h, b, ℏ, max{h,b}4

h → 0 and nmax{h,ℏ}bd

log n , nℏ
log n → ∞,

sup
t∈T ′

∣∣∣θ̂C(t)− θC(t)
∣∣∣ = O

(
h2 + b2 +

max{b, h}4

h

)
︸ ︷︷ ︸

Bias term

+OP

(√
log n
nh3 + ℏ2 +

√
log n
nℏ

)
︸ ︷︷ ︸

Stochastic variation

,

sup
t∈T ′

|m̂θ(t)− m(t)| = O
(

h2 + b2 +
max{b, h}4

h

)
+ OP

(
1√
n
+

√
log n
nh3 + ℏ2 +

√
log n
nℏ

)
.

Uniform Consistencies of Proposed Estimators
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m̂θ(t) =
1
n

n∑
i=1

Yi +
1
n

n∑
i=1

∫ u=t

u=Ti

θ̂C(u) du and θ̂C(t) =

∑n
i=1 β̂2(t,Si) · K̄T

(
Ti−t
ℏ

)
∑n

j=1 K̄T

(
Tj−t
ℏ

) .

sup
t∈T ′

|m̂θ(t)− m(t)| = O
(

h2 + b2 +
max{b, h}4

h

)
+ OP

(
1√
n
+

√
log n
nh3 + ℏ2 +

√
log n
nℏ

)
.

• Blue term: the estimation bias of local polynomial estimator β̂2(t, s).

• Orange term: additional bias of β̂2(t, s) at the boundary ∂E .

• Teal term: asymptotic rate from Ȳn = 1
n
∑n

i=1 Yi.

• Red term: stochastic variation of β̂2(t, s).

• Cyan term: asymptotic rate from the Nadaraya-Watson conditional CDF estimator
P̂ℏ(s|t).

Uniform Rate of Convergence For the Integral Estimator
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Case Study: PM2.5 on CMR
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1 The dataset (Wyatt et al., 2020a,b) contains the average annual CMRs (Y) and
PM2.5 levels (T) across n = 2132 U.S. counties over 1990-2010.

2 The covariate vector S ∈ R10 consists of two parts:
• 2 spatial confounders: latitude and longitude of each county.
• 8 county-level socioeconomic factors acquired from the US census.

3 Focus on the values of PM2.5 between 2.5 µg/m3 and 11.5 µg/m3 to avoid
boundary effects (Takatsu and Westling, 2022).

PM2.5 and CMRs Data Recap
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Shaded areas: 95% pointwise confidence intervals; Regions between dashed lines: 95% uniform confidence bands.
• We compare three models:

1 Regress Y on T alone via local quadratic regression.
2 Regress Y on T with spatial locations.
3 Regress Y on T with both spatial and socioeconomic covariates.

• For model 3, the increasing trends are significant when PM2.5 < 8 µg/m3.

Effect of PM2.5 on the Cardiovascular Mortality Rate (CMR)
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Discussion
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We study nonparametric inference on m(t) = E [Y(t)] and θ(t) = d
dtE [Y(t)] without

the positivity condition.

• Our key techniques rely on two pillars in calculus:

θ(t) = E
[
∂

∂t
µ(t,S)

∣∣∣T = t
]

︸ ︷︷ ︸
Differentiation

and m(t) = E
[

Y +

∫ u=t

u=T
θ(u) du

]
︸ ︷︷ ︸

Integration

.

• The plug-in regression adjustment estimators are consistent without positivity.

• Our integration idea opens a new direction for causal inference with continuous
treatments under violations of positivity!

▶ Ongoing and Future Directions:

• Generalize our proposed estimators to inverse probability weighting and doubly
robust forms (Zhang and Chen, 2025).

• Use additive models (Guo et al., 2019) to address the high-dimensional covariates.

Summary and Future Work
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Thank you!
More details can be found in

[1] Y. Zhang, Y.-C. Chen, and A. Giessing. Nonparametric Inference on Dose-Response Curves Without
the Positivity Condition. arXiv preprint, 2024. https://arxiv.org/abs/2405.09003.

All the code and data are available at
https://github.com/zhangyk8/npDoseResponse/tree/main.

Python Package: npDoseResponse and R Package: npDoseResponse.

I will present the following paper in the invited Session “Advances in Modern
Causal Inference” on Tuesday at 8:30am.

[2] Y. Zhang and Y.-C. Chen. Doubly Robust Inference on Causal Derivative Effects for Continuous
Treatments. arXiv preprint, 2025. https://arxiv.org/abs/2501.06969.
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Assumption (Identification Conditions)

1 (Consistency) Y = Y(t) whenever T = t ∈ T .
2 (Ignorability) Y(t) is conditionally independent of T given S for all t ∈ T .
3 (Treatment Variation) Var(T|S = s) > 0 for all s ∈ S.

1.0 0.5 0.0 0.5 1.0
S

1.0

0.5

0.0

0.5

1.0

T

p(t|s) = 0

Joint support of (T,S)

Assumption (Extrapolation; Zhang et al. 2024)

Assume (t, s) 7→ E [Y(t)|S = s] to be differentiable
w.r.to t for any (t, s) ∈ T × S with pS|T(s|t) > 0
and

θ(t) =
d
dt
E [Y(t)] = E

[
∂

∂t
E [Y(t)|S]

]
⋆
= E

[
∂

∂t
E [Y(t)|S]

∣∣∣T = t
]
.

Additionally, it holds true that E(Y) = E [m(T)].

Identification Strategy Without Positivity
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1 Order q (Partial) Local Polynomial Regression (Fan and Gijbels, 1996): Let
β̂(t, s) ∈ Rq+1 and α̂(t, s) ∈ Rd be the minimizer of

argmin
(β,α)T∈Rq+1+d

n∑
i=1

Yi −
q∑

j=0

βj(Ti − t)q −
d∑

ℓ=1

αℓ(Si,ℓ − sℓ)

2

KT

(
Ti − t

h

)
KS

(
Si − s

b

)
.

• KT : R → [0,∞),KS : Rd → [0,∞) are two symmetric kernel functions, and h, b > 0 are
smoothing bandwidth parameters.

• The second component β̂2(t, s) is a consistent estimator of β2(t, s) = ∂
∂tµ(t, s).

2 Nadaraya-Watson conditional CDF Estimator (Hall et al., 1999):

P̂ℏ(s|t) =

∑n
i=1 1{Si≤s} · K̄T

(
Ti−t
ℏ

)
∑n

j=1 K̄T

(
Tj−t
ℏ

) .

• K̄T : R → [0,∞) is a kernel function and ℏ > 0 is its smoothing bandwidth parameter.

Estimation of Nuisance Functions
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Our integral estimator takes the form

m̂θ(t) =
1
n

n∑
i=1

[
Yi +

∫ t̃=t

t̃=Ti

θ̂C(̃t) d̃t

]
.

▶ Riemann Sum Approximation: Let T(1) ≤ · · · ≤ T(n) be the order statistics of
T1, ...,Tn and ∆j = T(j+1) − T(j) for j = 1, ...,n − 1.

• Approximate m̂θ(T(j)) for each j = 1, ...,n as:

m̂θ(T(j)) ≈
1
n

n∑
i=1

Yi +
1
n

n−1∑
i=1

∆i

[
i · θ̂C(T(i))1{i<j} − (n − i) · θ̂C(T(i+1))1{i≥j}

]
.

• Evaluate m̂θ(t) at any t ∈
[
T(j),T(j+1)

]
by a linear interpolation between m̂θ(T(j))

and m̂θ(T(j+1)).

• The approximation error is at most OP
( 1

n

)
, which is asymptotically negligible.

Fast Computing Algorithm for the Integral Estimator
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1 Compute m̂θ(t) on the original data {(Yi,Ti,Si)}n
i=1.

2 Generate B bootstrap samples
{(

Y∗(b)
i ,T∗(b)

i ,S∗(b)
i

)}n

i=1
by sampling with

replacement and compute m̂∗(b)
θ (t) for each b = 1, ...,B.

3 Let α ∈ (0, 1) be a pre-specified significance level.
• For pointwise inference at t0 ∈ T , calculate the 1 − α quantile ζ∗1−α(t0) of

{D1(t0), ...,DB(t0)}, where Db(t0) =
∣∣∣m̂∗(b)

θ (t0)− m̂θ(t0)
∣∣∣ for b = 1, ...,B.

• For uniform inference on m(t), compute the 1 − α quantile ξ∗1−α of {Dsup,1, ...,Dsup,B},

where Dsup,b = sup
t∈T

∣∣∣m̂∗(b)
θ (t)− m̂θ(t)

∣∣∣ for b = 1, ...,B.

4 Define the 1 − α confidence interval for m(t0) as:[
m̂θ(t0)− ζ∗1−α(t0), m̂θ(t0) + ζ∗1−α(t0)

]
and the simultaneous 1 − α confidence band for every t ∈ T as:[

m̂θ(t)− ξ∗1−α, m̂θ(t) + ξ∗1−α

]
.

Nonparametric Bootstrap Inference
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Let E ⊂ T × S be the support of p(t, s), E◦ be the interior of E , and ∂E be the
boundary of E .

1 For any (t, s) ∈ E◦, µ(t, s) is at least (q + 1) times continuously differentiable with
respect to t and at least four times continuously differentiable with respect to s. All
these partial derivatives of µ(t, s) are continuous up to the boundary ∂E .
Furthermore, µ(t, s) and the partial derivatives are uniformly bounded on E .
Finally, there exist absolute constants σ,A0 > 0 such that Var(Y|T = t,S = s) = σ2

and E|Y|4 < A0 < ∞ uniformly in E .

2 p(t, s) is bounded and at least twice continuously differentiable with bounded
partial derivatives up to the second order on E◦. All these partial derivatives of
p(t, s) are continuous up to the boundary ∂E . Furthermore, E is compact and p(t, s)
is uniformly bounded away from 0 on E . Finally, the marginal density pT(t) of T is
non-degenerate, i.e., its support T has a nonempty interior.

Regularity Assumptions (Smoothness Conditions)

Yikun Zhang Nonparametric Inference on Dose-Response Curves Without Positivity 8/20



3 There exists some constants r1, r2 ∈ (0, 1) such that for any (t, s) ∈ E and all
δ ∈ (0, r1], there is a point (t′, s′) ∈ E satisfying

B
(
(t′, s′), r2δ

)
⊂ B ((t, s), δ) ∩ E ,

where
B((t, s), r) =

{
(t1, s1) ∈ Rd+1 : ||(t1 − t, s1 − s)||2 ≤ r

}
with ||·||2 being the standard Euclidean norm.

4 For any (t, s) ∈ ∂E , the boundary of E , it satisfies that ∂
∂t p(t, s) = ∂

∂sj
p(t, s) = 0 and

∂2

∂s2
j
µ(t, s) = 0 for all j = 1, ..., d.

5 For any δ > 0, the Lebesgue measure of the set ∂E ⊕ δ satisfies |∂E ⊕ δ| ≤ A1 · δ for
some absolute constant A1 > 0, where

∂E ⊕ δ =

{
z ∈ Rd+1 : inf

x∈∂E
||z − x||2 ≤ δ

}
.

Regularity Assumptions (Boundary Conditions)
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6 KT : R → [0,∞) and KS : Rd → [0,∞) are compactly supported and Lispchitz
continuous kernels such that

∫
R KT(t) dt =

∫
Rd KS(s) ds = 1, KT(t) = KT(−t), and KS

is radially symmetric with
∫

s · KS(s)ds = 0. In addition, for all j = 1, 2, ..., and
ℓ = 1, ..., d,

κ
(T)
j :=

∫
R

ujKT(u) du < ∞, ν
(T)
j :=

∫
R

ujK2
T(u) du < ∞,

κ
(S)
j,ℓ :=

∫
Rd

uj
ℓKS(u) du < ∞, and ν

(S)
j,k :=

∫
Rd

uj
ℓK

2
S(u) du < ∞.

Finally, both KT and KS are second-order kernels, i.e., κ(T)2 > 0 and κ
(S)
2,ℓ > 0 for all

ℓ = 1, ..., d.

7 Let Kq,d =
{
(y, z) 7→

(
y−t

h

)ℓ ( zi−si
b

)k1
(

zj−sj
b

)k2
KT

(
y−t

h

)
KS
( z−s

b

)
: (t, s) ∈

T × S; i, j = 1, ..., d; ℓ = 0, ..., 2q; k1, k2 = 0, 1; h, b > 0
}

. It holds that Kq,d is a

bounded VC-type class of measurable functions on Rd+1.

Regularity Assumptions (Kernel Conditions)
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8 The function K̄T : R → [0,∞) is a second-order, Lipschitz continuous, and
symmetric kernel with a compact support, i.e.,

∫
R K̄T(t) dt = 1, K̄T(t) = K̄T(−t), and∫

R t2K̄T(t) dt ∈ (0,∞).

9 Let K̄ =
{

y 7→ K̄T

(
y−t
ℏ

)
: t ∈ T , ℏ > 0

}
. It holds that K̄ is a bounded VC-type class

of measurable functions on R.
Recall that the class G of measurable functions on Rd+1 is VC-type if there exist
constants A2, υ2 > 0 such that for any 0 < ϵ < 1,

sup
Q

N
(
G,L2(Q), ϵ ||G||L2(Q)

)
≤
(

A2

ϵ

)υ2

,

where N
(
G,L2(Q), ϵ ||G||L2(Q)

)
is the ϵ ||G||L2(Q)-covering number of the

(semi-)metric space
(
G, ||·||L2(Q)

)
, Q is any probability measure on Rd+1, G is an

envelope function of G, and ||G||L2(Q) is defined as
[∫

Rd+1 [G(x)]2 dQ(x)
] 1

2 .

Regularity Assumptions (Kernel Conditions)
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Lemma (Lemma 5 in Zhang et al. 2024)

Under the same regularity conditions, if h ≍ n− 1
γ and ℏ ≍ n− 1

ϖ for some γ ≥ ϖ > 0 such
that nh5

log n → c1 and nℏ5

log n → c2 for some c1, c2 ≥ 0 and nmax{h,ℏ}bd

log n , nℏ
log n ,

h3 log n
ℏ , nh3ℏ4

log n → ∞
as n → ∞, then for any t ∈ T ′,

√
nh3

[
θ̂C(t)− θ(t)

]
= Gnφ̄t + oP(1), and

√
nh3 [m̂θ(t)− m(t)] = Gnφt + oP(1),

where
φ̄t(Y,T,S) =

CKT [Y − µ(T,S)]√
h · pT(t)

(
T − t

h

)
KT

(
T − t

h

)
and φt (Y,T,S) = ET1

[∫ t
T1
φ̄t̃(Y,T,S) d̃t

]
with Gn =

√
n (Pn − P), where CKT > 0 is a

constant that only depends on KT.

▶ Note: φ̄t and φt are the IPW components of the approximated efficient influence
functions.

Asymptotic Linearity of Proposed Estimators

Yikun Zhang Nonparametric Inference on Dose-Response Curves Without Positivity 12/20



Theorem (Theorems 6 and 7 in Zhang et al. 2024)

Under the same regularity conditions, if h ≍ n− 1
γ and b ≲ ℏ ≍ n− 1

ϖ for some γ ≥ ϖ > 0
such that nhd+5

log n → c1 and nℏ5

log n → c2 for some c1, c2 ≥ 0 and
ℏ

h3 log n , ℏn
1
3 log n,

√
nℏ

log n ,
nmax{h,ℏ}bd

log n → ∞ as n → ∞,
1 ∣∣∣∣√nh3 sup

t∈T
|m̂θ(t)− m(t)| − sup

t∈T
|Gnφt|

∣∣∣∣ = OP

(√
nh3 max{h, ℏ}4 +

√
h3 log n

ℏ + log n√
nℏ +

√
log n
nbdℏ

)
.

2 there exists a mean-zero Gaussian process B such that

sup
u≥0

∣∣∣∣∣P
(√

nh3 sup
t∈T

|m̂θ(t)− m(t)| ≤ u
)
− P

(
sup
f∈F

|B(f )| ≤ u

)∣∣∣∣∣ = O

( log5 n
nh3

) 1
8

+

(
log2 n
nbdℏ

) 3
8
 .

3

sup
u≥0

∣∣∣∣∣P
(√

nh3 sup
t∈T

|m̂∗
θ(t)− m̂θ(t)| ≤ u

∣∣∣Un

)
− P

(
sup
f∈F

|B(f )| ≤ u

)∣∣∣∣∣ = OP

((
log5 n

nh3

) 1
8
+
(

log2 n
nbdℏ

) 3
8
)

,

where F = {(v, x, z) 7→ φt(v, x, z) : t ∈ T }.

Nonparametric Bootstrap Consistency
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1 F is not Donsker because φt is not uniformly bounded as h → 0.

• However, F̃ =
{
(v, x, z) 7→

√
h3 · φt(v, x, z) : t ∈ T ′

}
is of VC-type.

• Gaussian approximation in Chernozhukov et al. (2014) can be applied to bound the
difference between supf∈F |Gn(f )| and supf∈F |B(f )|.

2 As long as Var(Y|T = t,S = s) ≥ σ2 > 0, Var [φt(Y,T,S)] is a positive finite number.

• The asymptotic linearity (or V-statistic) is non-degenerate.

• Pointwise bootstrap confidence intervals are asymptotically valid.

3 For the validity of uniform bootstrap confidence band, one can choose the

bandwidths h ≍ ℏ = O
(

n− 1
5

)
and

(
log n

n

) 4
5d
≲ b ≲ n− 1

5 .
• These orders align with the outputs from the usual bandwidth selection methods

(Bashtannyk and Hyndman, 2001; Li and Racine, 2004).

• No explicit undersmoothing is required!!

Remarks on Our Asymptotic Results
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• Use the Epanechnikov kernel for KT and KS (with the product kernel technique)
and Gaussian kernel for K̄T.

• Select the bandwidth parameters h, b > 0 by modifying the rule-of-thumb method
in Yang and Tschernig (1999).

• Set the bandwidth parameter ℏ > 0 to the normal reference rule in Chacón et al.
(2011); Chen et al. (2016).

• Set the bootstrap resampling time B = 1000 and the nominal level for confidence
intervals or bands to 95%.

• Compare our proposed estimators with the regression adjustment estimators
under the same choices of bandwidth parameters:

m̂RA(t) =
1
n

n∑
i=1

µ̂(t,Si) and θ̂RA(t) =
1
n

n∑
i=1

β̂2(t,Si).

Simulation Setup for Estimating m(t) and θ(t) Without Positivity
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Generate i.i.d. observations {(Yi,Ti,Si)}2000
i=1 from

Y = T2 + T + 1 + 10S + ϵ, T = sin(πS) + E, and S ∼ Uniform[−1, 1].

• E ∼ Uniform[−0.3, 0.3] is an independent treatment variation,
• ϵ ∼ N (0, 1) is an exogenous normal noise.
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Generate i.i.d. observations {(Yi,Ti,Si)}2000
i=1 from

Y = T + 6S1 + 6S2 + ϵ, T = 2S1 + S2 + E, and (S1,S2) ∼ Uniform[−1, 1]2,

• E ∼ Uniform[−0.5, 0.5] and ϵ ∼ N (0, 1).
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Generate i.i.d. observations {(Yi,Ti,Si)}2000
i=1 from

Y = T2 + T + 10Z + ϵ, T = cos
(
πZ3

)
+

Z
4
+ E, and Z = 4S1 + S2,

• (S1,S2) ∼ Uniform[−1, 1]2, E ∼ Uniform[−0.1, 0.1], and ϵ ∼ N (0, 1).
• Those doubly robust methods based on pseudo-outcomes (Kennedy et al., 2017;

Takatsu and Westling, 2022) do not work in this example.
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For simplicity, we assume the additive confounding model

Y = m̄(T) + η(S) + ϵ, T = f (S) + E with E [η(S)] = 0 and E(E) = 0.

When Var(E) = 0,

• µ(t, s) can be identified only on a lower-dimensional surface
{(t, s) ∈ T × S : t = f (s)} so that

µ (f (s), s) = m̄ (f (s)) + η(s) = m (f (s)) + η(s). (2)

• The relation T = f (S) can be recovered from the data {(Ti,Si)}n
i=1.

Assumption (Bounded random effect)

Let Lf (t) = {s ∈ S : f (s) = t} be a level set of the function f : S → R at t ∈ T . There exists
a constant ρ1 > 0 such that

ρ1 ≥ max

{
sup
t∈T

sup
s∈Lf (t)

|η(s)|,
supt∈T sups∈Lf (t) µ(f (s), s)− inf t∈T infs∈Lf (t) µ(f (s), s)

2

}
.

Nonparametric Bound on m(t) When Var(E) = 0
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By (2) and the first lower bound on ρ1 ≥ sup
t∈T

sup
s∈Lf (t)

|η(s)| in the previous assumption,

we know that
|µ(f (s), s)− m(t)| = |η(s)| ≤ ρ1

for any s ∈ Lf (t). It also implies that

m(t) ∈
⋂

s∈Lf (t)

[µ(f (s), s)− ρ1, µ(f (s), s) + ρ1]

=

[
sup

s∈Lf (t)
µ(f (s), s)− ρ1, inf

s∈Lf (t)
µ(f (s), s) + ρ1

]
,

which is the nonparametric bound on m(t) that contains all the possible values of
m(t) for any fixed t ∈ T when Var(E) = 0.
• This bound is well-defined and nonempty under the second lower bound on ρ1 in

the previous assumption.

Nonparametric Bound on m(t) When Var(E) = 0
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