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A Central Problem in Causal Inference:

Study the causal effect of a treatment T ∈ T on a outcome Y ∈ Y .

For binary treatment (i.e., T ∈ {0, 1}), common causal estimands are

• E [Y(t)] = mean counterfactual outcome1 when we set T = t.

• E [Y(1)]− E [Y(0)] = average treatment effect.

▶ Question: What are the counterparts of the above estimands under
continuous treatment (i.e., T ⊂ R)?

• t 7→ m(t) := E [Y(t)] = (causal) dose-response curve.

• t 7→ θ(t) := m′(t) = d
dtE [Y(t)] = (causal) derivative effect.

1Here, Y(t) is the potential outcome that would have been observed under treatment
level T = t.
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Without confounding, m(t) = E [Y(t)] = E (Y|T = t).

• Fitting m(t) is to regress {Yi}n
i=1 with respect to {Ti}n

i=1.

• Recovering θ(t) is a classical derivative estimation problem (Gasser
and Müller, 1984).

T Y

SY = µ(T,S) + ϵ

T = f (S) + E

• E is an independent treatment variation with E(E) = 0,

• ϵ is an exogenous noise with E(ϵ) = 0, Var(ϵ) = σ2 > 0, and E(ϵ4) < ∞.

▶ Solution: Some identification assumptions are required to estimate
m(t) = E [Y(t)] and θ(t) = m′(t) from {(Yi,Ti,Si)}n

i=1.

Identification of a Causal Dose-Response Curve
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Assumption

1 (Consistency) Y = Y(t) whenever T = t ∈ T .

2 (Ignorability or Unconfoundedness) Y(t)⊥⊥T
∣∣S for all t ∈ T .

3 (Treatment Variation) E has nonzero variance, i.e., Var(E) > 0.

Thus, m(t) and θ(t) can be identified through

m(t) = E [Y(t)] = E [µ(t,S)] and θ(t) =
d
dt
E [Y(t)] =

d
dt
E [µ(t,S)] ,

where µ(t, s) = E (Y|T = t,S = s).
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To estimate
m(t) = E [Y(t)] = E [µ(t,S)] ,

we only need to recover µ(t, s) = E (Y|T = t,S = s) from {(Yi,Ti,Si)}n
i=1.

1 Regression Adjustment: m̂RA(t) = 1
n

∑n
i=1 µ̂(t,Si), where µ̂ is any

consistent estimator of µ (Robins, 1986; Gill and Robins, 2001).

2 Inverse Probability Weighting (IPW): m̂IPW(t) = 1
nh

∑n
i=1

K
(

Ti−t
h

)
p̂T|S(Ti|Si)

· Yi

(Hirano and Imbens, 2004; Imai and van Dyk, 2004).

3 Doubly Robust: Kennedy et al. (2017); Westling et al. (2020);
Colangelo and Lee (2020); Semenova and Chernozhukov (2021);
Bonvini and Kennedy (2022); Takatsu and Westling (2022).

Assumption (Positivity or Overlap Condition)

The conditional density pT|S(t|s) is bounded above and away from zero almost
surely for all t ∈ T and s ∈ S.

▶ Issue: Positivity is a strong condition with continuous treatments!

Estimation of Dose-Response Curves Under Positivity
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Consider a single confounder model:

Y = T2 +T+1+10S+ ϵ, T = sin(πS)+E, and S ∼ Uniform[−1, 1].

• E ∼ Uniform[−0.3, 0.3] is an independent treatment variation,

• ϵ ∼ N (0, 1) is an exogenous normal noise.

1.0 0.5 0.0 0.5 1.0
S

1.0

0.5

0.0

0.5

1.0

T
Joint support of (T,S)

▶ Note: p(t|s) = 0 in the gray regions, and the positivity condition fails.

Violation of the Positivity Condition
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Figure: Average PM2.5 levels over the years 1990-2010 in n = 2132 counties.
T is PM2.5 level, while S consists of county location and demographic features.

▶ Problem: Only one PM2.5 level is available per county, but causal
effects of different PM2.5 levels on county-level CMRs are of interest.

Effect of PM2.5 on the Cardiovascular Mortality Rate (CMR)
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1 The positivity condition may fail to hold in some regions of T × S.

2 We propose a novel integral estimator m̂θ(t) of m(t) for all t ∈ T .

• Construct a localized derivative estimator θ̂C(t) of θ(t) = m′(t) around
the observations Ti, i = 1, ..., n.

• Extrapolate θ̂C(t) to any treatment level of interest via the fundamental
theorem of calculus.

• Compute the integration via an efficient Riemann sum approximation.

• m̂θ(t) is consistent within any compact set of T even when the positivity
condition fails in some regions of T × S.

3 Nonparametric bootstrap inferences with our estimators on m(t) and
θ(t) are asymptotically valid.

Highlight of Today’s Talk
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Methodology
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Recall our model setup

Y = µ(T,S) + ϵ and T = f (S) + E with S⊥⊥E and E(E) = 0.

Assumption (Interchangeability)

µ(t, s) is continuously differentiable with respect to t for any (t, s) ∈ T × S ,
and the following two equalities hold true:

θ(t) = E
[
∂

∂t
µ(t,S)

]
︸ ︷︷ ︸

:=θM(t)

= E
[
∂

∂t
µ(t,S)

∣∣∣T = t
]

︸ ︷︷ ︸
:=θC(t)

and E [µ(T,S)] = E [m(T)] .

▶ Note: Estimating θ(t) by the form θC(t) = E
[
∂
∂tµ(t,S)

∣∣T = t
]

is our
key technique to bypass the positivity condition.

Interchangeability Assumption
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Consider the following additive confounding model

Y = m̄(T)+η(S)+ϵ, T = f (S)+E with E [η(S)] = 0 and E(E) = 0.

• This is a common working model in spatial confounding problems
(Paciorek, 2010; Schnell and Papadogeorgou, 2020).

• It is also known as the geoadditive structural equation model
(Kammann and Wand, 2003; Thaden and Kneib, 2018; Wiecha and
Reich, 2024).

Proposition (Proposition 1 in Zhang et al. 2024)

Under the additive confounding model,
1 m̄(t) = m(t).

2 θ(t) = θM(t) = θC(t).

3 E [µ(T,S)] = E [m(T)] even when E [η(S)] ̸= 0.

Example: Additive Confounding Model
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1 µ(t, s) and ∂
∂tµ(t, s) can be consistently estimated at each observed

data point (Ti,Si).

• The positivity condition holds at (Ti, Si) for i = 1, ..., n.

2 θ(t) can be consistently estimated via θC(t) = E
[
∂
∂tµ(t,S)

∣∣T = t
]
.

• Only require an accurate estimator of ∂
∂tµ(t, s) at the covariate s when

the conditional density p(s|t) is high.

3 By the fundamental theorem of calculus,

m(t) = m(T) +
∫ t̃=t

t̃=T
m′(̃t) d̃t = m(T) +

∫ t̃=t

t̃=T
θ(̃t) d̃t.

=⇒ Under our interchangeability assumption,

m(t) = E

[
m(T) +

∫ t̃=t

t̃=T
θ(̃t) d̃t

]
= E [µ(T, S)] + E

[∫ t̃=t

t̃=T
θC(̃t) d̃t

]

= E(Y) + E

[∫ t̃=t

t̃=T
θC(̃t) d̃t

]
.

Three Critical Insights
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The form m(t) = E(Y) + E
[∫ t

T θC(̃t) d̃t
]

leads to our proposed integral
estimator of m(t) as:

m̂θ(t) =
1
n

n∑
i=1

[
Yi +

∫ t̃=t

t̃=Ti

θ̂C(̃t) d̃t

]
,

where θ̂C(t) is a consistent estimator of

θC(t) = E
[
∂

∂t
µ(t,S)

∣∣∣T = t
]
=

∫
∂

∂t
µ(t, s) dP(s|t).

• Estimate β2(t, s) := ∂
∂tµ(t, s) by (partial) local polynomial regression

(Fan and Gijbels, 1996).

• Fit P(s|t) by Nadaraya-Watson conditional cumulative distribution
function (CDF) estimator (Hall et al., 1999).

Proposed Integral Estimator of Dose-Response Curve
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where θ̂C(t) is a consistent estimator of

θC(t) = E
[
∂

∂t
µ(t,S)

∣∣∣T = t
]
=

∫
∂

∂t
µ(t, s) dP(s|t).

• Estimate β2(t, s) := ∂
∂tµ(t, s) by (partial) local polynomial regression

(Fan and Gijbels, 1996).

• Fit P(s|t) by Nadaraya-Watson conditional cumulative distribution
function (CDF) estimator (Hall et al., 1999).
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1 Let KT : R → [0,∞),KS : Rd → [0,∞) be two symmetric kernel
functions and h, b > 0 be their smoothing bandwidth parameters.

• Epanechnikov kernel K(u) = 3
4

(
1 − u2) · 1{|u|≤1} and Gaussian kernel

K(u) = 1√
2π

exp
(
− u2

2

)
.

• Product kernel technique KS(u) =
∏d

i=1 K(ui) for u ∈ Rd.

2 Let Xi(t, s) = (1, (Ti − t), ..., (Ti − t)q, (Si,1 − s1), ..., (Si,d − sd)) ∈ Rq+1+d,

X(t, s) =

X1(t, s)
...

Xn(t, s)

 and W(t, s) =


KT

(
T1−t

h

)
KS

(
S1−s

b

)
. . .

KT

(
Tn−t

h

)
KS

(
Sn−s

b

)
 .

3 Solve a weighted least-square problem(
β̂(t, s), α̂(t, s)

)T
= argmin

(β,α)T∈Rq+1+d

[
Y − X(t, s)

(
β
α

)]T
W(t, s)

[
Y − X(t, s)

(
β
α

)]

= argmin
(β,α)T∈Rq+1+d

n∑
i=1

Yi −
q∑

j=0

βj(Ti − t)q −
d∑

ℓ=1

αℓ(Si,ℓ − sℓ)

2

KT

(
Ti − t

h

)
KS

(
Si − s

b

)
.

(Partial) Order q Local Polynomial Regression
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With Y = (Y1, ...,Yn)
T ∈ Rn,(

β̂(t, s), α̂(t, s)
)T

=
[
XT(t, s)W(t, s)X(t, s)

]−1
X(t, s)TW(t, s)Y.

We estimate β2(t, s) := ∂
∂tµ(t, s) by the second component β̂2(t, s) of

β̂(t, s) ∈ Rq+1, where q = 2 is recommended.

We fit P(s|t) by Nadaraya-Watson conditional CDF estimator

P̂ℏ(s|t) =

∑n
i=1 1{Si≤s} · K̄T

(
Ti−t
ℏ

)
∑n

j=1 K̄T

(
Tj−t
ℏ

) .

• K̄T : R → [0,∞) is a kernel function and ℏ > 0 is the smoothing
bandwidth parameter.

▶ Proposed Localized Derivative Estimator:

θ̂C(t) =
∫

β̂2(t, s) dP̂ℏ(s|t) =

∑n
i=1 β̂2(t,Si) · K̄T

(
Ti−t
ℏ

)
∑n

j=1 K̄T

(
Tj−t
ℏ

) .

Proposed Localized Derivative Estimator of θ(t)
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Our integral estimator takes the form

m̂θ(t) =
1
n

n∑
i=1

[
Yi +

∫ t̃=t

t̃=Ti

θ̂C(̃t) d̃t

]
.

▶ Issue: The integral could be analytically difficult to compute.

▶ Solution: Let T(1) ≤ · · · ≤ T(n) be the order statistics of T1, ...,Tn and
∆j = T(j+1) − T(j) for j = 1, ...,n − 1.

• Approximate m̂θ(T(j)) for each j = 1, ...,n as:

m̂θ(T(j)) ≈
1
n

n∑
i=1

Yi +
1
n

n−1∑
i=1

∆i

[
i · θ̂C(T(i))1{i<j} − (n − i) · θ̂C(T(i+1))1{i≥j}

]
.

• Evaluate m̂θ(t) at any t ∈
[
T(j),T(j+1)

]
by a linear interpolation

between m̂θ(T(j)) and m̂θ(T(j+1)).

• The approximation error is at most OP
( 1

n

)
.

A Fast Computing Algorithm for Proposed Integral Estimator
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1 Compute m̂θ(t) on the original data {(Yi,Ti,Si)}n
i=1.

2 Generate B bootstrap samples
{(

Y∗(b)
i ,T∗(b)

i ,S∗(b)
i

)}n

i=1
by sampling

with replacement and compute m̂∗(b)
θ (t) for each b = 1, ...,B.

3 Let α ∈ (0, 1) be a pre-specified significance level.

• For pointwise inference at t0 ∈ T , calculate the 1 − α quantile ζ∗1−α(t0) of

{D1(t0), ...,DB(t0)}, where Db(t0) =
∣∣∣m̂∗(b)

θ (t0)− m̂θ(t0)
∣∣∣ for b = 1, ...,B.

• For uniform inference on m(t), compute the 1 − α quantile ξ∗1−α of

{Dsup,1, ...,Dsup,B}, where Dsup,b = sup
t∈T

∣∣∣m̂∗(b)
θ (t)− m̂θ(t)

∣∣∣ for b = 1, ...,B.

4 Define the 1 − α confidence interval for m(t0) as:[
m̂θ(t0)− ζ∗1−α(t0), m̂θ(t0) + ζ∗1−α(t0)

]
and the simultaneous 1 − α confidence band for every t ∈ T as:[

m̂θ(t)− ξ∗1−α, m̂θ(t) + ξ∗1−α

]
.

Nonparametric Bootstrap Inference
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Asymptotic Theory
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Let T ′ ⊂ T be a compact set so that pT(t) ≥ pT,min > 0 for all t ∈ T ′.
Assume
• smoothness conditions on p(t, s) and µ(t, s),

• boundary conditions on E ⊂ T × S, which is the support of p(t, s),

• regular and VC-type conditions on the kernel functions KT,KS, K̄T.

Then, as h, b, ℏ, max{h,b}4

h → 0 and nh3bd

| log(hbd)| ,
| log(hbd)|
log log n , nℏ

| log ℏ| ,
| log ℏ|
log log n → ∞,

sup
t∈T ′

∣∣∣θ̂C(t)− θC(t)
∣∣∣ = O

(
hq + b2 +

max{b, h}4

h

)
︸ ︷︷ ︸

Bias term

+OP

√ | log(hbd)|
nh3bd + ℏ2 +

√
| log ℏ|

nℏ


︸ ︷︷ ︸

Stochastic variation

and

sup
t∈T ′

|m̂θ(t)− m(t)| = OP

(
1√
n

)
+ O

(
hq + b2 +

max{b, h}4

h

)
+ OP

(√
| log(hbd)|

nh3bd + ℏ2 +

√
| log ℏ|

nℏ

)
.

(Uniform) Consistencies of Proposed Estimators
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Under the same regularity conditions, if h ≍ b ≍ n− 1
γ and ℏ ≍ n− 1

ϖ for
some γ ≥ ϖ > 0 such that nhd+5

log n → c1 and nℏ5

log n → c2 for some c1, c2 ≥ 0

and log n
nℏ2 ,

hd+3 log n
ℏ , hd+3

ℏ2 → 0 as n → ∞, then for any t ∈ T ′,

√
nh3bd

[
θ̂C(t)− θC(t)

]
= Gnφ̄t + oP(1),

√
nh3bd [m̂θ(t)− m(t)] = Gnφt + oP(1),

where

φ̄t(Y,T,S) = E(Ti3 ,Si3 )

[
eT

2 M−1
q Ψt,Si3

(Y,T,S)
√

hbd · p(t,Si3) · pT(t)
· 1
ℏ

K̄T

(
t − Ti3

ℏ

)]

and φt (Y,T,S) = ETi2

[∫ t
Ti2

φ̄̃t(Y,T,S) d̃t
]

with Gn =
√

n (Pn − P).

• Note that φ̄t and φt may not be efficient influence functions.

Asymptotic Linearity of Proposed Estimators
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Define

Mq =


(
κ
(T)
i+j−2

)
1≤i,j≤q+1

0

0
(
κ
(S)
2,i−q−11{i=j}

)
q+1<i,j≤q+1+d

 ∈ R(q+1+d)×(q+1+d)

and the function Ψt,s,ψt,s : R× R× Rd → Rq+1+d as:

Ψt,s(y, z,v) =


(

y ·
( z−t

h

)j−1 KT
( z−t

h

)
KS
( v−s

b

))
1≤j≤q+1(

y ·
(

vj−q−1−sj−q−1

b

)
KT
( z−t

h

)
KS
( v−s

b

))
q+1<j≤q+1+d

 .

▶ Key Argument: Write m̂θ(t)− m(t) into a V-statistic (Shieh, 2014)

m̂θ(t)− m(t)

=
1
n3

n∑
i1=1

n∑
i2=1

n∑
i3=1

∫ t

Ti1

eT
2 M−1

q Ψt̃,Si2
(Yi3 ,Ti3 , Si3)

h2bd · p(̃t, Si2) · pT (̃t)
· 1
ℏ

K̄T

(
t̃ − Ti2

ℏ

)
d̃t − E

[∫ t

T
θC(̃t) d̃t

]

+ OP

(
1√
n
+ ℏ2 +

√
log n
nℏ

)
.

High-Level Proof of Asymptotic Linearity
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Under the same regularity conditions, if h ≍ b ≍ n− 1
γ and ℏ ≍ n− 1

ϖ for
some γ ≥ ϖ > 0 such that nhd+5

log n → c1 and nℏ5

log n → c2 for some c1, c2 ≥ 0

and nℏ2

log n ,
ℏ

hd+3 log n , ℏn
1
4 , ℏ2

hd+3 → ∞ as n → ∞,
1 ∣∣∣∣∣√nh3bd sup

t∈T ′
|m̂θ(t)− m(t)| − sup

t∈T ′
|Gnφt|

∣∣∣∣∣
= OP

√nhd+7 +

√
log n
nℏ2

+

√
hd+3 log n

ℏ
+

√
hd+3

ℏ2

 .

2 there exists a mean-zero Gaussian process B such that

sup
u≥0

∣∣∣∣∣P
(√

nh3bd sup
t∈T ′

|m̂θ(t)− m(t)| ≤ u

)
− P

(
sup
f∈F

|B(f )| ≤ u

)∣∣∣∣∣ = O

( log5 n
nhd+3

) 1
8
 .

3

sup
u≥0

∣∣∣∣∣P
(
√

nh3bd · sup
t∈T ′

∣∣m̂∗
θ(t)− m̂θ(t)

∣∣ ≤ u
∣∣∣Un

)
− P

(
sup
f∈F

|B(f )| ≤ u

)∣∣∣∣∣ = OP

((
log5 n
nhd+3

) 1
8

)
with

F = {(v, x, z) 7→ φt(v, x, z) : t ∈ T ′} .

Bootstrap Consistency
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t∈T ′
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− P
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Under the same regularity conditions, if h ≍ b ≍ n− 1
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ϖ for
some γ ≥ ϖ > 0 such that nhd+5

log n → c1 and nℏ5
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hd+3 log n , ℏn
1
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1 ∣∣∣∣∣√nh3bd sup
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∣∣∣∣∣
= OP

√nhd+7 +

√
log n
nℏ2

+

√
hd+3 log n
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hd+3

ℏ2

 .
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1 F is not Donsker because φt is not uniformly bounded as h → 0.

• However, F̃ =
{
(v, x, z) 7→

√
h3bd · φt(v, x, z) : t ∈ T ′

}
is of VC-type.

• Gaussian approximation in Chernozhukov et al. (2014) can be applied to
bound the difference between supf∈F |Gn(f )| and supf∈F |B(f )|.

2 As long as Var(ϵ) = σ2 > 0, Var [φt(Y,T,S)] is a positive finite number.

• The asymptotic linearity (or V-statistic) is non-degenerate.

• Pointwise bootstrap confidence intervals are asymptotically valid.

3 For the validity of uniform bootstrap confidence band, one can choose
the bandwidths h ≍ b = O

(
n− 1

d+5

)
and ℏ = O

(
n− 1

5

)
.

• They match the outputs by the usual bandwidth selection methods
(Bashtannyk and Hyndman, 2001; Li and Racine, 2004).

• No explicit undersmoothing is required!!

Remarks on Our Asymptotic Results
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Simulations and Case Study
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• Use the Epanechnikov kernel for KT and KS (with the product kernel
technique) and Gaussian kernel for K̄T.

• Select the bandwidth parameters h, b > 0 by modifying the
rule-of-thumb method in Yang and Tschernig (1999).

• Set the bandwidth parameter ℏ > 0 to the normal reference rule in
Chacón et al. (2011); Chen et al. (2016).

• Set the bootstrap resampling time B = 1000 and the significance level
α = 0.05.

• Compare our proposed estimators with the regression adjustment
estimators under the same choices of bandwidth parameters:

m̂RA(t) =
1
n

n∑
i=1

µ̂(t,Si) and θ̂RA(t) =
1
n

n∑
i=1

β̂2(t,Si).

Simulation Setup
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Generate i.i.d. observations {(Yi,Ti,Si)}2000
i=1 from

Y = T2 +T+1+10S+ ϵ, T = sin(πS)+E, and S ∼ Uniform[−1, 1].

• E ∼ Uniform[−0.3, 0.3] is an independent treatment variation,

• ϵ ∼ N (0, 1) is an exogenous normal noise.
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Generate i.i.d. observations {(Yi,Ti,Si)}2000
i=1 from

Y = T2 + T + 10Z + ϵ, T = cos
(
πZ3)+ Z

4
+ E, and Z = 4S1 + S2,

• (S1,S2) ∼ Uniform[−1, 1]2, E ∼ Uniform[−0.1, 0.1], and ϵ ∼ N (0, 1).

• Methods based on pseudo-outcomes (Kennedy et al., 2017; Takatsu
and Westling, 2022) does not work in this example.
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1 Recent studies identify a positive association between PM2.5 level
(µg/m3) and county-level CMR (deaths/100,000 person-years) in the
U.S. after controlling for socioeconomic factors (Wyatt et al., 2020a).

2 Obtain the average annual CMR as Y and PM2.5 concentration as T
over years 1990-2010 within n = 2132 U.S. counties from Wyatt et al.
(2020b).

3 The covariate vector S ∈ R10 consists of two parts:
• Two spatial confounding variables, i.e., latitude and longitude of each

county.

• Eight county-level socioeconomic factors acquired from the US census.

4 Focus on the values of PM2.5 between 2.5 µg/m3 and 11.5 µg/m3 to
avoid boundary effects (Takatsu and Westling, 2022).

Effect of PM2.5 on the Cardiovascular Mortality Rate (CMR)
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After adjusting for all the available confounding variables,

• the estimated relationship between PM2.5 and CMR becomes
monotonically increasing;

• the 95% confidence band of the estimated changing rate of CMR is
unanimously above 0 when the PM2.5 level is below 9 µg/m3.

Effect of PM2.5 on the Cardiovascular Mortality Rate (CMR)
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Discussion
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We study nonparametric inference on dose-response curves and their
derivative functions.

• Propose an integral estimator of m(t) and a localized derivative
estimator of θ(t).

• Both estimators are consistent without the positivity condition.

▶ Future Directions:

1 Better estimates of the nuisance functions ∂
∂tµ(t, s) and P(s|t):

• Bandwidth selection via the plug-in rule (Ruppert et al., 1995) or
cross-validation (Li and Racine, 2004).

• Regression splines for ∂
∂tµ(t, s) (Friedman, 1991; Zhou and Wolfe, 2000)

and local logistic approaches for P(s|t) (Hall et al., 1999).

2 Generalize our proposed integral estimators to the IPW and doubly
robust variants.

3 Sensitivity analysis on unmeasured confounding (Chernozhukov
et al., 2022) and the interchangeability assumption.

Summary and Future Works
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4 Study the semi-parametric efficiency of the influence functions from
our proposed estimators:

φ̄t(Y,T,S) = E(Ti3 ,Si3 )

[
eT

2 M−1
q Ψt,Si3

(Y,T,S)
√

hbd · p(t,Si3) · pT(t)
· 1
ℏ

K̄T

(
t − Ti3

ℏ

)]

and φt (Y,T,S) = ETi2

[∫ t
Ti2

φ̄̃t(Y,T,S) d̃t
]
.

5 Our proposed nonparametric estimators suffer from the curse of
dimensionality.

• Impose a semi-parametric additive model (Guo et al., 2019) as:

E (Y|T = t, S = s,Z = z) = m(t) + η(s) +
d′∑

j=1

gj(zj),

where Z ∈ Rd′ is a high-dimensional covariate vector.

Semi-parametric Inference With High-Dimensional Covariates
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Thank you!
More details can be found in

[1] Y. Zhang, Y.-C. Chen, and A. Giessing. Nonparametric Inference on Dose-Response
Curves Without the Positivity Condition. arXiv preprint, 2024.

https://arxiv.org/abs/2405.09003.

Python Package: npDoseResponse and R Package: npDoseResponse.
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▶ Question: Why is it necessary for Var(E) > 0?

• Suppose that Var(E) = 0, and we take

T = f (S) + E a.s.
= S1 with E(S1) = 0.

• Consider two equal conditional mean outcome functions

µ1(T,S) = T + 2S1
a.s.
= 3S1 and µ2(T,S) = 2T + S1

a.s.
= 3S1.

• However, µ1, µ2 lead to two distinct treatment effects:

m1(t) = E [µ1(t,S)] = t and m2(t) = E [µ2(t,S)] = 2t.

Necessity of Having Var(E) > 0
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Let E ⊂ T × S be the support of p(t, s), E◦ be the interior of E , and ∂E be
the boundary of E .

1 For any (t, s) ∈ T × S , µ(t, s) is at least (q + 1) times continuously
differentiable with respect to t and at least four times continuously
differentiable with respect to s. Furthermore, µ(t, s) and all of its
partial derivatives are uniformly bounded on T × S.

2 p(t, s) is bounded and at least twice continuously differentiable with
bounded partial derivatives up to the second order on E◦. All these
partial derivatives of p(t, s) are continuous up to the boundary ∂E .
Furthermore, E is compact and p(t, s) is uniformly bounded away
from 0 on E . Finally, the marginal density pT(t) is non-degenerate.

Regularity Assumptions (Smoothness Conditions)
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3 There exists some constants r1, r2 ∈ (0, 1) such that for any (t, s) ∈ E
and all δ ∈ (0, r1], there is a point (t′, s′) ∈ E satisfying

B ((t′, s′), r2δ) ⊂ B ((t, s), δ) ∩ E ,

where

B((t, s), r) =
{
(t1, s1) ∈ Rd+1 : ||(t1 − t, s1 − s)||2 ≤ r

}
with ||·||2 being the standard Euclidean norm.

4 For any (t, s) ∈ ∂E , the boundary of E , it satisfies that
∂
∂t p(t, s) = ∂

∂sj
p(t, s) = 0 and ∂2

∂s2
j
µ(t, s) = 0 for all j = 1, ..., d.

5 For any δ > 0, the Lebesgue measure of the set ∂E ⊕ δ satisfies
|∂E ⊕ δ| ≤ A1 · δ for some absolute constant A1 > 0, where

∂E ⊕ δ =

{
z ∈ Rd+1 : inf

x∈∂E
||z − x||2 ≤ δ

}
.

Regularity Assumptions (Boundary Conditions)
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6 KT : R → [0,∞) and KS : Rd → [0,∞) are compactly supported and
Lispchitz continuous kernels such that

∫
R KT(t) dt =

∫
Rd KS(s) ds = 1,

KT(t) = KT(−t), and KS is radially symmetric with
∫

s · KS(s)ds = 0. In
addition, for all j = 1, 2, ..., and ℓ = 1, ..., d,

κ
(T)
j :=

∫
R

ujKT(u) du < ∞, ν
(T)
j :=

∫
R

ujK2
T(u) du < ∞,

κ
(S)
j,ℓ :=

∫
Rd

uj
ℓKS(u) du < ∞, and ν

(S)
j,k :=

∫
Rd

uj
ℓK

2
S(u) du < ∞.

Finally, both KT and KS are second-order kernels, i.e., κ(T)
2 > 0 and

κ
(S)
2,ℓ > 0 for all ℓ = 1, ..., d.

7 Let Kq,d =
{
(y, z) 7→

(
y−t

h

)ℓ ( zi−si
b

)k1
(

zj−sj

b

)k2

KT

(
y−t

h

)
KS
( z−s

b

)
:

(t, s) ∈ T × S; i, j = 1, ..., d; ℓ = 0, ..., 2q; k1, k2 = 0, 1; h, b > 0
}

. It holds

that Kq,d is a bounded VC-type class of measurable functions on Rd+1.

Regularity Assumptions (Kernel Conditions)
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8 The function K̄T : R → [0,∞) is a second-order, Lipschitz continuous,
and symmetric kernel with a compact support, i.e.,

∫
R K̄T(t) dt = 1,

K̄T(t) = K̄T(−t), and
∫
R t2K̄T(t) dt ∈ (0,∞).

9 Let K̄ =
{

y 7→ K̄T

(
y−t
ℏ

)
: t ∈ T , ℏ > 0

}
. It holds that K̄ is a bounded

VC-type class of measurable functions on R.
Recall that the class G of measurable functions on Rd+1 is VC-type if
there exist constants A2, υ2 > 0 such that for any 0 < ϵ < 1,

sup
Q

N
(
G,L2(Q), ϵ ||G||L2(Q)

)
≤
(

A2

ϵ

)υ2

,

where N
(
G,L2(Q), ϵ ||G||L2(Q)

)
is the ϵ ||G||L2(Q)-covering number of the

(semi-)metric space
(
G, ||·||L2(Q)

)
, Q is any probability measure on Rd+1,

G is an envelope function of G, and ||G||L2(Q) is defined as[∫
Rd+1 [G(x)]2 dQ(x)

] 1
2
.

Regularity Assumptions (Kernel Conditions)
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Generate i.i.d. observations {(Yi,Ti,Si)}2000
i=1 from

Y = T+6S1+6S2+ϵ, T = 2S1+S2+E, and (S1,S2) ∼ Uniform[−1, 1]2,

• E ∼ Uniform[−0.5, 0.5] and ϵ ∼ N (0, 1).
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Our proposed estimator m (t)
95% uniform confidence band
True dose-response curve m(t)
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Regression adjustment estimator
Our proposed estimator C(t)
95% pointwise confidence intervals
95% uniform confidence band
True derivative (t)

Linear Confounding Model
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For simplicity, we assume the additive confounding model

Y = m̄(T)+η(S)+ϵ, T = f (S)+E with E [η(S)] = 0 and E(E) = 0.

When Var(E) = 0,

• µ(t, s) = E (Y|T = t,S = s) can only be identified on a lower
dimensional surface {(t, s) ∈ T × S : t = f (s)} so that

µ (f (s), s) = m̄ (f (s)) + η(s) = m (f (s)) + η(s). (1)

• The relation T = f (S) can be recovered from the data {(Ti,Si)}n
i=1.

Assumption (Bounded random effect)
Let Lf (t) = {s ∈ S : f (s) = t} be a level set of the function f : S → R at t ∈ T .
There exists a constant ρ1 > 0 such that

ρ1 ≥ max

{
sup
t∈T

sup
s∈Lf (t)

|η(s)|,
supt∈T sups∈Lf (t) µ(f (s), s)− inf t∈T infs∈Lf (t) µ(f (s), s)

2

}
.

Nonparametric Bound on m(t) When Var(E) = 0
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By (1) and the first lower bound on ρ1 ≥ sup
t∈T

sup
s∈Lf (t)

|η(s)| in the previous

assumption, we know that

|µ(f (s), s)− m(t)| = |η(s)| ≤ ρ1

for any s ∈ Lf (t). It also implies that

m(t) ∈
⋂

s∈Lf (t)

[µ(f (s), s)− ρ1, µ(f (s), s) + ρ1]

=

[
sup

s∈Lf (t)
µ(f (s), s)− ρ1, inf

s∈Lf (t)
µ(f (s), s) + ρ1

]
,

which is the nonparametric bound on m(t) that contains all the possible
values of m(t) for any fixed t ∈ T when Var(E) = 0.
• This bound is well-defined and nonempty under the second lower

bound on ρ1 in the previous assumption.

Nonparametric Bound on m(t) When Var(E) = 0
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