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[Abstract]

Structure learning is a fundamental and challenging issue in dealing with Bayesian net-

works. In this thesis we introduce a two-step clustering-based strategy, which can au-

tomatically generate prior information from data in order to improve the accuracy and

time efficiency of state-of-the-art algorithms in Bayesian network structure learning.

Our clustering-based strategy is composed of two steps. In the first step, we divide the

candidate variables (or nodes) in the domain into several groups via clustering analy-

sis and apply Bayesian network structure learning to obtain some potential arcs within

each cluster. In the second step, with all the within-cluster arcs being well preserved,

we learn the between-cluster structure of the given network. Experimental results on

benchmark network datasets show that a wide range of traditional structure learning

algorithms benefit from the proposed clustering-based strategy in both terms of accura-

cy and time efficiency. Furthermore, by combining the constraint-based version of our

two-step clustering-based strategy with score-based greedy searching methods, we pro-

pose an algorithm composition technique, which is able to substantially further improve

the accuracy of the resulting network structure.

[Keywords]: Bayesian Networks, Clustering Analysis, Two-Step Structure Learning,

Algorithm Combination
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Chapter 1

Introduction and Motivation

Probabilistic graphical models based on directed acyclic graphs have a long and rich tra-

dition, dating back to the work by a geneticist Sewall Wright in the 1920s [3]. However,

such elegant and powerful models did not arouse researchers’ interest in the scientific

community until Judea Pearl formulated them with statistical tools and introduced the

declarative representations of conditional independence relations into the field of artifi-

cial intelligence [4, 5]. These structured probabilistic models, later known as Bayesian

networks or belief networks, is widely used to address uncertainty and causal relations

among the variables in various scenarios. As a result, the applications of Bayesian net-

works range from medical research to social science. For instance, Sesen et al.(2013)

applied Bayesian network approach to predict survival rates and select appropriate treat-

ments for lung cancer patients [6]. On the other hand, the Bayesian network model can

be viewed as a generalization of the powerful Naive Bayes classier and improve the

classification ability of a Naive Bayes model by taking into account the correlations

between variables (or features) [7].

Considering widespread applications of Bayesian networks, learning Bayesian net-

works from real-world datasets has been an intense research topic in the last two decades.

Practitioners essentially face two main problems when learning a Bayesian network:

structure learning as well as parameter learning. To address the issue of Bayesian

network structure learning, some constraint-based, score-based, and hybrid algorithms

have been proposed [8, 9]. As for parameter learning, common approaches are Maxi-

mum Likelihood Estimation, which chooses the parameters to maximize the likelihood
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(or log-likelihood) function, and Bayesian Estimation, which incorporates the prior dis-

tribution of data into estimating procedures and carry out estimations via posterior dis-

tributions.

In this paper, we focus on Bayesian network structure learning, because [10]

1. We hope to learn models for new queries when expert knowledge is insufficient;

2. The resulting network structure can be used as a tool to reveal some important

properties of the domain, especially to examine the dependencies between vari-

ables;

3. It is the prerequisite of parameter learning.

1.1 Related Work

1.1.1 Bayesian network Structure Learning

As we have mentioned earlier, existing state-of-the-art structure learning algorithms fall

in three categories.

The first category utilizes constraint-based structure learning and views a Bayesian

network as a representation of independencies. These methods attempt to test for con-

ditional dependence and independence in the data and to find a network (or more pre-

cisely, an equivalence class of networks) that best explains these dependencies and in-

dependencies [10].

The second category is score-based structure learning. Score-based approaches

treat structure learning as an optimization problem, where we define a hypothesis space

of potential networks and assign a statistically motivated score that describes the fitness

of each possible structure to the observed data [11].

The third category consists of hybrid algorithms, which combine constraint-based

and score-based algorithms to offset their weaknesses and produce reliable network

structures in a wide variety of situations [9].
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The detailed discussion of representative algorithms, advantages, and disadvantages

in each category will be presented in Chapter 2, where we systematically review all

related background knowledge of Bayesian networks.

1.1.2 Learning Bayesian Network Structure With Prior Informa-

tion

Although miscellaneous approaches have been designed to address Bayesian network

structure learning, it is an NP-hard problem in general [12, 13], especially when it

comes to score-based algorithms for an optimal network. Thus, practitioners need to

resort to heuristic searching methods in the implementation of score-based algorithms.

The constraint-based approaches, though more efficient, are highly sensitive to failures

in independence tests [11]. More significantly, structure learning on large-scale dataset-

s, like DNA expression data [14], is intractable and time-consuming. However, some

prior information about network structures helps to reduce computational costs of struc-

ture learning algorithms and improve accuracies of output networks. Several studies

incorporating prior knowledge into the structure learning process have been conducted

recently. For example, Perrier et al.(2008) assumed the skeleton of a network and effi-

ciently found an optimal Bayesian network by restricting the searching on its skeleton

[15]. Nevertheless, some of the proposed algorithms require the prior knowledge in

high quality, and they need users to specify a structure or an ordering of nodes, both of

which are not easy to achieve [16]. In addition, the previous work tends to introduce the

expert knowledge by eliciting informative prior probability distributions of the graph

structures [17]. This approach is highly constrained to the availability and correctness

of prior information, which are difficult to achieve under real-world scenarios.

The preceding drawbacks in structure learning via prior information motivate us to

develop a novel automatic way to generate prior information from data by the structure

learning algorithm itself. The common prior information comes from the existence

and absence of arcs or parent nodes, distribution knowledge including the conditional

probability distribution (CPD) of edges, and the probability distribution (PD) of nodes
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[16]. Among various types of prior information, nothing goes better than the existence

of arcs, since they serve as the principal components of a network structure. Therefore,

we seek to generate some prior knowledge of the existence of arcs directly from the

data via structure learning algorithms.

1.2 Inspirations and Our Contributions

To the best of our knowledge, there are no systematic studies in investigating the ex-

istence of arcs within a Bayesian network structure based on the dataset, but several

researchers has proposed algorithms to obtain other types of prior information from

massive datasets. Friedman et al.(1999) applied the cluster-tree decomposition tech-

nique to figure out the candidate parents of a variable in a Bayesian network, which

was regarded as an innovative way to generate prior information from data itself [11].

Additionally, Kojima et al.(2010) divided the super-structure (a pre-assumed skeleton

for the resulting network) into several clusters in order to extend the feasibility of their

constrained optimal searching method [18]. Both of them utilized the concept of clus-

tering analysis, which groups variables based on their similarity, to accelerate the struc-

ture learning process and alleviate wrong arcs produced by heuristic methods. Their

ideas inspire us to segment variables in the dataset into clusters and learn some strongly

“prospective” arcs within each cluster as prior information for the main part of structure

learning.

We thus propose a two-step clustering-based (TSCB) Bayesian network structure

learning strategy, which can automatically retrieve some information about the exis-

tence of arcs from data. In the first step, we applying clustering analysis to group those

strongly “dependent” variables (or nodes) and learn the arcs within clusters via a con-

ventional structure learning algorithm. In the second step, retaining all the arcs within

clusters, we implement the same traditional algorithm again in order to learn the arcs

between clusters. The contributions of our two-step clustering-based strategy fall into

two aspects:
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1. It furnishes us an automatic mechanism to generate prior information and tackle

those real-world structure learning problems when expert knowledge is scarce or

even nowhere to obtain;

2. It ameliorates the performances of a wide range of traditional structure learning

algorithms in terms of accuracy and time efficiency simultaneously.

In order to further improve the accuracy of a network structure learned by our TSCB

strategy, we inherit the principle of ensemble learning [19] and hybrid structure learning

algorithms to propose an algorithm combination technique. The combined algorithm

leverages the constraint-based version of our TSCB strategy to initial a directed acyclic

graph structure for the subsequent BIC scoring heuristic searching. By combining the

TSCB strategy and any score-based method, the resulting network structure can better

reveal the underlying distribution.

1.3 Overview and Declaration of Previous Work

The rest of the thesis document is organized as follows. In Chapter 2 we review the

necessary background knowledge on Bayesian network structure learning and cluster-

ing analysis. In Chapter 3 we outline the framework of our two-step clustering-based

strategy, introduce an important technique to deal with hybrid datasets that involve both

discrete and continuous variables, and discuss some default settings of our strategy. In

Chapter 4 the experimental setups as well as evaluation of our strategy on synthetic

benchmark datasets will be presented, which demonstrate the effectiveness of our strat-

egy on the improvement of traditional algorithms. Chapter 5 focuses on improving the

accuracy of constraint-based methods via a proposed algorithm combination technique

and presenting the corresponding experimental evaluation. We conclude with a discus-

sion of our contributions and future directions in Chapter 6.

This thesis is based on the following previously accepted materials:
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Chapter 2

Background Knowledge

In this chapter we describe in detail the certain aspects of Bayesian network structure

learning and clustering analysis. We begin with a description of general notations that

would be used in following chapters. Consider a finite set U = {X1, ..., XN} of one-

dimensional random variables where each variable Xi may take on values either from

a finite set or a subinterval of the real line R, all denoted by V al(Xi). We use capital

letters such as X, Y, Z for variable names and lower-case letters such as x, y, z to de-

note specific values taken by those variables. Higher-dimensional random variables are

typically denoted by boldface capital letters, such as X,Y,Z, and their assignments of

values are denoted by boldface lowercase letters x,y, z. Finally, let P be a joint dis-

tribution over the variables in U, and let X,Y,Z be some subsets of U. The notation

X ⊥ Y means that X and Y are independent, i.e., for all x ∈ V al(X),y ∈ V al(Y),

P (x,y) = P (x)P (y). Also, we says that X and Y are conditionally independent

given Z, denoted by (X ⊥ Y|Z), if for all x ∈ V al(X),y ∈ V al(Y), z ∈ V al(Z),

P (x|y, z) = P (x|z), or equivalently, P (x,y|z) = P (x|z)P (y|z) whenever P (y, z) >

0.

2.1 Bayesian Network Foundation

The core of the Bayesian network representation is a directed acyclic graph (DAG)

G, whose nodes are the random variables in our domain and whose edges (or arcs)

correspond, intuitively, to direct influence of one variable on another. This graph can be

viewed in two different ways:
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• as a data structure that provides the skeleton for representing a joint distribution

compactly in a factorized way;

• as a compact representation for a set of conditional independence assumptions

about a distribution.

These two views are, in a strong sense, equivalent [10]. The formal definition of the se-

mantics of a Bayesian network requires the terminologies of conditional independence

as well as factorization of the joint probability distribution.

Definition 2.1 (Bayesian Network Structure). A Bayesian network structure G is a di-

rected acyclic graph whose nodes represent random variables X1, ..., Xn. Let PaGXi

denote the parents of Xi in G, and SXi
denote the variables in the graph that are not

descendants of Xi. Then G encodes the following set of conditional independence as-

sumptions, called the local independencies, and denoted by I`(G):

For each variable Xi: (Xi ⊥ SXi
|PaGXi

).

Definition 2.2 (Factorization). Let G be a Bayesian network structure over the vari-

ables X1, ..., Xn. We say that a distribution P over the same variable space factorizes

according to G if P can be decomposed into a product

P (X1, ..., Xn) =
n∏
i=1

P (Xi|PaGXi
).

This equation is the so-called chain rule for Bayesian networks. The individual

factors P (Xi|PaGXi
) are called conditional probability distributions (CPDs). We are

now prepared to display the formal definition of a Bayesian network.

Definition 2.3 (Bayesian Network). A Bayesian network is a pair B = (G, P ) where a

distribution P factorizes over G, and where P is specified as a set of CPDs associated

with G’s nodes (variables).

A simple Bayesian network of discrete variables is shown in Figure 2.1, which mod-

els the potential situation that a metastatic cancer disease patient would face. The do-

main is abstracted to five variables, all of which are binary. The relations between the

8
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FIGURE 2.1: An Example Bayesian Network Modeling the Metastatic Cancer Prob-
lem: Structure and CPTs [1]

occurrence of the disease and some of its typical symptoms can be revealed by the

network structure and CPDs annotated on the variables.

2.1.1 Independencies in Bayesian Network

We first analyze the independencies in some small components of the Bayesian network,

which consist of the following five typical cases:

• Direct connection: X → Y ;

• Indirect causal effect: X → Z → Y ;

• Indirect evidential effect: X ← Z ← Y ;

• Common cause: X ← Z → Y ;

• Common effect: X → Z ← Y .

The first case, when X and Y are connected, indicates that X can directly influence

Y . Hence it is always possible to construct a distribution that X and Y are correlated
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regardless of any evidence of the other variables in the network. In other words, X and

Y are dependent1.

We cannot obtain any independencies from the direct connection case. The other

indirect connection cases, however, furnish us some intuitive conditional independen-

cies. The indirect causal and evidential effects, which are symmetric, illuminate that X

and Y can influence each other if we know nothing about Z. Nevertheless, when Z is

somehow observed, X can no longer influence Y , and vice versa. Therefore, X and Y

are independent given the evidence of Z, that is, (X ⊥ Y |Z).

Similarly, in the common cause case, X can influence Y via Z if and only if Z is

not observed. If the evidence of Z is given, the “flow” from X to Y is blocked and thus

(X ⊥ Y |Z).

The case becomes subtler when it comes to the common effect case, which is also

known as a v-structure. X and Y are independent based on the assumptions of the

Bayesian network, while they become correlated if we get access to some evidence in

Z. A variant of this case, when we observe not Z but its descendants, also enables us

to change our beliefs of Y by the evidence of X . Therefore, X and Y are independent

if none of Z and its descendants are conditioned on.

Any path between two variables (nodes) in a Bayesian network is comprised of these

five components. The preceding analysis induces the formal definition of d-separation,

adapted from Pearl (1995) [20]:

Definition 2.4 (d-separation). Let G be a Bayesian network structure, and X,Y,Z be

three sets of nodes in G. Then X and Y are d-separated given Z, denoted by (X ⊥G
Y|Z), if for any path between a node in X and a node in Y, there exists a node Z in Z

satisfying one of the following two conditions:

1. Whenever we have a v-structure Xi → Z ← Xj , then neither Z nor any of its

descendants are in Z, or

2. Z does not have converging arrows (v-structures) and Z is in Z.
1Here we ignore context-specific independencies. This happens when, for instance, X = Y and X

deterministically takes some particular value give the evidence of another variables Z, then X and Y
both deterministically take that value, and are thus uncorrelated [10].

10
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We can judge whether the d-separation assumption holds for any two nodes from

the Bayesian network structure. The definition of the Bayesian network guarantees that

whenever two nodes (variables)X and Y are d-separated given some other nodes Z they

are conditionally independent given Z. In effect, the main purpose of the Bayesian net-

work structure is to summarize a number of conditional independence relations, graph-

ically [8].

Definition 2.5 (I-map). A DAG G is called an I-map of a probability distribution P if

every (conditional) independence displayed on G through the rules of d-separation, are

valid in P .

With the notation in Definition 2.1, we can also write the definition of an I-map as

I`(G) ⊆ I(P ), where I(P ) denotes the set of independence assertions that hold in P .

It is interesting to know that a full-connected graph, encoding no independencies, is

always an I-map of any probability distribution. Thus, for G to be a Bayesian network,

it must be a minimal I-map of P , i.e., no edges can be removed from G without violating

the I-map property.

2.1.2 I-equivalence

The Bayesian network structure specifies a set of conditional independence assertions.

One crucial observation is that different Bayesian network structures can indeed imply

the same set of conditional independence assumptions. Consider the situations where

variables X, Y, Z form the indirect causal effect, evidential effect, as well as common

cause structures, as mentioned in the previous subsection 2.1.1. All of them encode

precisely the same independence assumptions: (X ⊥ Y |Z). We formulate the equiva-

lent relation of different graph structures that encodes the identical set of (conditional)

independence assumptions.

Definition 2.6 (I-equivalence). Two graph structures G1 and G2 over the variable set

U = {X1, ..., Xn} are I-equivalent if I`(G1) = I`(G2). The set of all graphs over U is

partitioned into a set of mutually exclusive and exhaustive I-equivalence classes, which

are the set of equivalence classes induced by the I-equivalence relation.
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Note that the v-structure network induces a very different set of d-separation asser-

tions, and hence it does not fall into the category of indirect causal effect, evidential

effect, and common cause structures [10].

The I-equivalence property of Bayesian network structure intrinsically complicates

the structure learning problem, because it is unwarranted to prefer one network struc-

ture to another within the same I-equivalence based on information from data. In par-

ticular, although we can determine, for a distribution P (X, Y ), whether X and Y are

correlated, there is nothing in the distribution that can help us determine whether the

correct structure is X → Y or Y → X . Therefore, the best one may hope for is a

structure learning algorithm that, asymptotically, recovers the true structure G∗’s equiv-

alence class [10]. In practice, the Bayesian network is a competing model to address

causality, and directionality of edges embraces causal significance in the domain. With

the help of the domain knowledge, we distinguish a causal Bayesian network from oth-

er candidate networks within its I-equivalence class by identifying the directionality of

edges. Unfortunately, learning the causal Bayesian network relies on the assumption

that no confounding factors (or latent variables) exists in the dataset and requires high-

quality prior knowledge. Although our two-step clustered strategy is able to generate a

small amount of prior information and rectify the directionality of some arcs, it is still

insufficient to learn causal models in many cases.

2.2 Bayesian Network Structure Learning

In this section we aim at reviewing two main categories of structure learning algorithms,

constraint-based and score-based methods. As a paramount step in learning a Bayesian

network, learning the structure attempts to discover a network G that best fits the given

dataset. As we have discussed, it is almost impossible to correctly identify the directions

of all the arcs in the resulting network from the dataset. The existing state-of-the-art

algorithms tend to determine a particular I-equivalence class of network structures by

uncovering a set of conditional independence relations among the domain variables.
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Nonetheless, even on synthetic datasets, the samples are noisy and do not reconstruct

the dependencies among variables correctly. Hence some compromises have to be made

in our learned structure. On one hand, we may include as many edges as we can,

even though some of them are spurious. On the other hand, fewer edges are retained

in the learned model, and we may miss dependencies in consequence. However, we

will see later that in practice, a sparser structure is beneficial to prevent overfitting and

regularization methods should be applied to penalize complex structures.

2.2.1 Constraint-Based Approaches

The foundation of constraint-based structure learning algorithms is the profound work

of Verma and Pearl (1991), the inductive causation algorithms [21]. They learn the

network structure by analyzing the probabilistic relations entailed by the Markov prop-

erty of Bayesian networks with conditional independence tests and then constructing

a graph which satisfies the corresponding d-separation statements [22]. The standard

framework of the conditional independence tests is to define a measure of deviance

from the null hypothesis H0, which is the assumption that P ∗(X, Y ) = P̂ (X)P̂ (Y ),

where P ∗ is the underlying distribution and P̂ is the empirical distribution [10]. One

potential measure of this type is the χ2 statistics:

dχ2(D) =
∑
x,y

(M [x, y]−M · P̂ (x) · P̂ (y))2

M · P̂ (x) · P̂ (y)
,

where M is the total number of data instances and M [x, y] is the count of data instances

when (X, Y ) takes the value (x, y). However, the most commonly used deviance mea-

sure is the mutual information in the empirical distribution defined by the data set D:

dI(D) =
∑
x,y

P̂ (x, y) log
P̂ (x, y)

P̂ (x)P̂ (y)
. (2.1)
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Once we agree on a deviance measure d, we can devise a rule Rd to determine whether

we want to accept the hypothesis

Rd(D) =

Accept d(D) ≤ t,

Reject d(D) > t,

where t is a pre-specified threshold [10].

Classical constraint-based algorithms cannot be applied to any real-world problem

due to the exponential number of possible conditional independence relationships [9].

As a result, a novel approach, Grow-Shrink (GS) algorithm [23], was proposed. The

plain version of the GS algorithm utilized Markov blanket information for inducing the

structure of a Bayesian network and employed independence tests conditioned only on

the minimal Markov blankets of the variables (or nodes) involved. The definition of a

minimal Markov blanket is as follows,

Definition 2.7 (Markov Blanket). For any variable X ∈ U, the minimal Markov blan-

ket BL(X) ⊆ U is the minimal subset of variables such that for any Y ∈ U−BL(X)−

X , X ⊥ Y |BL(X).

In other words, BL(X) completely d-separates the variable X from any other vari-

able outside BL(X)∪ {X}. It is illuminating to mention that, in the Bayesian network

framework, the Markov blanket of a node X is easily identifiable from the graph [8]: it

consists of all its parents, children, and all the other nodes sharing a child with X .

Besides the popular GS algorithm, some other constraint-based algorithms are worth

being mentioned here. The Incremental Association Markov Blanket (IAMB) algorithm

uses a two-phase selection scheme based on a forward selection followed by a backward

one to detect the Markov blankets [24]. The Interleaved Incremental Association (inter-

IAMB) algorithm is a variant of IAMB that interleaves the grow phase with the shrink

phase to reduce the size of Markov blankets in time [25].

When applying constraint-based algorithms one must realize that some of the inde-

pendence test results could be wrong and this category of structure learning methods
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are inherently sensitive to the failures of these conditional independence tests. Even a

single wrong rejection of the null hypothesis could account for a totally different net-

work structure compared to the real one. Although some preceding algorithms like the

GS algorithm may improve the robustness of their original versions by incorporating

random factors, practitioners still seek some prior knowledge to assure the reliability

of conditional independence tests. Therefore, it is urgent and worthwhile to design an

automatic mechanism to furnish constraint-based methods some prior information.

2.2.2 Score-Based Approaches

As discussed in Chapter 1, score-based algorithms treat the Bayesian network structure

learning as an optimization problem, by assigning a statistically motivated score to each

candidate Bayesian network. So, the choice of the scoring function becomes the most

crucial factor in the whole learning process, determining the performance of score-

based methods. We are supposed to scrutinize two most obvious choices of the scoring

function.

2.2.2.1 Likelihood Score

Recall that a Bayesian network represents a particular form of a joint probability dis-

tribution. Given a set of data samples simulated from the probability distribution and

a potential network structure, we can use the standard method to compute the (log-

)likelihood function. As for structure learning task, it seems intuitive to find a model

(G, θG) that maximizes the probability of the data, or equivalently, the (log-)likelihood

function. This can be achieved when we use the Maximum Likelihood Estimators (M-

LE) θ̂G for that graph. Thus, a natural assignment of the scoring function is defined

by

scoreL(G : D) = `(θ̂G : D), (2.2)

where `(θ̂G : D) is the logarithm of the likelihood function and θ̂G are the maximum

likelihood parameters for G. The likelihood score can be interpreted in the view of the

information theory.
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Theorem 2.8. Assuming data instances are independent and identically distributed, the

likelihood score decomposes as follows:

scoreL(G : D) = M

n∑
i=1

IP̂ (Xi;Pa
G
Xi

)−M
n∑
i=1

HP̂ (Xi),

where IP̂ (X, Y ) is the mutual information between X and Y , HP̂ (X) is the entropy of

X , and M is the total number of data instances.

Proof. See Appendix A.

Since mutual information measures the strength of dependencies among variables,

the likelihood score of a network structure indicates the strength of the dependencies

between variables and their parents. In other words, the higher the likelihood score

is, the more informative the parents of each variables would be. In spite of this, the

likelihood score has a pronounced limitations that suppress its power to uncover the

true structure. Consider the network G∅ with two variables where X and Y are in-

dependent and the network GX→Y where X is the parent of Y . By Theorem 2.8,

scoreL(GX→Y : D) − scoreL(G∅ : D) = M · IP̂ (X;Y ). However, it is easy to

check that the mutual information between two variables is always nonnegative. Thus,

scoreL(GX→Y : D) ≥ scoreL(G∅ : D) for any dataset D. This indicates that the max-

imum likelihood score would consistently prefer a more complex structure unless X

and Y are truly independent in the dataset. Due to statistical noise, exact independence

almost never occurs in the empirical distribution, and thus, the maximum likelihood

network will be a fully connected one [10]. This phenomenon is known as overfitting:

the learned network will be extremely well-performed on the training data, while fails

to generalize well to the test data. As a result, some techniques are required to avoid

overfitting and Bayesian Information Criterion (BIC) score provides us with a feasible

approach to penalize dense structures.

2.2.2.2 BIC Score

As we have seen, the maximum likelihood score tends to favor complex network struc-

tures, which are detrimental to new data cases. Hence it is necessary to penalize the
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dense structure in order to obtain a generalizable network. One common approach to

address this issue is to introduce a regularization term to the likelihood score, yielding

the well-known Bayesian Information Criterion (BIC) score2:

scoreBIC(G : D) = `(θ̂G : D)− logM

2
Dim[G] +O(1), (2.3)

where Dim[G] is the model dimension, or the number of independent parameters in G.

The negate of the BIC score is also known as minimum description length score.

By Theorem 2.8, we can further decompose the BIC score into

scoreBIC(G : D) = M

n∑
i=1

IP̂ (Xi;Pa
G
Xi

)−M
n∑
i=1

HP̂ (Xi)−
logM

2
Dim[G].

The BIC score exhibits a trade-off between fit to data and model complexity: the

stronger the dependence of a variable with its parents, the higher the score; the more

complex the network, the lower the score. However, the growth rate of the mutual

information term is O(M) while the regularization term grows logarithmically in M .

More emphasis will be placed on the fit to data [10]. More surprisingly, it turns out

that the BIC score will asymptotically favor a structure that fits the dependencies of the

underlying probability distribution. This property is called the consistency of the score.

Definition 2.9 (consistent score). Assume that our data are generated by some distri-

bution P ∗ for which the network G∗ is a structure that precisely captures the indepen-

dencies in P ∗. We say that a scoring function is consistent if the following properties

hold as the amount of data M →∞, with probability that approaches 1 (over possible

choices of data set D):

• The structure G∗ will maximize the score.

• All structures G that are not I-equivalent to G∗ will have strictly lower score.

2In fact, the BIC score is the approximation of the logP (D|G) = log
∫
ΘG

P (D|θG ,G)P (θG |G)dθG
when we use a Dirichlet prior for all parameters as M → ∞, where P (D|θG ,G) is the likelihood of the
data given the network (G, θG) and P (θG |G) is our prior distribution over different parameter values for
the network G. See [10] for details.
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We can prove that the BIC score satisfies the preceding definition of consistency.

Theorem 2.10. The BIC score is consistent.

Proof. See Appendix A.

The consistency of the BIC score guarantees that it would not be biased toward sim-

pler but wrong structure when we have a sufficiently large amount of data. Thanks to

this benign property of the BIC score, score-based algorithms will unanimously lever-

age the BIC score to evaluate the quality of candidate network structures in the follow-

ing experiments.

After selecting a metric score for each potential network, score-based algorithms

search over the space of all possible structures and return an optimal one. A direct

searching, however, could cause an intractable problem when the number of variables is

large. The reason lies in the fact that the potential space of network structures is at least

exponential in the number of variables n: there are n(n − 1) possible directed edges

and thus 2n(n−1) possible structures for every subset of these edges. Any exhaustive

searching approach for all possible structures is unwise, and instead heuristic methods

are employed in practice. One obvious choice is the Hill-Climbing (HC) algorithm,

whose idea is to generate a model in a step-by-step fashion by making the maximum

possible improvement in an objective quality function at each step [26]. More precisely,

in each step, the algorithm moves from one state of the structure to another via a set

of searching operators: edge addition, edge deletion, and edge reversal, while at the

same time, it tests the legality of the next state network, i.e., no cycles in the network.

The heuristic searching method, as is known to us, may sometimes converge to a local

maximum, from which all changes are score-reducing. The other possibility is to reach

a plateau: a large set of neighboring networks that have the same score. By design, the

greedy Hill-Climbing procedure cannot “navigate” through a plateau, since it relies on

improvement in score to guide it to better structures [10].

One plausible method to solve the plateau problem is the tabu search (TABU) of

algorithm. The procedure keeps a list of recent searching operators that we have applied,
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and in each step we do not consider the operators that reverse the effect of operators

applied within a history window of some predetermined length L. See [10] for the

detailed algorithm. In the following experiments, whenever we apply the tabu greedy

searching algorithm, the length of the list is set to be 10. Other meritorious search

methods like stochastic hill-climbing and genetic algorithms [27] are also commonly

used.

Even though researchers strive to bypass local maxima when applying heuristic

searching methods, except in rare cases, there is no guarantee that the local maximum

that we found is actually the desired global one. This happens in higher chances when

the initial conditions of searching is not properly set. Therefore, one can expect that if an

initial structure with some potential arcs is known in advance, the possibility of score-

based algorithms to converge to the global maximum will increase in consequence.

2.2.3 Hybrid Approaches

Both constraint-based and score-based algorithms embody their own pros and cons,

and one feasible approach is to combine them, using constraint-based methods to initial

the searching state or narrow down the searching space to a particular graph skeleton,

and then applying score-based methods to refine it. For instance, the “Sparse Candi-

date” algorithm utilized mutual information to determine the candidate parents for each

variables before applying heuristic searching methods [11]. The framework of the algo-

rithm was later instantiated to yield a more competing hybrid method, Max-Min Hill-

Climbing (MMHC) algorithm. It first reconstructs the skeleton of a Bayesian network

using Max-Min Parents and Children (MMPC) algorithm, which identifies the parents

and children of any intended variables in a Bayesian network that faithfully represents

the joint probability distribution of data [28]. Then it performs a Bayesian-scoring

greedy Hill-Climbing search to orient the edges [29].

The hybrid approach exploits the advantage of both methods. It uses the global na-

ture of the constraint-based methods to avoid local maxima [10], and utilizes the ability
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of scoring functions to prevent irreversible mistakes occurred in conditional indepen-

dence tests. This principle will be leveraged in Chapter 5 so as to further improve the

accuracy of our two-step clustering-based strategy when embedding constraint-based

algorithms.

2.3 Clustering Analysis

Clustering analysis, a well-known form of unsupervised learning, is an effective tool to

divide unstructured multivariate data into several groups so that items within the same

group are more similar to each other than those in different groups. It can be done

horizontally or vertically on a data set of n independent measurements and N variables.

More precisely, we can either segment measurements or group variables into clusters.

In this paper we concentrated on partitioning the N variables into K distinct groups,

where the number K is a tuning parameter.

Central to clustering analysis is the choice of a measure of the dissimilarity (or

distance) between different items. In reality, specifying an appropriate dissimilarity

measure is far more important in obtaining success with clustering than choice of clus-

tering algorithm [30]. The specification of dissimilarity metrics also depends on the

variable type. For the quantitative (or continuous) variables, the common choices are

squared-error or absolute-error loss,

Dis(X;Y ) =

√√√√ n∑
i=1

(xi − yi)2 or
n∑
i=1

|xi − yi|,

where xi’s and yi’s are measurements (or data instances) for the variable X and Y ,

respectively.
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Alternatively, another dissimilarity measure that is closely related to conditional

independence tests can be defined to be 1−Pearson’s correlation,

Dis(X;Y ) = 1−

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑
i=1

(xi − x̄)2
√

n∑
i=1

(yi − ȳ)2
, (2.4)

where x̄ = 1
n

n∑
i=1

xi is the sample mean of X, and analogously for ȳ.

For discrete variables (either categorical or ordinal), we can use the negative mutual

information to compute their pairwise dissimilarities in order to reveal their dependen-

cies,

Dis(X;Y ) = −
∑
xi,yi

P̂ (xi, yi)log
P̂ (xi, yi)

P̂ (xi)P̂ (yi)
.

In Chapter 3, we will again discuss the choice of dissimilarity metrics for our two-

step clustering-based strategy. It varies when the variable type in the input dataset is

different.

Despite the importance of an appropriate dissimilarity measure, clustering algo-

rithms are emphasized more in the clustering literature. Since we attempt not to es-

timate the underlying probability distribution in the clustering step, our discussion of

clustering algorithms concentrates on combinatorial algorithms. Perhaps the most pop-

ular representative of combinatorial algorithms is K-means [31]. The results of applying

K-means or K-medoids clustering algorithms depend on the choice for the number of

clusters to be searched and a starting configuration assignment [30]. The number of

clusters K in our two-step clustering-based strategy will work as a tuning parameter,

and we want our strategy to be robust and maintain decent performances within a wide

range of the values ofK. Thus, K-means or K-medoids would not be selected as the de-

fault clustering method. Contrary to K-means, which partitions variables into the prede-

termined number of groups, agglomerative methods apply a bottom-up paradigm. They

start at the bottom and at each level recursively merge a selected pair of clusters into a

single clusters [30]. Consequently, users are required to specify a measure of dissimi-

larity between disjoint groups of observations, which leads to three types of approaches,
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i.e., single-linkage, complete-linkage, and a compromise between these two measures,

average-linkage. The single-linkage method, which uses a minimum-distance metric

between clusters, often leads to long “chain” of clusters, whereas the complete-linkage

measure tends to produce many small, compact clusters [32]. Therefore, we choose the

average linkage agglomerative clustering method as our default clustering method in

order to distribute variables evenly between clusters.

After a thorough review on the essential concepts of Bayesian networks and cluster-

ing analysis, we are prepared to present the main contribution of this thesis, the two-step

clustering-based strategy in Chapter 3. Experiments on synthetic benchmark datasets

show that a wide range of traditional structure learning algorithms benefit from our

strategy in terms of both accuracy and time efficiency.
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Chapter 3

Two-Step Clustering-Based Strategy

In this chapter we outline the framework of our proposed two-step clustering-based

(TSCB) strategy in dealing with Bayesian network structure learning. In addition, we

will introduce a technique to address the computation of dissimilarity matrices in hybrid

datasets and scrutinize the default settings of our strategy.

3.1 Outline of the TSCB Strategy

As we have mentioned, prior information helps to improve the accuracy and reduce

the computational cost in Bayesian network structure learning. Thus our two-step

clustering-based strategy, which automatically generates prior information about the

existence of arcs from data, can be applied to any structure learning algorithm. To ob-

tain more accurate arcs and minimize computational costs in the first step, we group

the variables with strong “dependencies” via clustering analysis. Within each cluster,

a traditional structure learning algorithm is conducted to learn the arcs, which work

as the prior information for the second step structure learning. To combine clusters,

we implement the same traditional algorithm with all the arcs in the first step being

well-preserved. See Algorithm 1 for details.

Figure 3.1 is an illustrative example about the procedures of our TSCB strategy,

where the nodes are grouped into clusters based on their similarities (in this case, shapes

or colors) and then applied a traditional structure learning algorithm twice.

When the overview of our TSCB strategy is clear we are supposed to scrutinize the

choice of dissimilarity metric and our data processing technique.
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Algorithm 1 Two-Step Clustering-Based Bayesian Network Structure Learning Strate-
gy
Input:

• Dataset D = X1, X2, ..., XN with N variables

• The number of clusters: K (Parameter)

Output: Bayesian network structure learned from the data set D.
Step 1:

1: Compute the dissimilarity matrix.
2: Carry out clustering analysis via average linkage agglomerative clustering method

and cut the dendrogram into K groups (clusters).
3: Learn Bayesian network structures within each cluster using a traditional algorithm
A1.

Step 2:
1: Apply the algorithm A again on all variables with the retained arcs to combine

clusters.

STEP 1: 
STEP 2: 

FIGURE 3.1: A Descriptive Example of the TSCB Strategy

3.2 Dissimilarity Metric and Data Processing

The choice of dissimilarity metric plays an indispensable role in the performance of

clustering analysis. In Chapter 2 we have reviewed some commonly used dissimilarity

metrics, which are suitable for different types of variables. Some real-world datasets,

however, may contain both continuous and discrete variables. These hybrid datasets are
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abound in biology and medical fields, where the Bayesian network is an effective tool

to model their issues. Thus, we must develop a data processing technique to deal with

the elaborate hybrid datasets, which, at the same time, should measure the dependencies

between variables.

It has been suggested that the strength of dependencies between variables can be

measured via mutual information or correlations [33]. Recall that to reveal pairwise

dependencies, we use the negative mutual information for discrete variables but apply

1−(Pearson’s) correlation for continuous variables. More importantly, constraint-based

algorithms learn the network structure by conditional independence tests, whose usu-

al test statistics is the mutual information for discrete variables and linear correlation

for continuous variables. Therefore, the underlying principle of choosing dissimilarity

metrics is to match up with the test statistics in that we can maximize the prior infor-

mation obtained from data in the first step. This, in turn, ameliorates the accuracies of

conditional independence tests and reduces the computational costs in the second step.

Although the situation becomes more complicated when it comes to hybrid datasets,

we still want to apply the usual Pearson’s correlation to compute dissimilarity matrices

because of its suitability of representing pairwise dependencies. As a result, we design

a technique to transform discrete variables.

1. Converting: Label attributes of discrete variables by nonnegative integers

2. Centralization: Shift the variables such that their attributes are central at 0

Table 3.1 illustrates how a discrete (either categorical or ordinal) variable with three

levels is converted and centralized into its numeric representation.

Variable Converting Centralization
Attribute 1 0 -1
Attribute 2 1 0
Attribute 3 2 1

TABLE 3.1: An Example of Transforming a Discrete Variable

1This could be any traditional structure learning algorithm, like the Grow-Shrink algorithm.
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On the other hand, instead of transforming discrete variables, continuous variables

can also be discretized by quantile or Harteminks pairwise mutual information. Then

the foregoing dissimilarity metric for discrete variables, i.e., pairwise negative mutual

information, can be applied to hybrid data sets. Unfortunately, to the best of my knowl-

edge, there are no universal and widely accepted solutions to deal with hybrid datasets.

Whether to transform discrete variables or to discretize continuous variables is more of

an art than a science, and it often requires significant experimentations. In this thesis,

we would rather transform discrete variables with our proposed technique, especially in

pursuit of time efficiency.

As for the clustering algorithm, as discussed in Chapter 2, we use the average link-

age agglomerative clustering method as our default clustering method. In the actual

coding procedures, our TSCB strategy is encapsulated inside a function structure, and

the clustering method is left to be one of its parameters. Therefore, in practice, users

can specify the clustering method based on their actual scenarios.

3.3 Accuracy Metric

To determine the accuracy of a learned network structure on a simulated dataset, we use

the following accuracy metric [34],

Accuracy =

∑
TruePositive+

∑
TrueNegative∑

Total Population
. (3.1)

In practice, users should apply their own accuracy metric to evaluate the perfor-

mance of a resulting Bayesian network. For instance, in order to carry out a well-

behaved Bayesian network classifier, classification rate would be a more suitable accu-

racy metric. This also explains why we introduce an undefined parameter, the number

of clusters K, into our method, which can be tuned to the optimum in terms of users’

own accuracy metric. This benign design, in some sense, extends the adaptability of our

TSCB strategy in real-world applications. In the upcoming experiments, the variation of
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the previous accuracy with respect to K will be investigated. It shows that our strategy

is effective to ameliorate traditional structure learning algorithms among a wide range

of K.

We finish the discussion of the framework of our TSCB strategy and some de-

tailed settings. In the next chapter we are planning to display the experiments of our

TSCB strategy on synthetic benchmark datasets and demonstrate its effectiveness when

it comes to the improvements of traditional structure learning algorithms in terms of

accuracy and time efficiency.
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Chapter 4

Experimental Methodology and Results

In this chapter we examine our two-step clustering-based (TSCB) Bayesian network

structure learning strategy on some benchmark datasets. To illustrate the effectiveness

of our method, two aspects of experimental analysis will be displayed. First, we inves-

tigate how the accuracies of traditional structure learning algorithms can be improved

with the assistance of our strategy. Here we plug in six traditional structure learning

algorithms to evaluate the adaptability of our method when the parameter is tuned to

the optimum. Furthermore, we inspect the variation of accuracies on one of the syn-

thetic datasets with respect to different values of the parameter, the number of clusters

K. Second, we record the running times in each step of our strategy and demonstrate

the correctness of our automatic mechanism for generating prior information when it

comes to the improvement of time efficiency. Furthermore, the total elapsed times of

our algorithm with the choice of parameters corresponding to optimal states of accura-

cies on synthetic data sets are tested when we embed different traditional algorithms. In

addition, we also analyze the variation of total running times of our strategy with regard

to the different values of the parameter K.

4.1 Experimental Methodology

Our experimental evaluations are conducted on four different sizes of benchmark Bayesian

networks. Without any particular clarification, a synthetic dataset with 1000 instances

is randomly generated from each of Bayesian network data. These network data are “a-

sia” [35], “insurance” [36], “alarm” [37], and “hepar2” [38]. See Table 4.1 for detailed

descriptions of these network data.
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Network Data Number of Nodes Number of Arcs Average Degrees
“asia” 8 8 2.00

“insurance” 27 52 3.85
“alarm” 37 46 2.49
“hepar2” 70 123 3.51

TABLE 4.1: The Description of Benchmark Network Datasets

We use the R version 3.4.2 (2017-9-28) software with the i5-4200U dual core pro-

cessor in an undisturbed environment to estimate the accuracies and time efficiency of

different variants of our strategy. Essentially, the implementation of our TSCB strategy

relies on the “cluster” [39], “infotheo” [40], and “bnlearn” [22] package.

4.2 Accuracy Analysis

First, we are interested in how performances of traditional structure learning algorithms

can be ameliorated in terms of the pre-assigned accuracy metric when we leverage clus-

tering to construct pre-existing arcs from data. Six well-known conventional algorithms

are embedded into our two-step clustering-based strategy to assess the amendments of

their accuracies. Among these six traditional methods, three of them, GS, IAMB, and

inter-IAMB, belong to the constraint-based category; two of them, HC and TABU, are

score-based algorithms; while MMPC is a local discovery algorithm that is used by a

hybrid method, MMHC. To reduce the randomness of our experimental results, we re-

peat the random generating process of a synthetic dataset as well as the corresponding

accuracy experiment for 100 times when embedding different traditional algorithms.

Table 4.2 illustrates that our two-step clustering-based strategy with an optimal

choice of the parameter helps to improve the accuracies of traditional structure learning

algorithms by automatically generating prior information from data. The improvements

of accuracies seem not to be salient on the absolute values of the records. This could

result from the fact that the instances simulated from datasets are not large enough to

uncover sufficient candidate arcs in the first step. More importantly, due to the sparse

configurations of Bayesian networks as the number of variables increases, any minute
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Methods “asia” “insurance” “alarm” “hepar2”
GS 0.9096

(0.8918)
0.9309
(0.9263)

0.9662
(0.9602)

0.9763
(0.9753)

IAMB 0.9084
(0.8896)

0.9287
(0.9218)

0.9715
(0.9686)

0.9747
(0.9741)

Inter-
IAMB

0.9082
(0.8936)

0.9281
(0.9208)

0.9716
(0.9689)

0.9748
(0.9742)

MMPC 0.8557
(0.8546)

0.9259
(0.9259)

0.9649
(0.9646)

0.9732
(0.9728)

HC 0.9766
(0.9766)

0.9328
(0.9293)

0.9768
(0.9724)

0.9824
(0.9822)

TABU 0.9664
(0.9657)

0.9422
(0.9312)

0.9788
(0.9744)

0.9814
(0.9810)

TABLE 4.2: Accuracy Result Comparisons Between the TSCB Strategy and the
Embedded Traditional Algorithms. The records inside round brackets are the corre-

sponding accuracies of the embedded traditional algorithms.

improvement of the accuracy can indeed make a great difference to the resulting net-

work structure. For instance, Figure 4.1 visualizes the actual network, the one learned

with our TSCB strategy, and the one learned by the embedded traditional algorithm on

the benchmark synthetic dataset “alarm”. From Figure 4.1, one can note that our TSCB

strategy rectifies the error of traditional structure learning algorithms by detecting some

false negative arcs and reversing some false positive arcs. Here a benchmark “alar-

m” data set with 20000 instances works as the test dataset and the usual Grow-Shrink

algorithm is plugged in.

However, skeptics may wonder how accuracies would vary with respect to different

values of the critical parameter, the number of clusters K. Figure 4.2 displays the accu-

racy variations of our TSCB strategy with regard to K on the “alarm” dataset when we

embed the Grow-Shrink and Hill-Climbing algorithms. The accuracies of our two-step

clustering-based strategy are always identical to the embedded traditional algorithms

when the number of clusters K reaches the maximum, i.e., the total number of vari-

ables in the network data. The principle of this phenomenon is fairly intuitive, since

30



Undergraduate Thesis of Yikun Zhang

ACO2

ANES

APLBP CCHL

CO

CVP

DISC

ECO2

ERCA

ERLO

FIO2

HISTHR

HRBP

HREK

HRSA

HYP

INT

KINK

LVF

LVV

MINV

MVSPAP

PCWP

PMB

PRSS

PVS

SAO2

SHNT

STKV

TPR

VALV

VLNG

VMCH

VTUB

(A) Actual Network

ACO2

ANES

APLBP CCHL

CO

CVP

DISC

ECO2

ERCA

ERLO

FIO2

HISTHR

HRBP

HREK

HRSA

HYP

INT

KINK

LVF

LVV

MINV

MVSPAP

PCWP

PMB

PRSS

PVS

SAO2

SHNT

STKV

TPR

VALV

VLNG

VMCH

VTUB

(B) Learned by the GS Algo-
rithm

ACO2

ANES

APLBP CCHL

CO

CVP

DISC

ECO2

ERCA

ERLO

FIO2

HISTHR

HRBP

HREK

HRSA

HYP

INT

KINK

LVF

LVV

MINV

MVSPAP

PCWP

PMB

PRSS

PVS

SAO2

SHNT

STKV

TPR

VALV

VLNG

VMCH

VTUB

(C) Learned by the TSCB S-
trategy

FIGURE 4.1: Network Configurations on the “alarm” Dataset. The red dotted arcs
in each plotting are false positive arcs, namely, the arcs that are wrongly learned by
structure learning methods. The blue dashed arcs are false negative arcs, which are not

uncovered by structure learning algorithms.
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FIGURE 4.2: Accuracy Variation With Respect to the Number of Clusters. In each
plot, there is a horizontal dashed line, indicating the raw accuracy of the embedded
traditional algorithm. The experiment is conducted on the “alarm” data set with 20000

instances.

there is only one variable per cluster when K is equal to the number of variables in the

network.

More importantly, Figure 4.2 demonstrates the robustness of our TSCB strategy be-

cause the accuracies of traditional algorithms can be improved among a wide range
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of the effective values of K. In actual experiments, we inspect the accuracy varia-

tions on all mentioned benchmark datasets. Upon optimal stages, our TSCB strategy

unanimously outweighs the performance of any pure embedded traditional algorithms,

though the effective ranges of the parameter K could vary on different datasets. For

simplicity, we only present the results on the “alarm” dataset.

4.3 Time Efficiency Analysis

Besides amendments on accuracies, our two-step clustering-based strategy is able to

reduce computational costs of traditional structure learning algorithms simultaneous-

ly. When it is not always an easy task to measure the computational cost of a method,

recording the running times becomes an acceptable approach. The running times may

vary significantly when the implementation of a method is conducted on different ma-

chines and software platforms. Hence we tend not to simply record the running times

but rather make comparisons of the mean elapsed times of repeated experiments and

time distributions at different states.

To speed up the learning process of our strategy, some tradeoffs have to be made dur-

ing running time experiments. When computing the dissimilarity matrix of a synthetic

dataset we uniformly transform those discrete variables by the previously mentioned

technique and apply the usual 1-correlation metric. The reason lies in the fact that it is

more time-consuming to estimate the empirical mutual information than calculate the

correlation between two variables in the R platform. Since the refined Pearson’s corre-

lation is appropriate enough to reflect the dependencies between variables, our strategy

is still well-behaved in terms of accuracies, though the improvements could be less

salient. In practice, computing the dissimilarity matrix via pairwise mutual information

is still an optimal choice for the datasets with purely discrete variables, even when we

take into account the time efficiency of our TSCB strategy.

To verify the effectiveness of the learned arcs in the first step for the acceleration

of the whole structure learning process, we first segment the timing procedure on a

synthetic dataset into three sub-steps so as to record the elapsed times on clustering
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(including the computation of the dissimilarity matrix), learning arcs within clusters,

and learning arcs between clusters (combining clusters), respectively. Here we embed

the Grow-Shrink algorithm and tune the parameter to the optimum in terms of accuracy

in each experiment. Again, to reduce the randomness of our experimental results, we

repeat the generating process of a synthetic data set with 2000 random samples for 50

times and at the same time repeat the time recording process for 10 times. However,

we exclusively generate 5000 random samples from “hepar2” network data each time

because we basically want all the levels in the variables to appear in the simulated

dataset. Table 4.3 shows that with the optimal choice of the parameter in terms of

accuracy, our TSCB can also reduce computational costs of traditional algorithms.

Mean Elapsed Times / s “asia” “insurance” “alarm” “hepar2”
Clustering 0.00230 0.00788 0.01076 0.04432

Within clusters 0.00464 0.01670 0.05012 0.04744
Between clusters 0.00962 0.16420 0.24640 1.46168

TSCB 0.01656 0.18878 0.30728 1.55344
Traditional 0.01010 0.19362 0.35900 1.65584

TABLE 4.3: Mean Elapsed Time Comparisons.

There are two points that are noteworthy to be scrutinized in Table 4.3. First, one

can notice that the elapsed time for learning arcs between clusters dominates the overall

elapsed time for each learning process. By conducting clustering analysis in the first

step, the elapsed times for combining clusters substantially decrease, especially when

the size of the network is large. These running times saved from combining clusters

in effect make an indispensable contribution to the reduction of the overall elapsed

times of our TSCB strategy. More importantly, the improvement of time efficiency of

learning arcs between clusters indeed verifies that self-generating prospective arcs from

data is able to accelerate the structure learning process. Second, since the clustering

procedure is time-efficient, our automatic mechanism for generating prior information

can be adapted to any traditional structure learning algorithm without causing dramatic

extra computational costs.
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Moreover, we are going to investigate the variations of total elapsed times of our

TSCB strategy with respect to different values of the parameter K. Additionally, we

will justify that traditional structure learning algorithms from different categories ben-

efit from our TSCB strategy in terms of time efficiency as well. Here we again conduct

our experiments on the benchmark dataset “alarm” with 20000 instances. For the time

variation experiments, we only report the results embedding the Grow-Shrink algorith-

m. Our actual experiments on other traditional algorithms illustrate the similar variation

tendency and thus are omitted here. See Figure 4.3 for details.
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FIGURE 4.3: Experimental Results of Elapsed Times on the “alarm” Dataset. Fig-
ure 4.3a displays time distributions of 200 repeated experiments for each possible value
of the parameter when we embed the GS algorithm. The rightmost boxplot represents
the time distribution of the traditional algorithm. Figure 4.3b presents the time com-
parisons between the TSCB strategy and six traditional algorithms. For each pair of
boxplots, the left one is for our TSCB method while the right one is for the plug-in

traditional algorithm.

As shown in Figure 4.3a, our TSCB strategy improves the time efficiency of the

embedded traditional algorithm within a wide range of K. The improvement is most

salient when the number of variables in most clusters is less than three. On the other

hand, in Figure 4.3b, our TSCB strategy also helps to reduce computational costs of the

embedded traditional algorithms even when the parameter is set to be optimal in terms

of accuracy. These amendments on computational costs are more pronounced when
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the traditonal algorithms come from the constraint-based category. Combined with the

accuracy results, it is sufficient to demonstrate that a wide range of structure learning

algorithms benefit from our TSCB strategy in terms of accuracy and time efficiency,

though sometimes tuning the parameter is required.

With this chapter we conclude the discussion of our automatic mechanism for gen-

erate prior information, i.e., the two-step clustering-based strategy. In the next chapter

we focus on combining constraint-based version of our TSCB strategy with score-based

methods, which are committed to further improvement of our TSCB strategy in terms

of accuracy.
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Chapter 5

Further Improvement: Algorithm Com-

bination

In the field of machine learning, ensemble learning methods are widely used for im-

proving the prediction performance of a classifier by integrating multiple models [19].

One of the most popular approaches for creating correct ensembles is boosting [41, 42],

which combines a sequence of weak classifiers to produce a refined prediction model.

Ensemble learning methods mainly aim to tackle supervised learning problems, where

we have predictors and response variables. Bayesian network structure learning, as

well as clustering analysis that are leveraged in our TSCB strategy, fall into the catego-

ry of unsupervised learning in most cases. Thus, ensemble methods seem to be of no

use in our structure learning problem. In Chapter 2, however, we discuss with a spe-

cial category of structure learning algorithms called hybrid methods, which exploit the

principle of ensemble learning and synthesize both constraint-based and score-based

approaches into the structure learning process. The idea of the combination is rather in-

tuitive: it uses constraint-based methods to initialize a graph structure and then applies

score-based methods to optimize it. Such an elegant combination of structure learn-

ing algorithms inspires us to combine score-based algorithms with our TSCB strategy

embedded constraint-based methods so as to further ameliorate the accuracies of the

resulting network structures.
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5.1 Outline of Algorithm Combination

To initialize a network structure for subsequent score-based algorithms, we embed any

constraint-based algorithm in our TSCB strategy and consequently obtain a preliminary

network structure, which could be partially directed. Then the undirected edges in the

network structure would be discarded, since score-based methods sometimes require a

directed acyclic graph to start up the heuristic searching process and undirected edges

do not reveal any causality between the variables. Some hybrid structure learning meth-

ods like the Max-Min Hill-Climbing algorithm require only a skeleton of a Bayesian

network and orient the edges via score-based methods, which is different from our

combined algorithm. Finally, given the directed acyclic graph as the initial state, any

score-based method can thus be applied to refine the network structure. Recall that the

BIC score is able to penalize complex structures and avoid overfitting. Thus, we again

leverage the BIC scoring function in each greedy searching method. See Algorithm 2

for details.

Algorithm 2 A Combined Algorithm of the Two-Step Clustering-Based Strategy and
Score-based Methods
Input:

• Dataset D = X1, X2, ..., XN with N variables

• The number of clusters: K (Parameter)

• A constraint-based method to be optimized

• A BIC scoring heuristic searching method

Output: Bayesian network structure learned from the data set D.
1: Embed the constraint-based method into our TSCB strategy (Algorithm 1) to ini-

tialize a network structure
2: Retain only the directed edges of the network
3: Optimize the DAG via the BIC scoring heuristic searching method

After presenting the outline of our algorithm combination technique, we are sup-

posed to assess the performances of the combined algorithm on benchmark network

datasets.

37



Undergraduate Thesis of Yikun Zhang

5.2 Experimental Evaluation

As how we evaluate our TSCB strategy in the last chapter, we display the experiments

of the proposed algorithm combination from two aspects, accuracy and computational

cost. First we demonstrate that the accuracies of traditional constraint-based methods

can be further ameliorated when they are embedded in our TSCB strategy and then com-

bined with score-based methods. Again, we implement our TSCB strategy equipped

with four conventional constraint-based algorithms, i.e., GS, IAMB, inter-IAMB, and

MMPC. After learning an initial directed acyclic graph, we apply HC and TABU greedy

searching methods to optimize it, respectively. All the experiments are conducted on

the previous four synthetic network datasets with 1000 random data instances. (See

Chapter 4 for detailed descriptions.) Meanwhile, to reduce the randomness of simulat-

ed datasets, we uniformly repeat each accuracy experiment for 50 times.

Table 5.1 illuminates that the accuracies of traditional constraint-based algorithms

can be improved by our TSCB strategy and achieve more salient amendments via the

combined algorithm. It is noteworthy to point out that the improvement rate of accu-

racies for traditional methods can even reach more than 10% when the parameter K is

tuned to the optimum in our combined algorithm. This result is of great merit, show-

ing that our algorithm combination technique can make tremendous progress from our

TSCB strategy.

Likewise, we investigate whether the parameter, the number of clusters K, is robust

to the choice of different values. Figure 5.1 displays the accuracy variations with respect

to the parameter on the benchmark dataset “alarm” with 20000 instances. Here we use

the performance of the conventional GS algorithm as the baseline of our comparison,

implement our TSCB strategy to ameliorate its accuracy, and subsequently combine

the Hill-Climbing greedy search to further improve the resulting network structure. As

revealed by Figure 5.1, the combined algorithm outperforms the baseline GS method

under a wide range of the values of the parameter. More significantly, the combined

algorithm is able to upgrade the performance of our original TSCB strategy with the
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FIGURE 5.1: Accuracy Variation of the Combined Algorithm With Respect to
the Number of Clusters. The horizontal dashed line indicates the raw accuracy of
the embedded GS algorithm. The red line with solid points is the performance of our
combined algorithm. The green line with triangular points represents the accuracies
of the HC algorithm with our TSCB strategy, while the blue line with square points

displays the accuracies of the GS algorithm with our strategy.

optimal choice of the parameter. These accuracy results justify the effectiveness and

adaptability of our combined algorithm in various states.

Apart from improving the accuracies of constraint-based, can the combined algo-

rithm exploit any advantage in terms of time efficiency? Unfortunately, there might

not be the case. As one can expect, additional implementations of heuristic searching

methods expend more running times and consequently increase computational costs.

We conduct similar time variation experiments on the benchmark dataset “alarm”. As

shown in Figure 5.2, our combined algorithm is slightly more time-consuming than the

embedded constraint-based method. However, the dramatic improvement on the accu-

racy level insinuates that it is sometimes worthwhile to sacrifice a little computational

efficiency in order to pursue a well-performed and informative network structure.
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FIGURE 5.2: Elapsed Time Distributions With Respect to the Number of Clusters.
For each possible value of the parameter, we repeat the learning process for 100 times
and plot the boxplots. The rightmost boxplot represents the time distribution for the

traditional constraint-based method (GS algorithm).
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Chapter 6

Conclusions and Future Research

In this thesis we have proposed a two-step clustering-based strategy for Bayesian net-

work structure learning, which can self-generate prior information about the existence

of arcs from data. By grouping the variables in the dataset into clusters and learning

the network structure within and between clusters, the performance of a wide vari-

ety of traditional structure learning algorithms on synthetic benchmark datasets have

been improved in terms of accuracy and time efficiency, simultaneously. Moreover,

we design a combined algorithm, integrating the constraint-based version of our pro-

posed clustering-based strategy with BIC scoring greedy searching methods. The algo-

rithm combination technique manages to further ameliorate the accuracy performance

of constraint-based method, though some sacrifices in computational costs have to be

borne.

There are several directions for future research, both theoretically and empirically.

As for theoretical research, a rigorous asymptotic analysis of the running time of our

TSCB strategy is of great importance, since it tells us whether our strategy would be

prohibitively expensive on sufficiently large-scale datasets. In addition, there is an inter-

esting phenomenon in our experiments. We noticed that the optimal state of our TSCB

strategy always attains when nearly all the clusters contain no more than three variables,

which somewhat implies that the group of two or three nodes might be the primitive unit

of the network structure. The phenomenon is consistent with the concept of “network

motif” [2]. See Figure 6.1 for detailed descriptions. Therefore, in our future work, we

are also interested in the physical meaning of each detected cluster, which may give us

more insight into the performance improvement.
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FIGURE 6.1: All 13 Types of Three-Node Connected Subgraphs [2]

Empirically, chances are high that there exist latent variables in real-world datasets.

Hence the robustness of our TSCB strategy and algorithm combination technique in the

presence of latent variables is also a possible direction for future research. Furthermore,

our TSCB strategy and algorithm combination technique aim at learning static Bayesian

network structures up to now. Thus, whether our proposed methods are capable to

tackle dynamic Bayesian networks, or even more generalized template models, need

investigating in the future.
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Appendix A

Proofs of Theorems

A.1 Decomposition of Likelihood Score

Theorem A.1. The likelihood score decomposes as follows:

scoreL(G : D) = M
n∑
i=1

IP̂ (Xi;Pa
G
Xi

)−M
n∑
i=1

HP̂ (Xi),

where IP̂ (X, Y ) is the mutual information between X and Y , HP̂ (X) is the entropy of

X , and M is the total number of data instances.

Proof. Let Ui = PaXi
and ui be its instantiation. We can rewrite the likelihood function

by combining all the occurrences of each parameter θxi|u as

scoreL(G : D) =
n∑
i=1

[ ∑
ui∈V al(PaGXi

)

∑
xi

M [xi,ui] log θ̂xi|ui

]
.

Note that M [xi,ui] = M · P̂ (xi,ui) and the MLE θ̂xi|ui
= P̂ (xi|ui). Then
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scoreL(G : D) =
n∑
i=1

M

[
1

M

∑
ui

∑
xi

M [xi,ui] log θ̂xi|ui

]

=
n∑
i=1

M

[∑
ui

∑
xi

P̂ (xi,ui) log P̂ (xi|ui)

]

=
n∑
i=1

M

[∑
ui

∑
xi

P̂ (xi,ui) log
( P̂ (xi,ui)

P̂ (ui)
· P̂ (xi)

P̂ (xi)

)]

=
n∑
i=1

M

[∑
ui

∑
xi

P̂ (xi,ui) log
( P̂ (xi,ui)

P̂ (ui)P̂ (xi)

)
+
∑
xi

(∑
ui

P̂ (xi,ui)
)

log P̂ (xi)

]

= M
n∑
i=1

IP̂ (Xi;Ui)−M
n∑
i=1

∑
xi

P̂ (xi) log
1

P̂ (xi)

= M

n∑
i=1

IP̂ (Xi;Ui)−M
n∑
i=1

HP̂ (Xi),

where (as implied by Formula 2.1) the mutual information IP̂ (Xi;Pa
G
Xi

) is 0 if PaGXi
=

∅. �

A.2 Consistency of BIC Score

Theorem A.2. The BIC score is consistent [10].

Proof. It suffices to prove that for sufficiently large sample size M , if the graph that

maximizes the BIC score is G, then G is I-equivalent to G∗.

First, consider some graph G that implies an independence assumption that G∗ does

not support. Then G cannot be an I-map of the true underlying distribution P . Hence, G

cannot be a maximum likelihood model with respect to the true distribution P ∗, so that

we must have: ∑
i

IP ∗(Xi;Pa
G∗
Xi

) >
∑
i

IP ∗(Xi;Pa
G
Xi

).

As M → ∞, our empirical distribution P̂ will converge to P ∗ with probability 1.

Therefore, for large M ,

scoreL(G∗ : D)− scoreL(G : D) ≈ ∆ ·M,
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where ∆ =
∑

i IP ∗(Xi;Pa
G∗
Xi

) >
∑

i IP ∗(Xi;Pa
G
Xi

). Therefore, asymtotically we have

that

scoreBIC(G∗ : D)− scoreBIC(G : D) ≈ ∆ ·M +
1

2
(Dim[G]−Dim[G∗]) logM.

The first term grows much faster than the second as M → ∞, so that eventually its

effect will dominate, and the BIC score of G∗ will be better.

Second, assume that G implies all the independence assumptions in G∗, but that G∗

implies an independence assumption that G does not. (In other words, G is a superset

of G∗.) In this case, G can represent any distribution that G∗ can. In particular, it can

represent P ∗. As P̂ converges to P ∗, we will find that:

scoreL(G∗ : D)− scoreL(G : D)→ 0.

Thus, asymptotically we obtain that

scoreBIC(G∗ : D)− scoreBIC(G : D) ≈ 1

2
(Dim[G]−Dim[G∗]) logM.

Now, since G makes fewer independence assumptions than G∗, it must be parameterized

by a larger set of parameters, that is, Dim[G] > Dim[G∗], so that the BIC score metric

prefers G∗ to G. �
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Appendix B

Supplementary Materials

The code for our two-step clustering-based strategy as well as experimental evalua-

tions is available at https://github.com/zhangyk8/TSCB-strategy. The

related network structure can be downloaded from http://www.bnlearn.com/

bnrepository/ [43].

The published paper, poster, and talk slides associated with this thesis can be found

on my personal website (https://zhangyk8.github.io/).
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