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The derivative f ′(t) = lim
∆→0

f (t+∆)−f (t)
∆ signals an instantaneous rate of

change of a function f with respect to the input variable t.

• Physics:

Position f (t) derivative
=⇒ Velocity v(t) = f ′(t)

derivative
=⇒ Acceleration a(t) = v′(t)

• Economics: marginal cost, marginal revenue, marginal propensity to
consume (Haavelmo, 1947) are all related to derivatives.

The Notion of Derivative
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Derivatives measure rates of change over infinitesimal neighborhoods.

Position f (t) derivative
=⇒ Velocity v(t) = f ′(t)

derivative
=⇒ Acceleration a(t) = v′(t)

Given the values v(t0) and f (t0),

Acceleration a(t) = v′(t) “cause”
=⇒ Velocity v(t) over [t0, t1],

Velocity v(t) = f ′(t) “cause”
=⇒ Position f (t) over [t0, t1].

“The fundamental causal laws must
use present properties and past

neighborhood properties to determine
future neighborhood properties ... the
fundamental laws ... must involve some

neighbourhood properties as well. And the
most natural sort of neighbourhood
property appears to be derivative.”

Quoted from pp.857 of Easwaran (2014). This view is also defended in
Chapter 1 of Lange (2002).

Derivative and Causation
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Goal: We want to study the causal effect of a treatment T ∈ T on an
outcome of interest Y ∈ Y .

• E [Y(t)] = mean potential outcome under a static intervention T = t.

• When t varies in a continuous space, t 7→ E [Y(t)] := m(t) is a curve!

0 2 4 6
Treatment value T = t

0.0

0.1

0.2

0.3

0.4

m(t1) m(t2)

m(t) = [Y(t)]

• While m(t1) = m(t2), the derivative effects m′(t1),m′(t2) are distinct!

• The derivative effect curve θ(t) = m′(t) = d
dtE [Y(t)] is a continuous

generalization to the average treatment effect E [Y(1)]− E [Y(0)].

The Role of Derivatives in Causal Inference
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Our causal estimand of interest is the derivative effect curve

t 7→ θ(t) = m′(t) =
d
dt
E [Y(t)] for t ∈ T .

Problem: θ(t) is non-regular and cannot be estimated in a
√

n-rate.

There are some closely related but distinct estimands:

• Incremental Causal/Treatment Effect (Kennedy, 2019; Rothenhäusler and
Yu, 2019):

E [Y(T + δ)]− E [Y(T)]

for some small deterministic δ > 0.

• Average Derivative/Partial Effect (Powell et al., 1989; Newey and Stoker,
1993):

E
[
∂

∂t
E (Y|T,S)

]
= E [θ(T)] ,

where S ∈ S ⊂ Rd is a covariate vector.

Estimand of Interest and its Alternatives
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To identify and estimate θ(t) from the observed data {(Yi,Ti,Si)}n
i=1, the

following assumptions are generally imposed.

Assumption (Identification Conditions)

1 (Consistency) Yi = Yi(t) whenever Ti = t ∈ T .

2 (Ignorability or Unconfoundedness) Yi(t)⊥⊥Ti
∣∣Si for all t ∈ T .

3 (Positivity) pT|S(t|s) ≥ pmin > 0 for all (t, s) ∈ T × S .

θ(t) =
d
dt
E [µ(t,S)]

(*)1

= E
[
∂

∂t
µ(t,S)

]
with µ(t, s) = E (Y|T = t,S = s) .

1 Estimating (partial) derivatives is a challenging problem (Dai et al.,
2016).

• Data generally come from Yi = µ(Ti, Si) + ϵi but not Y′
i =

∂
∂tµ(Ti, Si) + ϵ′i .

2 Positivity is a strong assumption with continuous treatments!

1Some mild assumptions are needed; see Theorem 1.1 in (Shao, 2003).

Basic Framework and Assumptions
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Assumption (Positivity Condition)

There exists a constant pmin > 0 such that pT|S(t|s) ≥ pmin for all (t, s) ∈ T × S .

T = sin(πS) + E, E ∼ Unif[−0.3, 0.3], S ∼ Unif[−1, 1], and E⊥⊥S.

1.0 0.5 0.0 0.5 1.0
S

1.0

0.5

0.0

0.5

1.0

T

p(t|s) = 0

Joint support of (T,S)

▶ Note: p(t|s) = 0 in the gray regions, and the positivity condition fails.

An Example of the Positivity Violation
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Under the positivity condition:

1 We propose doubly robust (DR) estimator of θ(t) via kernel smoothing.

• Deriving a DR estimator for θ(t) is more intricate than for m(t).

Regression Adjustment (RA) + Inverse Probability Weighting (IPW)

{
⇒
⇏

DR

Without the positivity condition:

2 m(t) and θ(t) are identifiable with an additive structural assumption:

Y(t) = m̄(t) + η(S) + ϵ. (1)

3 However, the usual IPW estimators of m(t) and θ(t) are still biased
even under model (1).

• These biases are due to the support discrepancy.

4 We propose our bias-corrected IPW and DR estimators of θ(t).
• Our approach establishes an interesting connection to nonparametric

support and level set estimation problems.

Highlights of Today’s Talk
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Assumption (Identification Conditions)

1 (Consistency) Y = Y(t) whenever T = t ∈ T .

2 (Ignorability or Unconfoundedness) Y(t)⊥⊥T
∣∣S for all t ∈ T .

3 (Positivity) pT|S(t|s) ≥ pmin > 0 for all (t, s) ∈ T × S .

Given that µ(t, s) = E (Y|T = t,S = s), we have

RA or G-computation:

{
m(t) = E [Y(t)] = E [µ(t,S)] ,
θ(t) = d

dtE [Y(t)] = d
dtE [µ(t,S)] = E

[
∂
∂tµ(t,S)

]
.

IPW:

m(t) = E [Y(t)] = lim
h→0

E
[

Y·K( T−t
h )

h·pT|S(T|S)

]
,

θ(t) = d
dtE [Y(t)] = ???.

Here, K : R → [0,∞) is a kernel function and h > 0 is a smoothing
bandwidth parameter.

Recap of the Identification Under Positivity
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There are three major strategies for estimating

m(t) = E [Y(t)] = E [µ(t,S)] = lim
h→0

E

[
Y · K

(T−t
h

)
h · pT|S(T|S)

]
from the data {(Yi,Ti,Si)}n

i=1.

1 RA Estimator (Robins, 1986; Gill and Robins, 2001):

m̂RA(t) =
1
n

n∑
i=1

µ̂(t,Si).

2 IPW Estimator (Hirano and Imbens, 2004; Imai and van Dyk, 2004):

m̂IPW(t) =
1

nh

n∑
i=1

K
(

Ti−t
h

)
p̂T|S(Ti|Si)

· Yi.

3 DR Estimator (Kallus and Zhou, 2018; Colangelo and Lee, 2020):

m̂DR(t) =
1

nh

n∑
i=1

 K
(

Ti−t
h

)
p̂T|S(Ti|Si)

· [Yi − µ̂(t,Si)] + h · µ̂(t,Si)

 .

Dose-Response Curve Estimation Under Positivity
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To estimate θ(t) = d
dtE [Y(t)] = E

[
∂
∂tµ(t,S)

]
from {(Yi,Ti,Si)}n

i=1, we also
have three strategies:

1 RA Estimator:

θ̂RA(t) =
1
n

n∑
i=1

β̂(t,Si) with β(t, s) =
∂

∂t
µ(t, s).

Question: How to generalize the IPW form m(t) = lim
h→0

E
[

Y·K( T−t
h )

h·pT|S(T|S)

]
to

identifying θ(t)?

2 IPW Estimator: Inspired by the derivative estimator in Mack and
Müller (1989), we propose

θ̂IPW(t) =
1

nh2

n∑
i=1

Yi

(
Ti−t

h

)
K
(

Ti−t
h

)
κ2 · p̂T|S(Ti|Si)

with κ2 =

∫
u2K(u) du.
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The usual approach to construct a DR (or AIPW) estimator is as follows:

m̂RA(t) =
1
n

n∑
i=1

µ̂(t,Si) “+” m̂IPW(t) =
1

nh

n∑
i=1

K
(

Ti−t
h

)
p̂T|S(Ti|Si)

· Yi

=⇒ m̂DR(t) =
1

nh

n∑
i=1

K
(

Ti−t
h

)
p̂T|S(Ti|Si)

· [Yi − µ̂(t,Si)] +
1
n

n∑
i=1

µ̂(t,Si).

This “naive” combining approach does not work for constructing a DR
estimator of θ(t):

θ̂RA(t) =
1
n

n∑
i=1

β̂(t,Si) “+” θ̂IPW(t) =
1

nh2

n∑
i=1

(
Ti−t

h

)
K
(

Ti−t
h

)
κ2 · p̂T|S(Ti|Si)

· Yi

=⇒
• θ̂AIPW,1(t) = 1

nh2

n∑
i=1

(
Ti−t

h

)
K
(

Ti−t
h

)
κ2 ·̂pT|S(Ti|Si)

[
Yi − β̂(t,Si)

]
+ 1

n

n∑
i=1

β̂(t,Si);

• θ̂AIPW,2(t) = 1
nh

n∑
i=1

K
(

Ti−t
h

)
p̂T|S(Ti|Si)

[
Yi

h·κ2

(
Ti−t

h

)
− β̂(t,Si)

]
+ 1

n

n∑
i=1

β̂(t,Si); etc.

Remark: All these AIPW estimators are, at best, singly robust!!

Challenges of Deriving a DR Estimator of θ(t)
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θ̂RA(t) =
1
n

n∑
i=1

β̂(t,Si) “+” θ̂IPW(t) =
1

nh2

n∑
i=1

(
Ti−t

h

)
K
(

Ti−t
h

)
κ2 · p̂T|S(Ti|Si)

· Yi

=⇒

θ̂DR(t) =
1

nh2

n∑
i=1

(
Ti−t

h

)
K
(

Ti−t
h

)
κ2 · p̂T|S(Ti|Si)

[
Yi − µ̂(t, Si)− (Ti − t) · β̂(t, Si)

]
︸ ︷︷ ︸

IPW component

+
1
n

n∑
i=1

β̂(t, Si)︸ ︷︷ ︸
RA component

.

1 The “IPW component” leverages a local polynomial approximation to
push the residual to (roughly) second order.

• Neyman orthogonality (Neyman, 1959; Chernozhukov et al., 2018) holds
as h → 0.

2 Different from m̂IPW(t) and m̂DR(t), we must compute the inverse
probability weights as 1

p̂T|S(Ti|Si)
but not 1

p̂T|S(t|Si)
for i = 1, ...,n.

Doubly Robust Estimator of θ(t) Under Positivity
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Theorem (Theorem 1 in Zhang and Chen 2025)

Under some regularity assumptions and

1 µ̂, β̂, p̂T|S are estimated on a dataset independent of {(Yi,Ti,Si)}n
i=1;

2 at least one of the model specification conditions hold:

• p̂T|S(t|s)
P→ p̄T|S(t|s) = pT|S(t|s) (conditional density model),

• µ̂(t, s) P→ µ̄(t, s) = µ(t, s) and β̂(t, s) P→ β̄(t, s) = β(t, s) (outcome model);
3

sup
|u−t|≤h

∣∣∣∣p̂T|S(u|S)− pT|S(u|S)
∣∣∣∣

L2

[
||µ̂(t, S)− µ(t, S)||L2

+ h
∣∣∣∣∣∣β̂(t, S)− β(t, S)

∣∣∣∣∣∣
L2

]
= oP

(
1√
nh

)
,

we prove that

•
√

nh3
[
θ̂DR(t)− θ(t)

]
= 1√

n

n∑
i=1

ϕh,t
(
Yi,Ti,Si; µ̄, β̄, p̄T|S

)
+ oP(1).

•
√

nh3
[
θ̂DR(t)− θ(t)− h2Bθ(t)

]
d→ N (0,Vθ(t)).

Asymptotic Properties of θ̂DR(t)
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We can conduct asymptotically valid inference on θ(t) = d
dtE [Y(t)] using

√
nh3

[
θ̂DR(t)− θ(t)− h2Bθ(t)

]
d→ N (0,Vθ(t)) .

1 We estimate Vθ(t) = E
[
ϕ2

h,t

(
Y,T,S; µ̄, β̄, p̄T|S

)]
with

ϕh,t
(
Y,T,S; µ̄, β̄, p̄T|S

)
=

(T−t
h

)
K
(T−t

h

)
√

h · κ2 · p̄T|S(T|S)
·
[
Y − µ̄(t,S)− (T − t) · β̄(t,S)

]
by V̂θ(t) = 1

n

n∑
i=1

ϕ2
h,t

(
Y,T,S; µ̂, β̂, p̂T|S

)
.

2 µ̂, β̂, p̂T|S can be estimated via sample-splitting or cross-fitting.

3 The explicit form of Bθ(t) is complicated, but h2Bθ(t) is asymptotically
negligible when h = O

(
n− 1

5

)
.

• This order aligns with the outputs from usual bandwidth selection
methods (Wand and Jones, 1994; Wasserman, 2006).

Statistical Inference on θ(t)
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Assumption (Identification Conditions)

1 (Consistency) Y = Y(t) whenever T = t ∈ T .

2 (Ignorability or Unconfoundedness) Y(t)⊥⊥T
∣∣S for all t ∈ T .

3 (Positivity) pT|S(t|s) ≥ pmin > 0 for all (t, s) ∈ T × S .

The RA (or G-computation) formulae are given by

m(t) = E [Y(t)] = E [µ(t,S)] and θ(t) =
d
dt
E [Y(t)] = E

[
∂

∂t
µ(t,S)

]
.

The IPW approaches also rely on the following identities:

lim
h→0

E

[
Y · K

( T−t
h

)
h · pT|S(T|S)

]
= E [µ(t, S)] and lim

h→0
E

[
Y
( T−t

h

)
K
( T−t

h

)
κ2 h2 pT|S(T|S)

]
= E

[
∂

∂t
µ(t, S)

]
.

Identification Issue: Without positivity, µ(t, s) = E (Y|T = t,S = s) is not
well-defined outside the support J ⊂ T × S of the joint density p(t, s).
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1 (Consistency) Y = Y(t) whenever T = t ∈ T .
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∣∣S for all t ∈ T .
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θ(t) = E
[
∂

∂t
E [Y(t)|S]

]
= E

[
∂

∂t
E [Y(t)|S]

∣∣∣T = t
]
.

2 The potential outcome Y(t) is continuously differentiable with respect to t
and

θ(t) = E
[
E
[
∂

∂t
Y(t)

∣∣∣S]] = E
[
E
[
∂

∂t
Y(t)

∣∣∣S] ∣∣∣T = t
]
.

Additionally, it holds true that E(Y) = E [m(T)].
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If θ(t) = d
dtE [Y(t)] = E

[
∂
∂tE [Y(t)|S]

]
= E

[
∂
∂tE [Y(t)|S]

∣∣∣T = t
]

holds true,
then

θ(t) = E
[
∂

∂t
E[Y(t)|S]

∣∣∣T = t
]

(∗)
= E

[
∂

∂t
E[Y(t)|T = t,S]

∣∣∣T = t
]

(*) Ignorability

(**)
= E

[
∂

∂t
E(Y|T = t,S)

∣∣∣T = t
]

(**) Consistency

= E
[
∂

∂t
µ(t,S)

∣∣∣T = t
]
:= θC(t).

• For any t ∈ T , the fundamental theorem of calculus reveals that

m(t) = m(T) +
∫ t̃=t

t̃=T
m′(̃t) d̃t = m(T) +

∫ t̃=t

t̃=T
θ(̃t) d̃t.

• Taking the expectation on both sides of the above equality yields that

m(t) = E(Y) + E

{∫ t̃=t

t̃=T
E
[
∂

∂t
µ(̃t,S)

∣∣∣T = t̃
]

d̃t

}
.
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We identify θ(t) through

θC(t) = E
[
∂

∂t
E(Y|T = t,S)

∣∣∣T = t
]
= E

[
∂

∂t
µ(t,S)

∣∣∣T = t
]
.

• In contrast to the identification via E
[
∂
∂tµ(t,S)

]
under positivity, we

only need
∂

∂t
µ(t, s) =

∂

∂t
E(Y|T = t, s)

to be well-defined when pS|T(s|t) > 0.

1.0 0.5 0.0 0.5 1.0
S

1.0

0.5

0.0

0.5

1.0

T

pT|S(t|s) = 0

pS|T(s|t) > 0
Joint support of (T,S)

Validity of Our Identification Strategies Without Positivity
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θ(t) =
d
dt
E [Y(t)] = E

[
∂

∂t
E [Y(t)|S]

]
= E

[
∂

∂t
E [Y(t)|S]

∣∣∣T = t
]
.

Proposition 2 in Zhang et al. (2024) shows that the above equality holds
under an additive structural assumption

Y(t) = m̄(t) + η(S) + ϵ.

• m̄ : T → R and η : S → R are deterministic functions.

• ϵ ∈ R is an independent noise variable with E(ϵ) = 0 and Var(ϵ) > 0.

• m(t) = E [Y(t)] = m̄(t) + E [η(S)] and θ(t) = m′(t) = d
dtE [Y(t)] = m̄′(t).

• Identification:

m(t) = E

[
Y +

∫ t̃=t

t̃=T
θ(̃t) d̃t

]
, θ(t) =

∫
∂

∂t
µ(t, s) dFS|T(s|t).

• RA estimator without positivity (Zhang et al., 2024):

m̂C,RA(t) =
1
n

n∑
i=1

[
Yi +

∫ t̃=t

t̃=Ti

θ̂C,RA(̃t) d̃t

]
, θ̂C,RA(t) =

∫
β̂(t, s) dF̂S|T(s|t).

Key Example: Additive Confounding Model
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Question: How about IPW and DR estimators of θ(t) without positivity?

• For identification, we assume Y(t) = m̄(t) + η(S) + ϵ.

• Consider usual (oracle) IPW estimators of m(t) and θ(t) as:

m̃IPW(t) =
1

nh

n∑
i=1

Yi · K
(

Ti−t
h

)
pT|S(Ti|Si)

, θ̃IPW(t) =
1

nh2

n∑
i=1

Yi

(
Ti−t

h

)
K
(

Ti−t
h

)
κ2 · pT|S(Ti|Si)

.

• We show in Proposition 2 of Zhang and Chen (2025) that

lim
h→0

E [m̃IPW(t)] = m̄(t) · ρ(t) + ω(t) ̸= m(t),

lim
h→0

E
[
θ̃IPW(t)

]
=

{
m̄′(t) · ρ(t)
∞

̸= θ(t),

where ρ(t) = P (S ∈ S(t)) and ω(t) = E
[
η(S)1{S∈S(t)}

]
.

Key Issue: The conditional support S(t) of pS|T(s|t) and the marginal
support S of pS(s) are different!!

Estimation Biases of IPW Estimators Without Positivity
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lim
h→0

E
[
θ̃IPW(t)

]
= lim

h→0
E

[
Y
(T−t

h

)
K
(T−t

h

)
h2 · κ2 · pT|S(T|S)

]
=

{
m̄′(t) · ρ(t)
∞

̸= θ(t),

where ρ(t) = P (S ∈ S(t)) and ω(t) = E
[
η(S)1{S∈S(t)}

]
.

1 We first want to disentangle θ(t) = m̄′(t) from the bias term:

E

[
Y
( T−t

h

)
K
( T−t

h

)
pS|T(S|T)

h2 · κ2 · pT|S(T|S) · pS(S)

]
= m̄′(t) + O(h2)

+

∫
R
E
{
[m̄(t + uh) + η(S)]

[
1{S∈S(t+uh)\S(t)} − 1{S∈S(t)\S(t+uh)}

] ∣∣∣T = t
}

u · K(u) du︸ ︷︷ ︸
Non-vanishing Bias

.

SS(t+ uh)

S(t)
S(t)∆S(t+ uh)

S(t) ∩ S(t+ uh)

Bias-Corrected IPW Estimator of θ(t)
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Y
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Question: How can we find a ζ-interior conditional density pζ(s|t)?

SS(t+ δ)

S(t)S(t)∆S(t+ δ)

Lζ(t)

Level set approach

SS(t+ δ)

S(t)S(t)∆S(t+ δ)

S(t)⊖ ζ

ζ

Support shrinking approach

= {s : pS|T (s|t) ≥ ζ}

S(t)⊖ ζ =

{
s ∈ S(t) : inf

x∈∂S(t)
||s − x||2 ≥ ζ

}
and define

pζ(s|t) =
pS|T(s|t) · 1{s∈S(t)⊖ζ}∫
S(t)⊖ζ

pS|T(s1|t) ds1
.

Lζ(t) =
{

s ∈ S(t) : pS|T(s|t) ≥ ζ
}

and define

pζ(s|t) =
pS|T(s|t) · 1{s∈Lζ(t)}∫
Lζ(t) pS|T(s1|t) ds1

.

Remark: Practically, the level set approach is recommended, because we
only need to choose ζ > 0.

ζ-Interior Conditional Density
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• Bias-Corrected IPW Estimator:

θ̂C,IPW(t) =
1

nh2

n∑
i=1

Yi

(
Ti−t

h

)
K
(

Ti−t
h

)
p̂ζ(Si|t)

κ2 · p̂(Ti,Si)
,

where
• p̂(t, s), p̂ζ(s|t) are estimators of p(t, s), pζ(s|t).
• ζ can be set to, e.g., ζ = 0.5 ·max

{
p̂S|T(Si|t) : i = 1, ..., n

}
.

• Bias-Corrected DR Estimator:

θ̂C,DR(t)

=
1

nh2

n∑
i=1

(
Ti−t

h

)
K
(

Ti−t
h

)
p̂ζ(Si|t)

κ2 · p̂(Ti,Si)

[
Yi − µ̂(t,Si)− (Ti − t) · β̂(t,Si)

]
︸ ︷︷ ︸

IPW component

+

∫
β̂(t, s) · p̂ζ(s|t) ds︸ ︷︷ ︸

RA component

.

Bias-Corrected IPW and DR Estimators of θ(t)
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Theorem (Theorem 5 in Zhang and Chen 2025)

Under some regularity assumptions and

1 µ̂, β̂, p̂, p̂ζ are estimated on a dataset independent of {(Yi,Ti,Si)}n
i=1;

2
√

nh3 ||p̂ζ(S|t)− p̄ζ(S|t)||L2
= oP(1), where p̂ζ(s|t)

P→ p̄ζ(s|t);

3 at least one of the model specification conditions hold:

• p̂(t, s) P→ p̄(t, s) = p(t, s) (joint density model),

• µ̂(t, s) P→ µ̄(t, s) = µ(t, s) and β̂(t, s) P→ β̄(t, s) = β(t, s) (outcome model);
4

sup
|u−t|≤h

||̂p(u, S)− p(u, S)||L2

[
||µ̂(t, S)− µ(t, S)||L2

+ h
∣∣∣∣∣∣β̂(t, S)− β(t, S)

∣∣∣∣∣∣
L2

]
= oP

(
1√
nh

)
we prove that

•
√

nh3
[
θ̂C,DR(t)− θ(t)

]
= 1√

n

n∑
i=1

ϕC,h,t
(
Yi,Ti,Si; µ̄, β̄, p̄T|S

)
+ oP(1).

•
√

nh3
[
θ̂C,DR(t)− θ(t)− h2BC,θ(t)

]
d→ N (0,VC,θ(t)).

Asymptotic Properties of θ̂C,DR(t) Without Positivity
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Asymptotically valid inference on θ(t) = d
dtE [Y(t)] can be done via

√
nh3

[
θ̂C,DR(t)− θ(t)− h2BC,θ(t)

]
d→ N (0,VC,θ(t)) .

1 We estimate VC,θ(t) = E
[
ϕ2

C,h,t

(
Y,T,S; µ̄, β̄, p̄, p̄ζ

)]
with

ϕC,h,t
(
Y,T, S; µ̄, β̄, p̄, p̄ζ

)
=

( T−t
h

)
K
( T−t

h

)
· p̄ζ(S|t)√

h · κ2 · p̄(T, S)
·
[
Y − µ̄(t, S)− (T − t) · β̄(t, S)

]
by V̂C,θ(t) = 1

n

n∑
i=1

ϕ2
C,h,t

(
Y,T,S; µ̂, β̂, p̂, p̂ζ

)
.

2 µ̂, β̂, p̂, p̂ζ can be estimated via sample-splitting or cross-fitting.

3 We choose an implicit undersmoothing bandwidth h = O
(

n− 1
5

)
to

neglect the bias h2BC,θ(t).

Statistical Inference on θ(t) Without Positivity
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1 Introduction

2 Inference Theory for θ(t) Under Positivity

3 Inference Theory for θ(t) Without Positivity

4 Simulations and Case Study

5 Discussion
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Y = T3+T2+10S+ϵ, T = sin(πS)+E, S ∼ Unif[−1, 1], E ∼ Unif[−0.3, 0.3].
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Note: β(t, s) = ∂
∂tµ(t, s) is estimated via automatic differentiation of a

well-trained neural net (inspired by Luedtke 2024).

Simulations Without Positivity
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We compare our proposed DR estimator θ̂DR(t) under positivity with the
finite-difference method (Colangelo and Lee 2020; CL20) on the U.S. Job
Corps program (Schochet et al., 2001).

• Y is the proportion of weeks employed in 2nd year after enrollment.

• T is the total hours of academic and vocational training received.

• S comprises 49 socioeconomic characteristics, and n = 4024.
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We study (nonparametric) doubly robust inference on θ(t) = d
dtE [Y(t)]

with and without the positivity condition.

1 Under the positivity condition,
• naive AIPW estimators are not doubly robust;

• our proposed DR estimator θ̂DR(t) achieves doubly robust consistency at
the standard nonparametric rate.

• θ̂DR(t) admits an asymptotically linear form for pointwise (and uniform)

inference when h = O
(

n− 1
5

)
.

2 Without the positivity condition,
• we prove the inconsistency of conventional IPW and DR estimators even

when Y(t) = m̄(t) + η(S) + ϵ.

• our bias-corrected IPW and DR estimators reveal a novel connection to
nonparametric set estimation problems (Bonvini et al., 2023).

Causal Inference Meets Geometric Data Analysis
(https://uwgeometry.github.io/)!

Summary of Today’s Talk
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nonparametric set estimation problems (Bonvini et al., 2023).

Causal Inference Meets Geometric Data Analysis
(https://uwgeometry.github.io/)!

Summary of Today’s Talk
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1 Efficiency Theory: Can we derive efficient influence functions for our
DR estimators through a sequence of kernel-smoothed parameters
approximating θ(t) (van der Laan et al., 2018)?

2 Debiasing DR Estimators: Can we debias our DR estimators through
explicit bias estimation (Calonico et al., 2018; Cheng and Chen, 2019;
Takatsu and Westling, 2024) or calibration (van der Laan et al., 2024)?

3 Derivative Estimation in Other Causal Contexts: Can we generalize
our derivative estimators to other causal estimands:

• instantaneous causal effect d
dtE [Y(t)|S = s] (Stolzenberg, 1980);

• direct and indirect effects in mediation analysis (Huber et al., 2020)?
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Thank you!
More details can be found in

[1] Y. Zhang, Y.-C. Chen, and A. Giessing. Nonparametric Inference on Dose-Response
Curves Without the Positivity Condition. arXiv preprint, 2024.

https://arxiv.org/abs/2405.09003.

[2] Y. Zhang and Y.-C. Chen. Doubly Robust Inference on Causal Derivative Effects for
Continuous Treatments. arXiv preprint, 2025. https://arxiv.org/abs/2501.06969

All the code and data are available at
hhttps://github.com/zhangyk8/npDRDeriv.

Python Package: npDoseResponse.
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Assumption (Differentiability of the conditional mean
outcome function)
For any (t, s) ∈ T × S and µ(t, s) = E (Y|T = t,S = s), it holds that
1 µ(t, s) is at least four times continuously differentiable with respect to t.
2 µ(t, s) and all of its partial derivatives are uniformly bounded on T × S.

Let J be the support of the joint density p(t, s).

Assumption (Differentiability of the density functions)

For any (t, s) ∈ J , it holds that
1 The joint density p(t, s) and the conditional density pT|S(t|s) are at least

three times continuously differentiable with respect to t.
2 p(t, s), pT|S(t|s), pS|T(s|t), as well as all of the partial derivatives of p(t, s)

and pT|S(t|s) are bounded and continuous up to the boundary ∂J .
3 The support T of the marginal density pT(t) is compact and pT(t) is

uniformly bounded away from 0 within T .

Detailed Regularity Assumptions
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Assumption (Regular kernel conditions)

A kernel function K : R → [0,∞) is bounded and compactly supported on
[−1, 1] with

∫
R K(t) dt = 1 and K(t) = K(−t). In addition, it holds that

1 κj :=
∫
R ujK(u) du < ∞ and νj :=

∫
R ujK2(u) du < ∞ for all j = 1, 2, ....

2 K is a second-order kernel, i.e., κ1 = 0 and κ2 > 0.

3 K =

{
t′ 7→

(
t′−t

h

)k1

K
(

t′−t
h

)
: t ∈ T , h > 0, k1 = 0, 1

}
is a bounded

VC-type class of measurable functions on R.

Assumption (Smoothness condition on S(t))
For any δ ∈ R and t ∈ T , there exists an absolute constant A0 > 0 such that
either (i) “S(t)⊖ (A0|δ|) ⊂ S(t + δ)” for the support shrinking approach or
(ii) “LA0|δ|(t) ⊂ S(t + δ)” for the level set approach.

Detailed Regularity Assumptions
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The self-normalizing technique can reduce the instability of IPW and
DR estimators (Kallus and Zhou, 2018):

1 Self-Normalized Estimators Under Positivity:

θ̂norm
IPW (t) =

θ̂IPW(t)

1
nh

n∑
j=1

K
(

Tj−t

h

)
p̂T|S(Tj|Sj)

=

n∑
i=1

Yi

(
Ti−t

h

)
K
(

Ti−t
h

)
p̂T|S(Ti|Si)

κ2h
n∑

j=1

K
(

Tj−t

h

)
p̂T|S(Tj|Sj)

,

and

θ̂norm
DR (t) =

n∑
i=1

[Yi−µ̂(t,Si)−(Ti−t)·β̂(t,Si)]
(

Ti−t
h

)
K
(

Ti−t
h

)
p̂T|S(Ti|Si)

κ2h
n∑

j=1

K
(

Tj−t

h

)
p̂T|S(Tj|Sj)

+
1
n

n∑
i=1

β̂(t,Si).

Self-Normalized IPW and DR Estimators
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2 Self-Normalized Estimators Without Positivity:

θ̂norm
C,IPW(t) =

θ̂C,IPW(t)

1
nh

n∑
j=1

K
(

Tj−t

h

)
·̂pζ(Sj|t)

p̂(Tj,Sj)

=

n∑
i=1

Yi

(
Ti−t

h

)
K
(

Ti−t
h

)
·̂pζ(Si|t)

p̂(Ti,Si)

κ2h
n∑

j=1

K
(

Tj−t

h

)
·̂pζ(Sj|t)

p̂(Tj,Sj)

,

and

θ̂norm
C,DR(t) =

n∑
i=1

[Yi−µ̂(t,Si)−(Ti−t)·β̂(t,Si)]
(

Ti−t
h

)
K
(

Ti−t
h

)
·̂pζ(Si|t)

p̂(Ti,Si)

κ2h
n∑

j=1

K
(

Tj−t

h

)
·̂pζ(Sj|t)

p̂(Tj,Sj)

+

∫
β̂(t, s) · p̂ζ(s|t) ds.

Self-Normalized IPW and DR Estimators
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We generate i.i.d. observations {(Yi,Ti,Si)}n
i=1 from the following

data-generating model (Colangelo and Lee, 2020):

Y = 1.2 T + T2 + TS1 + 1.2 ξTS + ϵ
√

0.5 + FN (0,1)(S1), ϵ ∼ N (0, 1),

T = FN (0,1)
(
3ξTS

)
− 0.5 + 0.75E, S = (S1, ...,Sd)

T ∼ Nd (0,Σ) , E ∼ N (0, 1),

where

• FN (0,1) is the CDF of N (0, 1) and d = 20.

• ξ = (ξ1, ..., ξd)
T ∈ Rd has its entry ξj =

1
j2 for j = 1, ..., d and Σii = 1,

Σij = 0.5 when |i − j| = 1, and Σij = 0 when |i − j| > 1 for i, j = 1, ..., d.

• The dose-response curve is given by m(t) = 1.2t + t2, and our
parameter of interest is the derivative effect curve θ(t) = 1.2 + 2t.

Simulations Under the Positivity Condition
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Figure: Comparisons between our proposed estimators and the finite-difference
approaches by Colangelo and Lee (2020) (“CL20”) under positivity and with
5-fold cross-fitting across various sample sizes.

Simulations Under the Positivity Condition
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Figure: Comparisons between our proposed estimators and the finite-difference
approaches by Colangelo and Lee (2020) (“CL20”) under positivity and without
cross-fitting across various sample sizes.
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